【人教A版】高中数学必修一:全册作业与测评(含答案) 课时提升作业(二十七) 3.2.2.2

合集下载

高中数学人教A版必修第一册全册测试卷(含答案)

高中数学人教A版必修第一册全册测试卷(含答案)

……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。

人教A版高中数学必修1全册课后习题(附解析)

人教A版高中数学必修1全册课后习题(附解析)

结合全新各地模拟考试相关题目人教A版高中数学必修1全册课后习题(附解析)第一章集合与常用逻辑用语1.1集合的概念第1课时集合的概念与几种常见的数集课后巩固1.设集合A={2,4,5},B={2,4,6},若x∈A,且x∉B,则x的值为()A.2B.4C.5D.62.若a是R中的元素,但不是Q中的元素,则a可以是()A.3.14B.-5C.D.是实数,但不是有理数,故选D.3.若集合A只含有元素a,则下列各式正确的是()A.0∈AB.a∉AC.a∈AD.a=AA中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应该用“=”,故选C.4.下列对象能构成集合的是()A.高一年级全体较胖的学生B.sin 30°,sin 45°,cos 60°,1C.全体很大的自然数D.平面内到△ABC三个顶点距离相等的所有点较胖”与“很大”的标准不明确,所以A、C不能构成集合;对于B,由于sin 30°=cos 60°=,不满足集合中元素的互异性,故B错误;对于D,平面内到△ABC三个顶点距离相等的所有点,可知这个点就是△ABC外接圆的圆心,满足集合的定义,故选D.5.(多选题)下列关系正确的有()A.∈RB.∉RC.|-3|∈ND.|-|∈Q中,∈R,正确;B中,∉R,错误;C中,|-3|∈N,正确;D中,|-|∈Q,错误,所以正确的个数是两个,故选A,C.6.已知集合S中的元素a,b是一个四边形的两条对角线的长,那么这个四边形一定不是()A.梯形B.平行四边形C.矩形D.菱形,所以a≠b,即四边形对角线不相等,故选C.7.已知集合A中含有2个元素x+2和x2,若1∈A,则实数x的值为.x+2=1或x2=1,所以x=1或x=-1.当x=-1时,x+2=x2,不符合题意,所以x=-1舍去;当x=1时,x+2=3,x2=1,满足题意.故x=1.8.设P,Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是.a∈P,b∈Q,则a+b的取值分别为1,2,3,4,6,7,8,11,则组成的集合P+Q中有8个元素.9.已知集合A中含有两个元素a-3和2a-1.(1)若-3是集合A中的元素,试求实数a的值;(2)-5能否为集合A中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.因为-3是集合A中的元素,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合要求;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a的值为0或-1.(2)若-5为集合A中的元素,则a-3=-5,或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性;当2a-1=-5时,解得a=-2,此时a-3=-5,显然不满足集合中元素的互异性.综上,-5不能为集合A中的元素.10.已知集合A中含有3个元素:x,,1,B中含有3个元素:x2,x+y,0,若A=B,则x2 017+y2 018=.A=B,∴解得则x2 017+y2 018=(-1)2 017+02 018=-1.11.设x,y,z是非零实数,若a=,则以a的值为元素的集合中元素的个数是.x,y,z都是正数时,a=4;当x,y,z都是负数时,a=-4;当x,y,z中有一个是正数另两个是负数或有两个是正数另一个是负数时,a=0.所以以a的值为元素的集合中有3个元素.12.设A是由一些实数构成的集合,若a∈A,则∈A,且1∉A.(1)若3∈A,求集合A;(2)证明:若a∈A,则1-∈A;(3)集合A中能否只有一个元素?若能,求出集合A;若不能,说明理由.3∈A,∴=-∈A,∴∈A,∴=3∈A,∴A=.a∈A,∴∈A,∴=1-∈A.A只有一个元素,记A={a},则a=,即a2-a+1=0有且只有一个实数解.∵Δ=(-1)2-4=-3<0,∴a2-a+1=0无实数解.这与a2-a+1=0有且只有一个实数解相矛盾,故假设不成立,即集合A中不能只有一个元素.第2课时集合的表示课后巩固1.已知集合A={x|x(x+4)=0},则下列结论正确的是()A.0∈AB.-4∉AC.4∈AD.2∈AA={x|x(x+4)=0}={0,-4},∴0∈A.2.一次函数y=x+2和y=-2x+8的交点组成的集合是()A.{2,4}B.{x=2,y=4}C.(2,4)D.{(x,y)|x=2且y=4}解得∴一次函数y=x+2与y=-2x+8的图象的交点为(2,4),∴组成的集合是{(x,y)|x=2且y=4}.3.集合用描述法可表示为()A. B.C. D.3,,即,从中发现规律,x=,n∈N*,故可用描述法表示为.4.已知集合A=m y=∈N,m∈N,用列举法表示集合A=.集合A=m y=∈N,m∈N,∴A={1,2,4}.5.(一题多空题)设集合A={x|x2-3x+a=0},若4∈A,则a=,集合A用列举法表示为.4∈A,∴16-12+a=0,∴a=-4,∴A={x|x2-3x-4=0}={-1,4}.6.用列举法表示下列集合:(1)方程组的解集;(2)不大于10的非负奇数集;(3)A=.由故方程组的解集为{(2,1)}.(2)不大于10,即小于或等于10,非负是大于或等于0,故不大于10的非负奇数集为{1,3,5,7,9}.(3)由式子可知4-x的值为1,2,3,6,从而可以得到x的值为3,2,1,-2,所以A={-2,1,2,3}.7.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.绝对值不大于3的整数可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,2,3};(2){x|x=3n,n∈Z};(3)∵x=|x|,∴x≥0.∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可表示为{0,1,2,3,4};(4){-2}.(特别注意x∈Z这一约束条件)8.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x,y)到x轴的距离为|y|,到y轴的距离为|x|,所以该集合用描述法表示为{(x,y)||y|=|x|}.能力提升1.已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},a∈P,b∈Q,则()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任意一个a=2m(m∈Z),b=2n+1(n∈Z),则a+b=2m+2n+1=2(m+n)+1.因为m+n∈Z,与集合Q中的元素特征x=2k+1(k∈Z)相符合,所以a+b∈Q,故选B.2.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x+y∈A},则B中所含元素的个数为.A={1,2},B={(x,y)|x∈A,y∈A,x+y∈A},所以B={(1,1)},只有一个元素.3.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M=.(x,y)xy≥0,-2≤x≤,-1≤y≤4.已知集合A={x|ax2-3x+2=0},其中a为常数,且a∈R.(1)若A中至少有一个元素,求a的取值范围;(2)若A中至多有一个元素,求a的取值范围.当A中恰有一个元素时,若a=0,则方程化为-3x+2=0,此时关于x的方程ax2-3x+2=0只有一个实数根x=;若a≠0,则令Δ=9-8a=0,解得a=,此时关于x的方程ax2-3x+2=0有两个相等的实数根.当A中有两个元素时,则a≠0,且Δ=9-8a>0,解得a<,且a≠0,此时关于x的方程ax2-3x+2=0有两个不相等的实数根.综上,a≤时,A中至少有一个元素.(2)当A中没有元素时,则a≠0,Δ=9-8a<0,解得a>,此时关于x的方程ax2-3x+2=0没有实数根.当A中恰有一个元素时,由(1)知,此时a=0或a=.综上,a=0或a≥时,A中至多有一个元素.1.2集合间的基本关系课后巩固1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D.2.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}分别表示的集合为{0},{x|x>0},{0},∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.3.(多选题)下列命题中,错误的是()A.空集没有子集B.任何集合至少有两个子集C.空集是任何集合的真子集D.若⌀⫋A,则A≠⌀错,空集是任何集合的子集;B错,如⌀只有一个子集;C错,空集不是空集的真子集;D正确,因为空集是任何非空集合的真子集.4.设集合A={-1,0,1},B={a,a2},则使B⊆A成立的a的值是()A.-1B.0C.1D.-1或1B⊆A,∴∴a=-1.5.满足{1}⊆A⊆{1,2,3}的集合A的个数是()A.2B.3C.4D.8满足{1}⊆A⊆{1,2,3}的集合A为:{1},{1,2},{1,3},{1,2,3},共4个.6.设集合M={y|y=x2+1},N={x|y=x2+1},能正确表示集合M与集合N的关系的Venn图是()M={y|y=x2+1}={y|y≥1},N={x|y=x2+1}=R,∴M⫋N,对应的Venn图是D.7.集合{x|1<x<6,x∈N*}的非空真子集的个数为.{x|1<x<6,x∈N*}={2,3,4,5},有4个元素,故有非空真子集24-2=14(个).8.下列各组中的两个集合相等的所有序号是.①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z};②P={x|x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};③P={x|x2-x=0},Q=x x=,n∈Z.中对于Q,n∈Z,所以n-1∈Z,Q表示偶数集,所以P=Q;②中P是由1,3,5,…所有正奇数组成的集合,Q是由3,5,…所有大于1的正奇数组成的集合,1∉Q,所以集合P与集合Q不相等;③中P={0,1},Q中当n为奇数时,x==0;当n为偶数时,x==1,Q={0,1},所以P=Q.9.集合A={x|-1≤x≤1},B={x|a-1≤x≤2a-1},若B⊆A,则实数a的取值范围是.B=⌀,即2a-1<a-1,即a<0时,满足B⊆A.若B≠⌀,即a-1≤2a-1,即a≥0时,要使B⊆A,则满足解得0≤a≤1.综上:a≤1.≤110.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.B是A的子集,所以B中元素必是A中的元素,若x+2=3,则x=1,符合题意.若x+2=-x3,则x3+x+2=0,所以(x+1)(x2-x+2)=0.因为x2-x+2≠0,所以x+1=0,所以x=-1,此时x+2=1,集合B中的元素不满足互异性.综上所述,存在实数x=1,使得B是A的子集,此时A={1,3,-1},B={1,3}.能力提升1.M={x|6x2-5x+1=0},P={x|ax=1},若P⊆M,则a的取值集合为()A.{2}B.{3}C.{2,3}D.{0,2,3}{x|6x2-5x+1=0}=,P={x|ax=1}.∵P⊆M,∴P=⌀或P=或P=, ∴相应地,有a=0或a=3或a=2.∴a的取值集合为{0,2,3}.2.已知集合A=x x=(2k+1),k∈Z,B=x x=k±,k∈Z,则集合A,B之间的关系为.A,k=2n时,x=(4n+1)=,n∈Z,当k=2n-1时,x=(4n-2+1)=,n∈Z, 即集合A=x x=,n∈Z,由B=x x=,k∈Z,可知A=B.3.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},(1)若B⊆A,求实数m的取值范围.(2)当x∈Z时,求A的非空真子集个数.(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.当m+1>2m-1即m<2时,B=⌀,满足B⊆A.当m+1≤2m-1即m≥2时,要使B⊆A成立,需可得2≤m≤3.综上,m≤3时有B⊆A.(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以A的非空真子集个数为:28-2=254.(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},没有元素x使x∈A与x∈B同时成立.则①若B=⌀,即m+1>2m-1,得m<2时满足条件.②若B≠⌀,则要满足条件:解得m>4.综上,有m<2或m>4.1.3集合的基本运算第1课时并集和交集课后巩固1.设集合A={0,2,4,6,8,10},B={x|2x-3<4},则A∩B=()A.{4,8}B.{0,2,6}C.{0,2}D.{2,4,6}{x|x<3.5},又A={0,2,4,6,8,10},∴A∩B={0,2}.2.已知集合M={-1,0,1,2}和N={0,1,2,3}的关系的Venn图如图所示,则阴影部分所表示的集合是()A.{0}B.{0,1}C.{0,1,2}D.{-1,0,1,2,3}M∩N={0,1,2},故选C.3.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}4.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.4A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},∴∴a=4.故选D.5.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=.,可知a=1,b=6,∴2a-b=-4.6.已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B=,求A∪B.A∩B=,∴-∈A且-∈B.由-∈A,设3x2+px-7=0的另一根为m.由根与系数的关系得m=-,解得m=7.∴A=,同理B=,∴A∪B=.7.已知集合A={x|-2<x<3},B={x|m<x<m+9}.(1)若A∪B=B,求实数m的取值范围;(2)若A∩B≠⌀,求实数m的取值范围.A∪B=B,∴A⊆B,∴解得-6≤m≤-2,∴实数m的取值范围是[-6,-2].(2)当A∩B=⌀时,3≤m或者m+9≤-2,解得m≥3或m≤-11,∴A∩B≠⌀时,-11<m<3,∴实数m的取值范围是(-11,3).能力提升1.设A={x|2≤x≤6},B={x|2a≤x≤a+3},若A∪B=A,则实数a的取值范围是()A.[1,3]B.[3,+∞)C.[1,+∞)D.(1,3)A∪B=A,∴B⊆A,当B=⌀时,2a>a+3,解得a>3;当B≠⌀时,且a≤3,解得1≤a≤3.综上,a≥1.∴实数a的取值范围是[1,+∞).2.(一题多空题)设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2},且集合A∩(B∪C)={x|a≤x≤b},则a=,b=.B∪C={x|-3<x≤4},∴A⫋(B∪C).∴A∩(B∪C)=A,由题意{x|a≤x≤b}={x|-1≤x≤2}.∴a=-1,b=2.第2课时补集及其应用课后提升1.已知全集U={1,2,3,4,5},∁U A={1,3,5},则A=()A.{1,2,3,4,5}B.{1,3,5}C.{2,4}D.⌀全集U={1,2,3,4,5},∁U A={1,3,5},∴A={2,4}.2.已知集合A={x|-1<x-3≤2},B={x|3≤x<4},则∁A B=()A.(2,3)∪(4,5)B.(2,3]∪(4,5]C.(2,3)∪[4,5]D.(2,3]∪[4,5]{x|2<x≤5},因为B={x|3≤x<4},所以∁A B=(2,3)∪[4,5].3.若全集U={1,2,3,4,5},且∁U A={x∈N|1≤x≤3},则集合A的真子集共有()A.3个B.4个C.7个D.8个A={1,2,3},所以A={4,5},其真子集有22-1=3个,故选A.U4.设全集U=R,集合A={x|x≤3},B={x|x≤6},则集合(∁U A)∩B=()A.{x|3<x≤6}B.{x|3<x<6}C.{x|3≤x<6}D.{x|3≤x≤6}U=R,集合A={x|x≤3},B={x|x≤6},则集合∁U A={x|x>3},所以(∁U A)∩B={x|3<x≤6}.5.已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示阴影区域表示的集合为()A.{3}B.{7}C.{3,7}D.{1,3,5},知A∪B={1,3,5},如图所示阴影区域表示的集合为∁U(A∪B)={7}.6.已知集合U={2,3,a2+2a-3},A={2,3},∁U A={5},则实数a的值为.5∈U,故得a2+2a-3=5,即a2+2a-8=0,解得a=-4或a=2.当a=-4时,U={2,3,5},A={2,3},符合题意.当a=2时,U={2,3,5},A={2,3},符合题意.所以a=-4或a=2.7.(一题多空题)设集合U=-2,,2,3,A={x|2x2-5x+2=0},B=3a,,若∁U A=B,则a=,b=.A={x|2x2-5x+2=0}=,2,∁U A=B,故B={-2,3},则3a=3,=-2,所以a=1,b=-2.-28.已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A);(5)(∁U A)∩(∁U B).①.(1)A∩B={x|0≤x<5}.(2)A∪B={x|-5<x<7}.图①(3)如图②.图②∁U B={x|x<0,或x≥7},∴A∪(∁U B)={x|x<5,或x≥7}.(4)如图③.图③∁U A={x|x≤-5,或x≥5},B∩(∁U A)={x|5≤x<7}.(5)(方法一)∵∁U B={x|x<0,或x≥7},∁U A={x|x≤-5,或x≥5},∴如图④.图④(∁U A)∩(∁U B)={x|x≤-5,或x≥7}.(方法二)(∁U A)∩(∁U B)=∁U(A∪B)={x|x≤-5,或x≥7}.9.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁R A)=R,B∩(∁R A)={x|0<x<1,或2<x<3},求集合B.A={x|1≤x≤2},∴∁R A={x|x<1,或x>2}.又B∪(∁R A)=R,A∪(∁R A)=R,可得A⊆B.而B∩(∁R A)={x|0<x<1,或2<x<3},∴{x|0<x<1,或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1,或2<x<3}={x|0<x<3}.能力提升1.设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,且3∉BB.3∉B,但3∈AC.3∉A B.3∈A,且3∈BA∩B={2},故2∈B,且2∈A,(∁U A)∩B={4},所以4∈B但4∉A,(∁U A)∩(∁U B)=∁U(A∪B)={1,5},故1∉A,1∉B且5∉A,5∉B,所以3∉B,但3∈A.2.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中的元素个数为()A.1B.2C.3D.4A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.3.设全集U={1,2,3,4,5,6},且U的子集可表示为由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M={2,3,6},则∁U M表示的6位字符串为;(2)已知A={1,3},B⊆U,若集合A∪B表示的字符串为101001,则满足条件的集合B的个数是.由已知得,∁U M={1,4,5},则∁U M表示的6位字符串为100110.(2)由题意可知A∪B={1,3,6},而A={1,3},B⊆U,则B可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B的个数是4.(2)44.设U=R,集合A={x|x2-x-2=0},B={x|x2+mx+m-1=0}.(1)当m=1时,求(∁R B)∩A;(2)若(∁U A)∩B=⌀,求实数m的取值.x2-x-2=0,即(x+1)(x-2)=0,解得x=-1或x=2.故A={-1,2}.(1)当m=1时,方程x2+mx+m-1=0为x2+x=0,解得x=-1或x=0.故B={-1,0},∁R B={x|x≠-1,且x≠0}.所以(∁R B)∩A={2}.(2)由(∁U A)∩B=⌀可知,B⊆A.方程x2+mx+m-1=0的判别式Δ=m2-4×1×(m-1)=(m-2)2≥0.①当Δ=0,即m=2时,方程x2+mx+m-1=0为x2+2x+1=0,解得x=-1,故B={-1}.此时满足B⊆A.②当Δ>0,即m≠2时,方程x2+mx+m-1=0有两个不同的解,故集合B中有两个元素.又因为B⊆A,且A={-1,2},所以A=B.故-1,2为方程x2+mx+m-1=0的两个解,由根与系数之间的关系可得解得m=-1.综上,m的取值为2或-1.1.4充分条件与必要条件课后巩固1.“四边形是平行四边形”是“四边形是正方形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件“四边形是平行四边形”不一定得出“四边形是正方形”,但由“四边形是正方形”必推出“四边形是平行四边形”,故“四边形是平行四边形”是“四边形是正方形”的必要不充分条件.2.设a,b∈R,则“a>b”是“a2>b2”的()A.充分必要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件a=1,b=-4,满足a>b,此时a2>b2不成立;若a2>b2,如a=-4,b=1,此时a>b不成立.3.的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件当x=1,y=7时,满足但不能满足故为必要不充分条件.4.设集合A={1,a2,-2},B={2,4},则“a=2”是“A∩B={4}”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要“a=2”时,显然“A∩B={4}”;但当“A∩B={4}”时,a可以为-2,故不能推出“a=2”.5.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≠0,不一定有ab≠0,如b=0时;但是ab≠0则一定需a≠0.6.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么:(1)s是q的什么条件?(2)p是q的什么条件?∵q⇒s,s⇒r⇒q,∴s是q的充分也是必要条件.(2)∵q⇒s⇒r⇒p,∴p是q的必要条件.7.设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.:如果xy=0,那么,①x=0,y≠0;②x≠0,y=0;③x=0,y=0.于是|x+y|=|x|+|y|.如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|,当x<0,y<0时,|x+y|=-x-y=(-x)+(-y)=|x|+|y|,总之,当xy≥0时,|x+y|=|x|+|y|.必要性:由|x+y|=|x|+|y|及x,y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,得|xy|=xy,所以xy≥0,故必要性成立.综上,原命题成立.能力提升1.已知条件p:x>1,条件q:≤1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≤1,得-1≤0,≤0,即x≥1或x<0.所以由p能推出q,反之不成立.故p是q的充分不必要条件.2.已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.:因为a+b=1,所以a+b-1=0.所以a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2-ab+b2)=(a+b-1)(a2-ab+b2)=0.充分性:因为a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0,又ab≠0,所以a≠0且b≠0.因为a2-ab+b2=b2>0,所以a+b-1=0,即a+b=1.综上可得,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.1.5全称量词与存在量词课后巩固1.下列命题中全称量词命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1C.2D.32.命题“∃x∈R,使得x+1<0”的否定是()A.∀x∈R,均有x+1<0B.∀x∈R,均有x+1≥0C.∃x∈R,使得x+1≥0D.∃x∈R,使得x+1=03.已知命题p:某班所有的男生都爱踢足球,则命题p为()A.某班至多有一个男生爱踢足球B.某班至少有一个男生不爱踢足球C.某班所有的男生都不爱踢足球D.某班所有的女生都爱踢足球p是一个全称量词命题,它的否定是一个存在量词命题.4.下列四个命题中,既是存在量词命题又是真命题的是()A.斜三角形的内角是锐角或钝角B.至少有一个实数x,使x3>0C.任一无理数的平方必是无理数D.存在一个负数x,使>2A,C中的命题是全称量词命题,选项D中的命题是存在量词命题,但是假命题.只有B既是存在量词命题又是真命题.5.已知命题p:∀x>3,x>m成立,则实数m的取值范围是()A.m≤3B.m≥3C.m<3D.m>3x>3,x>m恒成立,即大于3的数恒大于m,所以m≤3.6.命题“有些负数满足不等式(1+x)(1-9x)>0”用“∃”或“∀”可表述为.,所以命题可改写为“∃x<0,(1+x)(1-9x)>0”.x<0,(1+x)(1-9x)>07.已知命题p“∃x≥3,使得2x-1<m”是假命题,则实数m的最大值是.p“∃x≥3,使得2x-1<m”是假命题,所以“∀x≥3,使得2x-1≥m”是真命题,故m≤5.8.用符号“∀”(“∀”表示“任意”)或“∃”(“∃”表示“存在”)表示下面的命题,并判断真假:(1)实数的平方大于或等于0;(2)存在一对实数(x,y),使2x-y+1<0成立.这是全称量词命题,隐藏了全称量词“所有的”.改写后命题为:∀x∈R,x2≥0,它是真命题.(2)改写后命题为:∃(x,y),x∈R,y∈R,2x-y+1<0,它是真命题.如x=0,y=2时,2x-y+1=0-2+1=-1<0成立.能力提升1.“x∈R,关于x的不等式x3+1>0有解”等价于()A.∃x∈R,使得x3+1>0成立B.∃x∈R,使得x3+1≤0成立C.∀x∈R,使得x3+1>0成立D.∀x∈R,使得x3+1≤0成立x∈R,“关于x的不等式x3+1>0有解”为存在量词命题,则根据存在量词命题的定义可知命题等价为∃x∈R,使得x3+1>0成立.2.命题“∀x∈R,x2-2ax+1>0”是假命题,则实数a的取值范围是.,命题“∀x∈R,x2-2ax+1>0”是假命题,可得出二次函数与x轴有公共点, 又由二次函数的性质,可得Δ≥0,即4a2-4≥0,解得a≤-1或a≥1.-∞,-1]∪[1,+∞)3.已知命题p:∀x∈R,x2+(a-1)x+1≥0成立,命题q:∃x∈R,ax2-2ax-3>0不成立,若p假q真,求实数a的取值范围.p:∀x∈R,x2+(a-1)x+1≥0是假命题,所以命题p:∃x∈R,x2+(a-1)x+1<0是真命题,则Δ=(a-1)2-4>0,即(a-1)2>4,故a-1<-2或a-1>2,即a<-1或a>3.因为命题q:∃x∈R,ax2-2ax-3>0不成立,所以命题q:∀x∈R,ax2-2ax-3≤0成立,当a=0时,-3<0成立;当a<0时,必须Δ=(-2a)2+12a≤0,即a2+3a≤0,解得-3≤a<0,故-3≤a≤0.综上所述,-3≤a<-1.所以实数a的取值范围是[-3,-1).。

新教材人教A版高中数学选择性必修第一册全册课后练习及章末检测 含解析

新教材人教A版高中数学选择性必修第一册全册课后练习及章末检测 含解析

选择性必修第一册全册课后练习及章末测验第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1第1课时空间向量与平行关系........................................................................... - 34 -1.4.1第2课时空间向量与垂直关系........................................................................... - 42 -1.4.2用空量研究距离夹角问题................................................................................... - 50 -第一章章末测验............................................................................................................ - 63 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 82 -2.2.1直线的点斜式方程............................................................................................... - 86 -2.2.2直线的两点式方程............................................................................................... - 91 -2.2.3直线的一般式方程............................................................................................... - 96 -2.3.1 2.3.2两条直线的交点坐标两点间的距离公式............................................. - 101 -2.3.3 2.3.4点到直线的距离公式两条平行直线间的距离..................................... - 106 -2.4.1圆的标准方程 .................................................................................................... - 112 -2.4.2圆的一般方程 .................................................................................................... - 116 -2.5.1直线与圆的位置关系......................................................................................... - 121 -2.5.2圆与圆的位置关系............................................................................................. - 127 - 第三章圆锥曲线的方程.................................................................................................... - 143 -3.1.1椭圆及其标准方程............................................................................................. - 143 -3.1.2第1课时椭圆的简单几何性质......................................................................... - 148 -3.1.2第2课时椭圆的标准方程及性质的应用......................................................... - 154 -3.2.1双曲线及其标准方程......................................................................................... - 162 -3.2.2双曲线的简单几何性质..................................................................................... - 168 -3.3.1抛物线及其标准方程......................................................................................... - 176 -3.3.2抛物线的简单几何性质..................................................................................... - 182 -第三章章末测验.......................................................................................................... - 189 -第一章 空间向量与立体几何 1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32.∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→, AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0. (2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M 为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →,故MN →=⎝ ⎛⎭⎪⎫12,0,-12.]14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →, ∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z -(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b|a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( ) A .cos 〈a ,b 〉=-25 B .a ⊥b C .a ∥bD .|a |=|b |AD [∵向量a =(1,2,0),b =(-2,0,1), ∴|a |=5,|b |=5,a ·b =1×(-2)+2×0+0×1=-2,cos 〈a ,b 〉=a ·b |a |·|b |=-25=-25.由上知A 正确,B 不正确,D 正确.C 显然也不正确.]12.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A .110B .25C .D .22C [建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=BM →·AN →|BM →|·|AN →|=36×5=3010.] 13.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.(-64,-26,-17) [∵a ,b ,c 两两垂直. ∴a ·b =0,a ·c =0,b ·c =0,∴⎩⎨⎧-x +2y -12=0x -4-4z =0-1-2y +3z =0,解得:x =-64,y =-26,z =-17. 故(x ,y ,z )=(-64,-26,-17).]14.(一题两空)已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当|P A →|=|PB →|时,点P 的坐标为________;当AP →·BP →=0取最小值时,点P 的坐标为________.⎝ ⎛⎭⎪⎫32,0,0 ⎝ ⎛⎭⎪⎫12,0,0 [因为P 在x 轴上,设P (x,0,0),由|P A →|=|PB →|,则( x -1)2+4+0=x 2+1+1解得x =32.∴点P 的坐标为⎝ ⎛⎭⎪⎫32,0,0,又AP →=(x -1,-2,0),BP →=(x ,-1,1).。

(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总

(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总

(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义课时目标1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.识记强化1.集合:把一些元素组成的总体叫做集合.2.元素与集合关系如果a是集合A中的元素,就说a属于集合A,记作“a∈A”;如果a不是A中的元素,就说a不属于集合A,记作“a∉A”.3.常用数集及表示符号非负整数集(自然数集)N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.下列各组对象不能构成集合的是()A.所有的直角三角形B.不超过10的非负数C.著名的艺术家D.方程x2-2x-3=0的所有实数根答案:C解析:A,B,D中的元素是确定的,都能构成集合.但C中的“著名艺术家”的标准不明确,不满足确定性,所以不能构成集合.故选C.2.若集合A中只含有元素a,则下列关系正确的是()A.0∈A B.a∈AC.a∉A D.a=A答案:B解析:集合A中只含有元素a,则a是集合A中的元素,即a∈A.故选B.3.下列所给关系正确的个数是()①π∈R;②2∉Q;③0∈N*;④|-5|∉N*.A.1 B.2C.3 D.4答案:B解析:①π是实数,所以π∈R正确;②2是无理数,所以2∉Q正确;③0不是正整数,所以0∈N*错误;④|-5|=5为正整数,所以|-5|∉N*错误.故选B.4.已知方程x-2015+(y+2016)2=0的解集为A,则-2016与A的关系为() A.∈B.∉C.=D.≠答案:A解析:集合A={2015,-2016},故-2016∈A.5.若a∈R,b∈R,下面结论不一定正确的是()A.a+b∈R B.a-b∈RC.ab∈R D.ab∈R答案:D解析:当a=-1,b=3时,ab=-3,ab无意义,故D不正确.6.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2C.6 D.2答案:C所以a =-1或a =-32.当a =-1时,a -2=-3且2a 2+5a =-3,与集合中元素的互异性相矛盾,所以a =-32.第2课时 集合的表示课时目标1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.识记强化1.列举法表示集合把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.描述法表示集合用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分) 1.用列举法表示集合{x |x 2-3x +2=0}为( ) A .{(1,2)} B .{(2,1)}C .{1,2}D .{x 2-3x +2=0} 答案:C2.已知x ∈N ,则方程x 2+x -2=0的解集为( ) A .{x |x =2}B .{x |x =1或x =-2}C .{x |x =1}D .{1,-2} 答案:C解析:方程x 2+x -2=0的解为x =1或x =-2.由于x ∈N ,所以x =-2舍去.故选C. 3.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则集合M 中的元素个数为( )A .3B .4C .5D .6 答案:B4.若A ={1,2},则可用列举法将集合{(x ,y )|x ∈A ,y ∈A }表示为( )第3课时集合间关系课时目标1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.识记强化1.子集的概念.对于两个集合A,B,如果集合A中任意一个元素都是集合B的元素,就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A).2.真子集的概念.如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是集合B的真子集,记作A B(或B A).规定:空集是任何集合的子集,是任何非空集合的真子集.3.集合相等的概念.如果集合A⊆B,且B⊆A,称集合A与集合B相等,记作A=B.4.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,B⊆C,那么A⊆C.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.如果A={x|x>-1},那么()A.0 A B.{0}∈AC.∅∈A D.{0}⊆A答案:D解析:注意元素与集合以及集合与集合之间的关系.2.已知四个命题:①∅={0};②空集没有子集;③任何一个集合都有两个或两个以上的子集;④空集是任何集合的子集.其中正确的命题个数为()A.0 B.1C.2 D.3答案:B解析:空集是不含任何元素的集合,所以①错误;空集是任何集合的子集,因此空集也是空集的子集,且空集的子集只有一个,所以②③错误,④正确.3.已知集合A{3,4,9},且A中至多只有一个奇数,则这样的集合A的个数为() A.3 B.4C.5 D.6答案:D解析:集合{3,4,9}的真子集有∅,{3},{4},{9},{3,4},{3,9},{4,9},共7个,去掉含两个奇数的集合{3,9},可知满足条件的集合A有6个.4.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是() A.A⊆B B.A=BC.A B D.A B答案:D解析:对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .5.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ⊆N ,则k 满足( ) A .k ≤2 B .k ≥-1 C .k >-1 D .k ≥2 答案:D解析:因为N ={x |x ≤k },又M ={x |-1≤x <2},所以当M ⊆N 时,k ≥2.6.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1},当a =0时,Q =∅,当a ≠0时,Q ={x |x =1a},∵Q ⊆P ,∴a =0或a =±1.二、填空题(本大题共3个小题,每小题5分,共15分) 7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2},Q ={x |-3<x ≤4},若P ⊆Q ,则a 的取值范围是________. 答案:{a |-3≤a ≤2}解析:依题意,知P ={x |a <x ≤a +2},又Q ={x |-3<x ≤4},若P ⊆Q ,则⎩⎪⎨⎪⎧a ≥-3a +2≤4,解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1},集合N ={3,m 2},若N ⊆M ,则实数m =________. 答案:1解析:依题意,知当N ⊆M 时,只能有m 2=2m -1,解得m =1,经检验知满足题意. 三、解答题(本大题共6小题,共45分)10.(5分)以下各组中两个对象是什么关系,用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)};(5){(a ,b )}与{(b ,a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合,两者的关系是“包含与不包含”的关系,所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合,它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时,{(a ,b )}={(b ,a )};当a ≠b 时,{(a ,b )} ⊆{(b ,a )},且{(a ,b )}⊉{(b ,a )}.11.(13分)设集合A ={x ,x 2,xy },集合B ={1,x ,y },且集合A 与集合B 相等,求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②当m -1≤2m +1,即m ≥-2时,要使A ,B 没有公共元素,则有 ⎩⎪⎨⎪⎧ m ≥-2m -1>3或⎩⎪⎨⎪⎧m ≥-22m +1<-4,解得m >4. 综上所述,m 的取值范围是{m |m >4或m <-2}.第三章单元检测时间:120分钟 分值:150分一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.某细胞分裂时,由1个分裂成2个,2个分裂成4个,…,这样细胞分裂x 次后,得到细胞总数y 与x 的函数关系是( )A .y =2x +1-1(x ∈N *) B .y =2x (x ∈N *)C .y =2x -1(x ∈N *)D .y =2x +1(x ∈N *) 答案:B解析:由于1个细胞分裂成2个,2个分裂成4个,经过x 次后应分裂为2x 个,故函数关系为y =2x ,x ∈N *,故选B.2.函数y =2x -3的零点是( )A .log 23 B.12C.32D .log 32 答案:A3.固定电话市话收费规定:前三分钟0.22元(不满三分钟按三分钟计算),以后每分钟0.11元(不满一分钟按一分钟计算),那么某人打市话550秒,应该收费( )A .1.10元B .0.99元C .1.21元D .0.88元 答案:B解析:由题意可得0.22+7×0.11=0.994.二次函数y =ax 2+bx +c 中,ac <0,则函数的零点个数是( ) A .1个 B .2个C .0个D .无法确定 答案:B解析:∵ac <0,∴Δ=b 2-4ac >0,故二次函数y =ax 2+bx +c 有两个零点. 5.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( )答案:C解析:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )·f (b )<0.A 、B 选项中不存在f (x )<0,D 选项中函数不连续.故选C.6.函数f (x )=e x -1x的零点所在的区间是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,112.某企业2012年12月份的产值是这年1月份产值的P 倍,则该企业2012年度产值的月平均增长率为( )A.P P -1B.11P -1C. 11P D.P -111答案:B解析:设月平均增长率为r,1月份产值为1,则2012年12月的产值为:P =1×(1+r )11,所以(1+r )11=P ,即r =11P -1,故选B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.若f (x )为R 上的奇函数,且1是该函数的一个零点,则f (0)+f (-1)=________. 答案:0解析:由题意可得f (1)=0,f (0)=0. 又f (-1)=-f (1)=0,∴f (0)+f (-1)=014.若某个自变量的值x 0等于其相应的函数值,则x 0称为函数不动点,设 f (x )=x 3-2x +2,则 f (x )的不动点是________.答案:1或-2解析:x 30-2x 0+2=x 0,则(x 0-1)2·(x 0+2)=0,∴x 0=1或x 0=-2. 15.函数f (x )=ax +2a +1(a ≠0),若在-1≤x ≤1上,f (x )存在一个零点,则实数a 的取值范围是________.答案:-1≤a ≤-13解析:由题意可知f (-1)与f (1)异号,即f (-1)·f (1)≤0∴(a +1)(3a +1)≤0解之得-1≤a ≤-1316.设f (x )=2x -2-x ,又a =log 43,b =ln3,c =e 2则 f (a )、f (b )、 f (c )按从小到大的顺序为________.答案:f (a )<f (b )<f (c )解析:f (x )在(0,+∞)上单调递增,又a <b <c ,∴f (a )<f (b )<f (c )三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f (x )=x2ax +b(a ,b 为常数),且方程f (x )-x +12=0有两个零点分别为3和4.求函数f (x )的解析式.解:将3和4分别代入方程x 2ax +b-x +12=0得⎩⎨⎧93a +b=-9164a +b =-8,解得⎩⎪⎨⎪⎧a =-1,b =2,方法二:∵f(0)f(1)-f(0)=g(0)g(1)=2a2,由(1)知0<a<3-2 2,∴4 2a-1<12 2-17<0,又4 2a+1>0,于是2a2-116=116(32a2-1)=116(4 2a-1)(4 2a+1)<0,即2a2-116<0,故f(0)f(1)-f(0)<116.第4课时交集、并集课时目标1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.识记强化并集交集定义由属于集合A或属于集合B的元素组成的集合称为A与B的并集由属于集合A且属于集合B的元素组成的集合称为集合A与B的交集符号表示A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B} Venn图性质A∪B=B∪AA∪A=AA∪∅=AA∪B⊇AA∪B⊇BA∩B=B∩AA∩A=AA∩∅=∅A∩B⊆AA∩B⊆B课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.已知集合M={-1,1},则满足M∪N={-1,1,2}的集合N的个数是()A.1 B.2C.3 D.4答案:D解析:依题意,得满足M∪N={-1,1,2}的集合N有{2},{-1,2},{1,2},{-1,1,2},共4个.2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3}∅∅9.给出下列命题:①设A ={x |x 是锐角三角形},B ={x |x 是钝角三角形},则A ∪B ={三角形}; ②设A ={矩形},B ={菱形},则A ∩B ={正方形}; ③设A ={奇数},B ={偶数},则A ∪B ={自然数}; ④设A ={质数},B ={偶数},则A ∩B ={2};⑤若集合A ={y |y =x 2+1,x ∈R },B ={y |y =x +1,x ∈R },则A ∩B ={(0,1),(1,2)}. 其中正确命题的序号是________. 答案:②④解析:由于三角形分锐角三角形、直角三角形、钝角三角形,故①错;由于奇数分正奇数和负奇数,而负奇数不在自然数中,故③错;在⑤中,A ∩B 是数集,不是点集,故⑤错.三、解答题(本大题共5小题,共45分)10.(9分)设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∪N =M ,求实数t 的取值范围.解:由M ∪N =M ,可得N ⊆M .当N =∅时,2t +1≤2-t ,解得t ≤13,满足题意当N ≠∅时,由⎩⎪⎨⎪⎧2-t <2t +12t +1≤52-t ≥-2,解得13<t ≤2.综上可知,实数t 的取值范围是{t |t ≤2}.11.(9分)已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∩B ={x |3<x <4},求a 的值.解:(1)因为A ∩B =∅,所以可分两种情况讨论:B =∅或B ≠∅. 当B =∅时,a ≥3a ,解得a ≤0;当B ≠∅时,⎩⎪⎨⎪⎧a >0a ≥4或3a ≤2,解得a ≥4或0<a ≤23.综上,得a 的取值范围是⎩⎨⎧⎭⎬⎫a |a ≤23或a ≥4.(2)因为A ∩B ={x |3<x <4},所以a =3.12.(9分)已知M ={(x ,y )|y =x 2+2x +5},N ={(x ,y )|y =ax +1}. (1)若M ∩N 有两个元素,求实数a 的取值范围;(2)若M ∩N 至多有一个元素,求实数a 的取值范围.解:(1)因为M ∩N 有两个元素,所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象,可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素,所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象,可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做集合A与B的差集,记作A-B.若A={1,2,3,4},B={3,4,5,6},则A-B=________.答案:{1,2}解:A-B={x|x∈A且x∉B}={1,2,3,4}-{3,4,5,6}={1,2 }.14.(13分)已知集合A={x|x2-ax+a2-19=0},集合B={x|x2-5x+6=0},是否存在实数a,使得集合A,B同时满足下列三个条件?①A≠B;②A∪B=B;③∅(A∩B).若存在,求出这样的实数a的值;若不存在,说明理由.解:由已知条件可得B={2,3},因为A∪B=B,且A≠B,所以A⊆B,又A≠∅,所以A={2}或A={3}.当A={2}时,将2代入A中方程,得a2-2a-15=0,所以a=-3或a =5,但此时集合A分别为{2,-5}和{2,3},与A={2}矛盾.所以a≠-3,且a≠5.当A={3}时,同上也能导出矛盾.综上所述,满足题设要求的实数a不存在.第5课时补集课时目标1.了解全集的意义和它的记法.理解补集的概念,能正确运用补集的符号和表示形式,会用图形表示一个集合及其子集的补集.2.会求一个给定集合在全集中的补集,并能解答简单的应用题.识记强化1.全集的定义.如果一个集合含有所要研究的问题中涉及的所有元素,这个集合就可以看作一个全集,通常用U表示.2.补集的定义.对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.已知全集U={0,1,3,5,6,8},集合A={1,5,8},B={2},则集合(∁U A)∪B=() A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意,知∁U A={0,3,6},又B={2},所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5},则∁U(A∩B)={1,2,4},故选A.3.设全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5},则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M,N为集合I的非空真子集,且M,N不相等,若N∩(∁I M)=∅,则M∪N=()A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅,可知N与∁I M没有公共元素,则N⊆M,又M≠N,所以N M,所以M∪N=M.故选A.5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R,则B⊆A,可知a≥2.故选C.6.如图所示,I是全集,M,P,S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分,且在S的外部,故选C.二、填空题(本大题共3个小题,每小题5分,共15分)7.设集合M={3,4,7,9},N={4,5,7,8,9},全集U=M∪N,则集合∁U(M∩N)中的元素共有________个.答案:3解析:因为U=M∪N={3,4,5,7,8,9},M∩N={4,7,9},则∁U(M∩N)={3,5,8},可知其中的元素有3个.8.已知集合A={x|-2≤x<3},B={x|x<-1},则A∩(∁R B)=________.答案:{x|-1≤x<3}解析:因为B={x|x<-1},则∁R B={x|x≥-1},所以A∩(∁R B)={x|-2≤x<3}∩{x|x≥-1}={x|-1≤x<3}.9.高一(1)班共有学生50人,其中参加诗歌鉴赏兴趣小组的有30人,参加书法练习兴趣小组的有26人,同时参加两个兴趣小组的有15人,则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A,参加书法练习兴趣小组的学生组成集合B,如图所示,依题意card(A)=30,card(B)=26,card(A∩B)=15,则card(A∪B)=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题,共45分)10.(12分)已知全集U ={3,a 2-3a -2,2},A ={3,|a -1|},∁U A ={-2},求实数a 的值.解:因为A ∪(∁U A )=U ,所以{3,-2,|a -1|}={3,a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2,解得a =3.11.(13分)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5},A ={1,5},B ∁U A ,则集合B 的个数是( ) A .5 B .6 C .7 D .8 答案:C解析:先确定集合∁U A ,然后从空集开始按集合B 中元素的个数由少到多分情况讨论. ∵U ={1,2,3,4,5},A ={1,5},∴∁U A ={2,3,4}.若B ∁U A ,则B =∅;{2};{3};{4};{2,3};{2,4};{3,4},共7个.13.(15分)若三个方程x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实数解,试求实数a 的取值范围.解:若三个方程都没有实数解,根据判别式,得⎩⎪⎨⎪⎧Δ1=(4a )2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2+8a <0.解此不等式组,得-32<a <-1,故所求实数a 的取值范围为a ≤-32,或a ≥-1.第6课时 集合的并集、交集、补集的综合运算课时目标1.深刻理解交集、并集、补集的含义及运算. 2.能进行集合的并交补运算.识记强化1.集合的运算性质(1)A∪B=B∪A,A∪A=A,A∪∅=A,A∩B=B∩A,A∩A=A,A∩∅=∅.(2)A⊆(A∪B),B⊆(A∪B),(A∩B)⊆A,(A∩B)⊆B.(3)A⊆B⇔A∪B=B⇔A∩B=A.(4)A∪(∁U A)=U,A∩(∁U A)=∅.(5)∁U(∁U A)=A,∁U U=∅,∁U∅=U.2.全集具有相对性,即对于研究某个问题时的全集可能在研究另一个问题时就不是全集;补集是相对于全集而言的,由于全集具有相对性,那么补集也具有相对性,在不同的全集下,一个集合的补集可能不相同.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.设全集U={1,3,5,7},若集合M满足∁U M={5,7},则集合M为()A.{1,3} B.{1}或{3}C.{1,3,5,7} D.{1}或{3}或{1,3}答案:A解析:由U={1,3,5,7}及∁U M={5,7},得M={1,3},故选A.2.下列各式中,表达错误的是()A.∅⊆{x|x<4} B.23∈{x|x<4}C.∅∈{∅,{0},{1}} D.{23}∈{x|x<4}答案:D解析:对于B,C,元素与集合之间用“∈”或“∉”符号,且23是集合{x|x<4}中的元素,所以B表达正确,∅是集合{∅,{0},{1}}中的一个元素,所以C表达正确;对于A,D,集合与集合之间用“⊆”或“ ”符号,且∅是任何集合的子集,所以A表达正确,D 表达错误.3.设全集U=Z,集合A={-1,1,2},B={-1,1},则A∩(∁U B)为()A.{1,2} B.{1}C.{2} D.{-1,1}答案:C解析:因为U=Z,B={-1,1},所以∁U B为除-1,1外的所有整数的集合,而A={-1,1,2},所以A∩(∁U B)={2}.4.已知集合A={x∈Z|x2-3x-18<0},B={x|2-x>0},则A∩B等于()A.{3,4,5}B.{-2,-1,0,1}C.{-5,-4,-3,-2,-1,0,1}D.{-5,-4,-3}答案:B解析:A={x∈Z|-3<x<6}={-2,-1,0,1,2,3,4,5},B={x|x<2},∴A∩B={-2,-1,0,1},选B.5.集合M={(x,y)|(x+3)2+(y-1)2=0},N={-3,1},则M与N的关系是()A.M=N B.M⊆NC.M⊇N D.M,N无公共元素答案:D解析:因为M ={(x ,y )|(x +3)2+(y -1)2=0}={(-3,1)}是点集,而N ={-3,1}是数集,所以两个集合没有公共元素,故选D.6.已知全集U =R ,集合A ={x |1<x ≤3},B ={x |x >2},则A ∩(∁U B )等于( ) A .{x |1<x ≤2} B .{x |1≤x <2} C .{x |1≤x ≤2} D .{x |1≤x ≤3} 答案:A解析:U =R ,∴∁U B ={x |x ≤2},A ∩∁U B ={x |1<x ≤3}∩{x |x ≤2}={x |1<x ≤2}.选A. 二、填空题(本大题共3个小题,每小题5分,共15分)7.已知集合U =R ,A ={x |-2<x ≤5},B ={x |4≤x <6},则∁U (A ∪B )=________. 答案:{x |x ≤-2或x ≥6} 解析:(A ∪B )={x |-2<x <6}又U =R ,所以可得∁U (A ∪B )={x |x ≤-2或x ≥6}. 8.如图所示,阴影部分表示的集合为________.答案:∁U (A ∪B )∪(A ∩B ) 解析:阴影部分有两类:(1)∁U (A ∪B );(2)A ∩B .9.设集合M ={x |x >1,x ∈R },N ={y |y =2x 2,x ∈R },P ={(x ,y )|y =x -1,x ∈R ,y ∈R },则(∁R M )∩N =________,M ∩P =________.答案:{x |0≤x ≤1} ∅解析:因为M ={x |x >1,x ∈R },所以∁R M ={x |x ≤1,x ∈R },又N ={y |y =2x 2,x ∈R }={y |y ≥0},所以(∁R M )∩N ={x |0≤x ≤1}.因为M ={x |x >1,x ∈R }表达数集,而P ={(x ,y )|y =x -1,x ∈R ,y ∈R }表示点集,所以M ∩P =∅.三、解答题(本大题共4小题,共45分)10.(12分)某班有50名学生,有36名同学参加学校组织的数学竞赛,有23名同学参加物理竞赛,有3名学生两科竞赛均未参加,问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U ,其中含有50名学生,设集合A 表示参加数学竞赛的学生,B 表示参加物理竞赛的学生,则U 中元素个数为50,A 中元素个数为36,B 中元素个数为23,全集中A 、B 之外的学生有3名,设数学、物理均参加的学生为x 名,则有(36-x )+(23-x )+x +3=50,解得x =12.所以,本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A ={x |2<x <7},B ={x |2<x <10},C ={x |5-a <x <a }. (1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆B ,求实数a 的取值范围. 解:(1)A ∪B ={x |2<x <10}. ∵∁R A ={x |x ≤2或x ≥7}, ∴(∁R A )∩B ={x |7≤x <10}.(2)①当C =∅时,满足C ⊆B ,此时5-a ≥a ,得a ≤52;②当C ≠∅时,要C ⊆B ,则⎩⎪⎨⎪⎧5-a <a 5-a ≥2a ≤10,解得52<a ≤3.由①②,得a ≤3.∴a 的取值范围是{a |a ≤3}.能力提升12.(5分)设M 、P 是两个非空集合,定义M 与P 的差集为M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A .PB .M ∩PC.M∪P D.M答案:B解析:解析:由于给出的新定义,以及所需解决的问题中的集合都是抽象的集合,这时若类比于实数运算,则会得出错误结论.而用图示法,则有助于对新定义的理解,如图所示.13.(15分)已知集合A={x|x2-(a+3)x+a2=0},B={x|x2-x=0},是否存在实数a,使A,B同时满足下列三个条件:①A≠B;②A∪B=B;③∅(A∩B)?若存在,求出a的值;若不存在,请说明理由.解:假设存在实数a使A,B满足题设条件,易知B={0,1}.因为A∪B=B,所以A⊆B,即A=B或A B.由条件①A≠B,知A B.又因为∅(A∩B),所以A≠∅,即A={0}或{1}.当A={0}时,将0代入方程x2-(a+3)x+a2=0,得a2=0,解得a=0.经检验,a=0时,A={0,3},与A={0}矛盾,舍去.当A={1}时,将1代入方程x2-(a+3)x+a2=0,得a2-a-2=0,解得a=-1或a=2.经检验,a=-1时,A={1},符合题意;a=2时,A={1,4},与A={1}矛盾,舍去.综上所述,存在实数a=-1,使得A,B满足条件.第7课时函数的有关概念课时目标1.理解函数的概念,明确定义域、值域、对应关系是函数的三要素,能判断两个函数是否为同一函数.2.掌握区间和无穷大这两个基本概念,能正确使用区间符号表示一些简单实数集的子集.3.会求一些简单函数的定义域和值域.识记强化1.函数的定义.设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2.函数的构成要素和函数相等.定义域、值域及对应关系,称为函数的三要素,如果两函数的定义域和对应关系相同,就称它们相等.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数表示相等函数的是( )A .f (x )=⎩⎪⎨⎪⎧x ,x >0-x ,x <0与g (x )=|x |B .f (x )=2x -1与g (x )=2x 2-xxC .f (x )=|x -1|与g (t )=(t -1)2D .f (x )=x -1x -1与g (t )=1答案:C解析:对于A ,因为f (x )的定义域为(-∞,0)∪(0,+∞),g (x )的定义域为R ,定义域不同,所以A 中函数不相等;对于B ,因为f (x )的定义域为R ,g (x )的定义域为{x |x ≠0,x ∈R },定义域不同,所以B 中函数不相等;对于C ,因为f (x )=|x -1|,g (t )=(t -1)2=|t -1|,定义域和对应法则都相同,所以C 中函数相等;对于D ,因为f (x )的定义域为{x |x ≠1,x ∈R },g (t )的定义域为R ,定义域不同,所以D 中函数不相等.故选C.2.函数y =x 2-2-2-x 2的定义域是( ) A .[2,+∞) B .(-∞,-2] C .[-2,2] D .{-2,2} 答案:D解析:依题意,知⎩⎪⎨⎪⎧x 2-2≥02-x 2≥0,解得x =±2,所以函数的定义域为{-2,2}.3.设f (x )=|x -1|-|x |,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫12等于( ) A .-12B .0C .1 D.12答案:C解析:f ⎣⎡⎦⎤f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫|12-1|-|12|=f (0)=|0-1|-|0|=1,故选C. 4.如图,可表示函数y =f (x )图象的是( )答案:D解析:在选项A 和选项C 中,当x =0时,有两个y 值与之对应,选项B 中,当x >0时,每个x 都有两个y 与之对应,均不符合函数定义,故选D.5.若函数y =f (x )的定义域是[-2,4],则函数g (x )=f (x )+f (-x )的定义域是( ) A .[-4,4] B .[-2,2](2)因为y =-2x 2+x +3=-2⎝⎛⎭⎫x -142+258, 所以0≤y ≤524,所以函数y =-2x 2+x +3的值域为⎣⎡⎦⎤0,524.12.(7分)下面两个函数是否相等?请说明理由.(1)f (x )=x 2-4x -2,g (x )=x +2;(2)f (x )=(x +2)2,g (x )=|x +2|;(3)f (x )=x +1·x -1,g (x )=(x +1)(x -1).解:(1)不相等.因为f (x )=x 2-4x -2=x +2(x ≠2),而g (x )=x +2的定义域为R ,所以它们的定义域不同,故不相等.(2)相等.因为f (x )=(x +2)2=|x +2|,它与g (x )=|x +2|的对应关系、定义域相同,所以它们是相等的.(3)不相等.因为f (x )= x +1· x -1的定义域为{x |x ≥1},g (x )=(x +1)(x -1)的定义域为{x |x ≤-1或x ≥1},两函数的定义域不同,故不相等.能力提升13.(5分)函数f (x )的定义域为[0,2],则函数f (x +1)的定义域是( ) A .[-2,2] B .[-1,1] C .[0,2] D .[1,3] 答案:B 解析:f (x )与f (x +1)的定义域都是指的x 的取值范围,由函数f (x )的定义域为[0,2]知0≤x +1≤2,即可求出x 的范围.解不等式0≤x +1≤2,得-1≤x ≤1,故选B.14.(15分)对任何实数x ,y ,函数f (x )满足:f (x +y )=f (x )·f (y ),且f (1)=2,试求 f (2)f (1)+f (3)f (2)+f (4)f (3)+…+f (2012)f (2011)+f (2013)f (2012). 解:由f (x +y )=f (x )·f (y ),得f (x +1)=f (x )·f (1),又∵f (1)=2, ∴f (x +1)f (x )=f (1)=2.f (2)f (1)+f (3)f (2)+f (4)f (3)+…+f (2012)f (2011)+f (2013)f (2012)=f (1)+f (1)+…+f (1)=2012·f (1)=4024. 第8课时 函数的表示方法课时目标1.掌握函数的三种表示方法——解析法、图象法、列表法. 2.在实际情境中,会根据不同的需要选择恰当方法表示函数.识记强化函数的表示法.表示函数常用的三种方法为解析法、图象法、列表法.(1)用数学表达式表示两个变量之间的对应关系的方法叫解析法. (2)用图象表示两个变量之间的对应关系的方法叫图象法. (3)列出表格来表示两个变量之间的对应关系的方法叫列表法.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:每间房定价 100元 90元 80元 60元 住房率 65% 75% 85% 95%要使每天的收入最高,每间房的定价应为( ) A .100元 B .90元 C .80元 D .60元 答案:C解析:住房率是每天房价的函数关系,这种关系在题中是用表格的形式表示出来的,而每天的收入y =房价×住房率×间数(100),我们也可以列出相应的表格:每间房定价 100元 90元 80元 60元 住房率 65% 75% 85% 95% 收入 6500 6750 6800 5700从表格很清楚地看到,每天的房价定在80元时,每天的收入最高,故选C.2.某人开车去某地旅行,先沿直线匀速前进了a km ,到达目的地后游玩了一段时间,又原路返回匀速行驶了b km(b <a ),再折回匀速前进c km ,则此人距起点的距离s 与时间t 的关系示意图正确的是( )答案:C解析:注意理解两坐标轴s ,t 的含义,这里s 是指距起点的距离,不是路程的累加,结合题意可知C 符合. 故选C.3.已知函数y =f (x )的图象过点(1,2),则y =f (x +1)的图象过点( ) A .(1,2) B .(2,2) C .(0,2) D .(-1,2) 答案:C解析:因为y =f (x +1)的图象可看作y =f (x )的图象向左平移1个单位得到.又y =f (x )图象过点(1,2),向左平移1个单位,则y =f (x +1)的图象过点(0,2).4.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x (x >0)B .y =100x (x >0)C .y =50x (x >0)D .y =100x(x >0)答案:C解析:由x +3x 2·y =100,得2xy =100.即y =50x (x >0).5.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0且x ≠1时,f (x )等于( ) A.1x B.1x -1 C.11-xD.1x -1答案:B解析:令1x =t ,则x =1t ,f (t )=1t 1-1t=1t -1,∴f (x )=1x -1,故选B.6.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2 答案:B解析:因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a 2+3)=x 2-x +1,求得a =-1.故选B.二、填空题(本大题共3个小题,每小题5分,共15分) 7.已知函数f (x )由下表给出,则f (f (3))=________.x 1 2 3 4 f (x ) 3 2 4 1答案:1解析:由题设给出的表知f (3)=4,则f (f (3))=f (4)=1.故填1.8.如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是________,这个函数的定义域为________.答案:V =x (a -2x )2 {x |0<x <a2}解析:据长方体的体积公式,易得V =x (a -2x )2,其中0<x <a2.9.若2f (1x )+f (x )=x (x ≠0),则f (x )=________.答案:23x -x3(x ≠0)解析:用1x 代换x ,得2f (x )+f (1x )=1x.解方程组⎩⎨⎧2f (1x)+f (x )=x 2f (x )+f (1x )=1x,得f (x )=23x -x 3.故填23x-x3(x ≠0). 三、解答题(本大题共4小题,共45分)10.(12分)把长为l 的铁丝弯成下部为矩形ABCD ,上部为半圆形的框架(如图所示),若AB =2x ,求此框架围成的平面图形的面积y 与x 的函数关系式y =f (x ),并求其定义域.解:设AB =2x ,则CD =πx .于是AD =l -2x -πx2.∴y =2x ·l -2x -πx 2+πx 22=-π+42x 2+lx .由题意,得⎩⎪⎨⎪⎧2x >0,l -2x -πx 2>0,解得0<x <l2+π.∴函数的定义域为⎝⎛⎭⎫0,l2+π.11.(13分)(1)已知f (x )是一次函数,且满足2f (x +3)-f (x -2)=2x +21,求f (x )的解析式;(2)已知f (x )为二次函数,且满足f (0)=1,f (x -1)-f (x )=4x ,求f (x )的解析式. 解:(1)设f (x )=ax +b (a ≠0), 则2f (x +3)-f (x -2)=2[a (x +3)+b ]-[a (x -2)+b ] =2ax +6a +2b -ax +2a -b =ax +8a +b =2x +21,所以a =2,b =5, 所以f (x )=2x +5.(2)因为f (x )为二次函数,设f (x )=ax 2+bx +c (a ≠0). 由f (0)=1,得c =1.又因为f (x -1)-f (x )=4x ,所以a (x -1)2+b (x -1)+c -(ax 2+bx +c )=4x , 整理,得-2ax +a -b =4x ,求得a =-2,b =-2, 所以f (x )=-2x 2-2x +1.能力提升12.(5分)函数y =ax 2+bx +c 与y =ax +b (ab ≠0)的图象只可能是( )答案:D解析:由a 的符号排除B 、C ,又A 中y 轴为抛物线的对称轴,即b =0,也应排除. 13.(15分)(1)已知f (x )+2f (-x )=x +1,求f (x )的解析式;(2)设f (x )是R 上的函数,且f (0)=1,并且对任意实数x 、y 都有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.解:(1)∵f (x )+2f (-x )=x +1, ∴f (-x )+2f (x )=-x +1.于是得关于f (x )的方程组⎩⎪⎨⎪⎧f (x )+2f (-x )=x +1,2f (x )+f (-x )=-x +1.解得f (x )=-43x +13.(2)解法一:由f (0)=1,f (x -y )=f (x )-y (2x -y +1), 设x =y ,得f (0)=f (x )-x (2x -x +1).因为f (0)=1,所以f (x )-x (2x -x +1)=1, 即f (x )=x 2+x +1.解法二:令x =0,得f (0-y )=f (0)-y (-y +1), 即f (-y )=1-y (-y +1). 又令-y =x ,代入上式得:f (x )=1-(-x )(x +1)=1+x (x +1), ∴f (x )=x 2+x +1.第9课时 映射与分段函数课时目标1.理解函数的奇偶性及其几何意义. 2.学会判断函数的奇偶性. 3.了解函数奇偶性的有关性质. 4.掌握常见函数的奇偶性.识记强化1.分段函数.(1)在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系,这样的函数通常叫分段函数,它虽由几部分构成,但它是一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 2.映射.设A 、B 是两个非空集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分) 1.如图,给出的集合M 到N 的对应关系:其中是M 到N 的映射的是( ) A .①③ B .③④ C .①④ D .②④ 答案:B解析:①中集合M 中的元素4在N 中没有元素与之对应,②中集合M 中元素1对应N 中的两个元素,③④符合映射的概念.2.已知集合M ={x |0≤x ≤4},N ={0|0≤y ≤2},按对应关系f 不能构成从M 到N 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23x D .f :x →y =x答案:C解析:因为当x =4时,y =23×4=83∉N ,所以C 中的对应关系f 不能构成从M 到N 的映射.3.已知函数f (x )=⎩⎪⎨⎪⎧x +5,x ≥4x -2,x <4,则f (3)的值是( )A .1B .2C .8D .9 答案:A解析:依题意,得f (3)=3-2=1.4.函数y =|x 2-2x |的图象是图中的( )答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a ,b },B ={0,1},从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:6.设函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0x ,x <0,φ(x )=⎩⎪⎨⎪⎧x ,x ≤2-x 2,x >2,则当x <0时,f (φ(x ))=( )A .-xB .-x 2C .xD .x 2 答案:C解析:依题意,当x <0时,φ(x )=x <0,所以f (φ(x ))=x . 二、填空题(本大题共3个小题,每小题5分,共15分)7.已知A ={1,2,3,4,5},对应法则f :x →(x -3)2+1,设B 为A 中元素在f 作用下的象集,则B =________.答案:{1,2,5}解析:1→(1-3)2+1=5,2→(2-3)2+1=2,3→(3-3)2+1=1,4→(4-3)2+1=2,5→(5-3)2+1=5.∴B ={1,2,5}.8.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________. 答案:2解析:依题意,得f (0)=3×0+2=2,则f (f (0))=f (2)=4+2a ,所以4+2a =4a ,解得a =2.9.设a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫-1,b a ,1,N ={a ,b ,b -a },映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b =________.答案:±1解析:由f :x →x ,知集合M 中的元素映射到集合N 中没有变化,且N 中只有3个元素,所以M =N .又因为M 中-1,1为相反数,所以a ,b ,b -a 这3个元素中有2个互为相反数,分情况讨论,知b =0,a =±1,所以a +b =±1.三、解答题(本大题共4小题,共45分) 10.(12分)画出下列函数的图象: (1)y =|x +3|+|x -5|; (2)y =x 2-2|x |-1.解:(1)y =|x -5|+|x +3|=⎩⎪⎨⎪⎧-2x +2 (x <-3),8 (-3≤x <5),2x -2 (x ≥5).图象如图所示.(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1(x ≥0),x 2+2x -1 (x <0).图象如图所示.。

高中人教A版数学必修1课时作业27Word版含解析

高中人教A版数学必修1课时作业27Word版含解析
c=- 2.
所以 p=- 0.2t2+1.5t-2
1 =- 5t2- Nhomakorabea15 2 t+
225 16
45 + 16- 2
=-
1 5
15 t- 4
2+ 1136,
所以当 t=145=3.75 时, p 取得最大值,即最佳加工时间为 3.75
分钟.
5.某种植物生长发育的数量 y 与时间 x 的关系如表:
x 1 2 3…
10+2t, t∈ [0 , 5], 所以 P= 20,t∈ 5,10],
40-2t,t∈ 10,16]
(t∈ N*).
(2)由于每件销售利润为售价-进价, 即每件销售利润 L= P-Q. 所以,当 t∈[0,5] 时, L=10+2t+0.125(t-8)2-12=0.125t2+6, 当 t=5 时, L 取得最大值 9.125; 当 t∈(5,10]时, L=20+0.125(t-8)2-12 = 0.125t2-2t+16, 当 t=5 时, L 取得最大值 9.125; 当 t∈(10,16]时,L=40-2t+0.125(t-8)2-12=0.125t2-4t+36, 当 t=10 时, L 取得最大值 8.5. 因此,该服装第 5 周每件销售利润最大. 10.据气象中心观察和预测:发生于 M 地的沙尘暴一直向正南 方向移动,其移动速度 v(km/h)与时间 t(h)的函数图象如图所示,过 线段 OC 上一点 T(t,0)作横轴的垂线 l ,梯形 OABC 在直线 l 左侧部分
课时作业 (二十七 ) 已知函数模型与拟合函数模型
一、选择题
1. 某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物
的特殊动物,已知该动物的繁殖数量 y(只)与引入时间 x(年)的关系为

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版 )高中数学必修1 (全册 )课时同步作业汇总活页作业(一) 集合的含义(时间:45分钟总分值:100分)一、选择题(每题5分 ,共25分)1.以下几组对象可以构成集合的是( )A.充分接近π的实数的全体B.善良的人C.世|界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确 ,应选D. 答案:D2.下面有四个语句: ①集合N *中最|小的数是0; ②-a ∉N ,那么a ∈N ;③a ∈N ,b ∈N ,那么a +b 的最|小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中正确语句的个数是( ) A .0 B .1 C .2D .3解析:N *是不含0的自然数 ,所以①错误; 取a = 2 ,那么-2∉N ,2∉N ,所以②错误;对于③ ,当a =b =0时 ,a +b 取得最|小值是0 ,而不是2 ,所以③错误;对于④ ,解集中只含有元素1 ,故④错误.答案:A3.集合A 含有三个元素2,4,6 ,且当a ∈A 时 ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4D .0解析:假设a =2∈A ,那么6-a =4∈A ;或a =4∈A ,那么6-a =2∈A ;假设a =6∈A ,那么6-a =0∉A .应选B.答案:B4.假设集合M 中的三个元素a ,b ,c 是△ABC 的三边长 ,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .应选D. 答案:D5.设a ,b ∈R ,集合A 中含有0 ,b ,ba三个元素 ,集合B 中含有1 ,a ,a +b 三个元素 ,且集合A 与集合B 相等 ,那么a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0 ,∴b a=-1 ,∴a =-1 ,b =1 ,∴a +2b =1.答案:A二、填空题(每题5分 ,共15分)6.集合A中只含有1 ,a2两个元素 ,那么实数a不能取的值为________.解析:由a2≠1 ,得a≠±1.答案:±17.假设集合P含有两个元素1,2 ,集合Q含有两个元素1 ,a2 ,且P ,Q相等 ,那么a =________.解析:由于P ,Q相等 ,故a2=2 ,从而a=± 2.答案:± 28.集合P中元素x满足:x∈N ,且2<x<a ,又集合P中恰有三个元素 ,那么整数a =________.解析:∵x∈N ,且2<x<a ,∴结合数轴可得a=6.答案:6三、解答题(每题10分 ,共20分)9.假设所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.解:∵3a+2b(a∈Z ,b∈Z)中 ,令a=2 ,b=-2 ,可得6-2 2 ,∴6-22是集合A中的元素.10.设集合A中含有三个元素3 ,x ,x2-2x.(1)求实数x应满足的条件;(2)假设-2∈A ,求实数x.解:(1)由集合中元素的互异性可知 ,x≠3 ,且x≠x2-2x ,x2-2x≠3.解得x≠3 ,且x≠0 ,且x≠-1.(2)∵-2∈A ,∴x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1 ,∴x=-2.一、选择题(每题5分 ,共10分)1.2a∈A ,a2-a∈A ,假设A只含这两个元素 ,那么以下说法中正确的选项是( ) A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.应选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1 ,假设t ∈A ,那么t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1 ,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每题5分 ,共10分)3.集合A 是由m -1,3m ,m 2-1三个元素组成的集合 ,且3∈A ,那么实数m 的值为________.解析:由m -1=3 ,得m =4 ,此时3m =12 ,m 2-1=15 ,故m =4符合题意;由3m =3 ,得m =1 ,此时m -1=m 2-1=0 ,故舍去;由m 2-1=3 ,得m =±2 ,经检验m =±2符合题意.故填4或±2.答案:4或±24.假设a ,b ∈R 且a ≠0 ,b ≠0 ,那么|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0 ,b >0时 ,|a |a +|b |b=2;当ab <0时 ,|a |a +|b |b =0;当a <0 ,b <0时 ,|a |a+|b |b=-2.所以集合中的元素为2,0 ,-2.即集合中元素的个数为3. 答案:3三、解答题(每题10分 ,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成 ,其中k ∈R ,假设A 中的元素只有一个 ,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 假设k =0 ,那么x =23 ,知A 中只有一个元素 ,符合题意;假设k ≠0 ,那么方程为一元二次方程.当Δ=9-8k =0 ,即k =98时 ,方程kx 2-3x +2=0有两个相等的实数解 ,此时A 中只有一个元素.综上所述 ,k =0或98.6.集合A 中的元素全为实数 ,且满足:假设a ∈A ,那么1+a1-a ∈A .(1)假设a =2 ,求出A 中其他所有元素. (2)0是不是集合A 中的元素 ?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外 ,其他所有元素为-3 ,-12 ,13.(2)0不是集合A 中的元素.理由如下: 假设0∈A ,那么1+01-0=1∈A ,而当1∈A 时 ,1+a1-a不存在 ,故0不是集合A 中的元素.活页作业(二) 集合的表示(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合A ={x ∈N |-3≤x ≤3} ,那么有( ) A .-1∈A B .0∈A C.3∈AD .2∈A解析:∵0∈N 且-3<0< 3 ,∴0∈A . 答案:B2.集合M ={y |y =x 2} ,用自然语言描述M 应为( ) A .函数y =x 2的函数值组成的集合B.函数y=x2的自变量的值组成的集合C.函数y=x2的图象上的点组成的集合D.以上说法都不对解析:从描述法表示的集合来看 ,代表元素是函数值 ,即集合M表示函数y=x2的函数值组成的集合.答案:A3.集合{-2,1}等于( )A.{(x-1)(x+2)=0} B.{y|y=x+1 ,x∈Z}C.{x|(x+1)(x-2)=0} D.{x|(x-1)(x+2)=0}解析:选项A是含有一个一元二次方程的集合 ,选项B是函数y=x+1 ,x∈Z的函数值组成的集合 ,有无数多个元素 ,选项C是方程(x+1)(x-2)=0的解的集合为{-1,2} ,选项D是方程(x-1)(x+2)=0的解的集合为{1 ,-2}.应选D.答案:D4.假设1∈{x ,x2} ,那么x=( )A.1 B.-1C.0或1 D.0或1或-1解析:∵1∈{x ,x2} ,∴x=1或x2=1 ,∴xx=1 ,那么x=x2=1 ,不符合集合中元素的互异性.答案:B5.以下集合中表示同一集合的是( )A.M={(3,2)} ,N={(2,3)}B.M={3,2} ,N={2,3}C.M={(x ,y)|x+y=1} ,N={y|x+y=1}D.M={1,2} ,N={(1,2)}解析:A中M、N都为点集 ,元素为点的坐标 ,顺序不同表示的点不同;C中M、N分别表示点集和数集;D中M为数集 ,N为点集 ,应选B.答案:B二、填空题(每题5分 ,共15分)6.集合A={x|x2=a ,x∈R} ,那么实数a的取值范围是________.解析:当x∈R时 ,a=x2≥0.答案:a≥07.集合A={-1,0,1} ,集合B={y|y=|x| ,x∈A} ,那么B=____________.解析:∵|-1|=1 ,|0|=0 ,|1|=1 ,∴B={0,1}.答案:{0,1}8.集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫125-x ∈N x ∈N ,那么用列举法表示为__________________.解析:根据题意 ,5-x 应该是12的因数 ,故其可能的取值为1,2,3,4,6,12 ,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}三、解答题(每题10分 ,共20分) 9.用另一种方法表示以下集合. (1){绝|对值不大于2的整数}; (2){能被3整除 ,且小于10的正数}; (3){x |x =|x | ,x <5 ,且x ∈Z }; (4){(x ,y )|x +y =6 ,x ∈N *,y ∈N *}; (5){-3 ,-1,1,3,5}. 解:(1){-2 ,-1,0,1,2}. (2){3,6,9}.(3)∵x =|x | ,∴x ∵x ∈Z ,且x <5 , ∴x =0或1或2或3或4. ∴集合可以表示为{0,1,2,3,4}.(4){(1,5) ,(2,4) ,(3,3) ,(4,2) ,(5,1)}. (5){x |x =2k -1 ,-1≤k ≤3 ,k ∈Z }.10.集合A ={x |ax 2-3x -4=0 ,x ∈R } ,假设A 中至|多有一个元素 ,求实数a 的取值范围.解:当a =0时 ,A =⎩⎨⎧⎭⎬⎫-43;当a ≠0时 ,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根 , ∴Δ=9+16a ≤0 ,即a ≤-916. 综上 ,所求实数a 的取值范围是a =0或a ≤-916.一、选择题(每题5分 ,共10分)1.设x =13-52 ,y =3+2π ,集合M ={m |m =a +2b ,a ∈Q ,b ∈Q } ,那么x ,y 与集合M 的关系是( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M 解析:x =13-52=3+523-523+52=-341-2×541∈M ,y ∉M .应选B. 答案:B2.用描述法表示如下图阴影局部的点(包括边界上的点)的坐标的集合是( )A .{-2≤x ≤0且-2≤y ≤0}B .{(x ,y )|-2≤x ≤0且-2≤y ≤0}C .{(x ,y )|-2≤x ≤0且-2≤y <0}D .{(x ,y )|-2≤x ≤0或-2≤y ≤0}解析:阴影局部为点集 ,且包括边界上的点 ,所以-2≤x ≤0且-2≤y ≤0. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={(x ,y )|y =2x +1} ,B ={(x ,y )|y =x +3} ,a ∈A 且a ∈B ,那么a 为________.解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎨⎧y =2x +1 y =x +3的解.解方程组得⎩⎪⎨⎪⎧x =2 y =5 ∴a为(2,5).答案:(2,5)4.A ={1,2,3} ,B ={1,2} ,定义集合间的运算A +B ={x |x =x 1+x 2 ,x 1∈A ,x 2∈B } ,那么集合A +B 中元素的最|大值是________.解析:当x 1=1 ,x 2=1或2时 ,x =2或3;当x 1=2 ,x 2=1或2时 ,x =3或4;当x 1=3 ,x 2=1或2时 ,x =4或5.∴集合A +B 中元素的最|大值是5.答案:5三、解答题(每题10分 ,共20分)5.集合A ={(x ,y )|2x -y +m >0} ,B ={(x ,y )|x +y -n ≤0} ,假设点P (2,3)∈A ,且P (2,3)∉B ,试求m ,n 的取值范围.解:∵点P ∈A ,∴2×2-3+m >0.∴m >-1. ∵点P ∉B ,∴2+3-n >0.∴n <5.∴所求m ,n 的取值范围分别是{m |m >-1} ,{n |n <5}.6.集合P ={x |x =2k ,k ∈Z } ,M ={x |x =2k +1 ,k ∈Z } ,a ∈P ,b ∈M ,设c =a +b ,那么c 与集合M 有什么关系 ?解:∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1 ,k 1∈Z ,b =2k 2+1 ,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1. 又k 1+k 2∈Z , ∴c ∈M .活页作业(三) 集合间的根本关系(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分) 1.以下关系中 ,表示正确的选项是( ) A .1∈{0,1} B .1{0,1} C .1⊆{0,1}D .{1}∈{0,1}解析:、⊆表示集合之间的关系 ,故B 、C 错误;∈表示元素与集合之间的关系 ,故D 错误.答案:A2.假设x ,y ∈R ,A ={(x ,y )|y =x } ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xy ⎪⎪⎪y x =1 ,那么A ,B 的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:集合A 表示函数y =x 图象上所有点组成的集合 ,集合B 中要求x ≠0 ,所以集合B 表示除点(0,0)以外的y =x 图象上的点组成的集合 ,A B 成立.答案:B3.全集U =R ,那么正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:∵M={-1,0,1} ,N={0 ,-1} ,∴N M.应选B.答案:B4.集合A={x|0≤x<3 ,x∈N}的真子集的个数是( )A.16 B.8C.7 D.4解析:易知集合A={0,1,2} ,∴A的真子集为∅ ,{0} ,{1} ,{2} ,{0,1} ,{0,2} ,{1,2} ,共有7个.答案:C5.设A={x|1<x<2} ,B={x|x<a} ,假设A⊆B ,那么a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2解析:如图 ,在数轴上表示出两集合 ,只要a≥2 ,就满足A⊆B.答案:D二、填空题(每题5分 ,共15分)6.右图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系 ,那么A ,B ,C ,D ,E分别代表的图形的集合为______________.解析:由以上概念之间的包含关系可知:集合A={四边形} ,集合B={梯形} ,集合C ={平行四边形} ,集合D={菱形} ,集合E={正方形}.答案:A={四边形} ,B={梯形} ,C={平行四边形} ,D={菱形} ,E={正方形}7.设集合M={(x ,y)|x+y<0 ,xy>0}和P={(x ,y)|x<0 ,y<0} ,那么M与P的关系为________.解析:∵xy>0 ,∴x ,y同号.又x+y<0 ,∴x<0 ,y<0 ,即集合M表示第三象限内的点.而集合P表示第三象限内的点 ,故M=P.答案:M=P8.集合A={x|-2≤x≤3} ,B={x|x≥m} ,假设A⊆B ,那么实数m的取值范围为_________________________________.解析:集合A ,B 在数轴上的表示如下图.由图可知 ,假设A ⊆B ,那么m ≤-2. 答案:m ≤-2三、解答题(每题10分 ,共20分)9.集合A ={(x ,y )|x +y =2 ,x ,y ∈N } ,试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2 ,x ,y ∈N } , ∴A ={(0,2) ,(1,1) ,(2,0)}. ∴A 的子集有:∅ ,{(0,2)} ,{(1,1)} ,{(2,0)} ,{(0,2) ,(1,1)} ,{(0,2) ,(2,0)} ,{(1,1) ,(2,0)} ,{(0,2) ,(1,1) ,(2,0)}.10.集合A ={x |1<ax <2} ,B ={x |-2<x <2} ,求满足A ⊆B 的实数a 的取值范围. 解:B ={x |-2<x <2}. (1)当a =0时 ,A =∅ ,显然A ⊆B . (2)当a >0时 ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2a . ∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≥-2 2a ≤2 解得a ≥1.(3)当a <0时 ,A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a<x <1a .∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≤22a ≥-2 解得a ≤-1.综上可知 , a =0 ,或a ≥1 ,或a ≤-1时 ,A ⊆B .一、选择题(每题5分 ,共10分)1.集合A ={x |x 2-3x +2=0 ,x ∈R } ,B ={x |0<x <5 ,x ∈N } ,那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:因为集合A ={1,2} ,B ={1,2,3,4} ,所以当满足A ⊆C ⊆B 时 ,集合C 可以为{1,2} ,{1,2,3} ,{1,2,4} ,{1,2,3,4} ,故满足条件的集合C 有4个.答案:D2.集合M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n 2-13 n ∈Z ,那么集合M ,N 的关系是( )A .M ⊆NB .M NC .N ⊆MD .N M解析:设n =2m 或2m +1 ,m ∈Z , 那么有N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x =2m 2-13或x =2m +12-13m ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ x =m -13或x =m +16 m ∈Z . 又∵M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z ,∴M N .答案:B二、填空题(每题5分 ,共10分)3.假设A ={1,2} ,B ={x |x ⊆A } ,那么B =________.解析:∵x ⊆A ,∴x =∅ ,{1} ,{2} ,{1,2} ,∴B ={∅ ,{1} ,{2} ,{1,2}}.答案:{∅ ,{1} ,{2} ,{1,2}}4.集合A ={x |ax 2+2x +a =0 ,a ∈R } ,假设集合A 有且仅有2个子集 ,那么a 的取值构成的集合为________________.解析:∵集合A 有且仅有2个子集 ,∴A 仅有一个元素 ,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时 ,方程化为2x =0 , ∴x =0 ,此时A ={0} ,符合题意.当a ≠0时 ,Δ=22-4·a ·a =0 ,即a 2=1 ,∴a =±1. 此时A ={-1} ,或A ={1} ,符合题意. ∴a =0或a =±1. 答案:{0,1 ,-1}三、解答题(每题10分 ,共20分)5.设集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x +4⎝ ⎛⎭⎪⎫x -12=0 x ∈Z ,B ={x |x 2+2(a +1)x +a 2-1=0} ,假设B ⊆A ,求实数a 的值.解:由题意得A ={0 ,-4}.(1)当B =∅时 ,方程x 2+2(a +1)x +a 2-1=0无解 , ∴Δ=4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当BA (B ≠∅)时 ,那么B ={0}或B ={-4} ,即方程x 2+2(a +1)x +a 2-1=0只有一解 , ∴Δ=8a +8=0. ∴aB ={0}满足条件.(3)当B =A 时 ,方程x 2+2(a +1)x +a 2-1=0 有两实根0 ,-4 ,∴⎩⎨⎧16-8a +1+a 2-1=0 a 2-1=0.∴a =1.综上可知 ,a ≤-1 ,或a =1.6.设集合A ={x |-1≤x +1≤6} ,B ={x |m -1<x <2m +1}. (1)当x ∈Z 时 ,求A 的非空真子集的个数; (2)假设A ⊇B ,求m 的取值范围. 解:化简集合A 得A ={x |-2≤x ≤5}. (1)∵x ∈Z ,∴A ={-2 ,-1,0,1,2,3,4,5} ,即A 中含有8个元素.∴A 的非空真子集的个数为28-2=254(个). (2)①当m ≤-2时 ,B =∅⊆A ;②当m >-2时 ,B ={x |m -1<x <2m +1} , 因此 ,要B ⊆A ,那么只要⎩⎨⎧m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述 ,m 的取值范围是{m |-1≤m ≤2或m ≤-2}.活页作业(四)并集、交集(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.设集合M ={m ∈Z |-3<m <2} ,N ={n ∈Z |-1≤n ≤3} ,那么M ∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}解析:由题意 ,得M ={-2 ,-1,0,1} ,N ={-1,0,1,2,3} ,∴M ∩N ={-1,0,1}. 答案:B2.假设集合M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1}解析:M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N ={0,1} ,应选D. 答案:D3.以下各组集合 ,符合Venn 图所示情况的是( )A .M ={4,5,6,8} ,N ={4,5,6,7,8}B .M ={x |0<x <2} ,N ={x |x <3}C .M ={2,5,6,7,8} ,N ={4,5,6,8}D .M ={x |x <3} ,N ={x |0<x <2}解析:因为{4,5,6,8}⊆{4,5,6,7,8} ,即M ⊆N ,所以选项A 错误.又因{x |0<x <2}⊆{x |x <3} ,所以选项B 错误 ,选项C 显然错误 ,选项D 正确.答案:D4.设集合A ={1,2} ,那么满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4D .8解析:∵A ={1,2} ,且A ∪B ={1,2,3} ,∴B ={3}或{1,3}或{2,3}或{1,2,3}. 答案:C5.设集合A ={x ∈N |1≤x ≤10} ,B ={x ∈R |x 2+x -6=0} ,那么图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析:∵A ={1,2,3,4,5,6,7,8,9,10} ,B ={-3,2} ,∴图中阴影表示的集合为A ∩B ={2}.答案:A二、填空题(每题5分 ,共15分)6.集合M ={x |-3<x ≤5} ,N ={x |-5<x <-2 ,或x >5} ,那么M ∪N =____________ ,M ∩N =__________________.解析:借助数轴可知:M ∪N ={x |x >-5} ,M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}7.集合A ={(x ,y )|y =x 2,x ∈R } ,B ={(x ,y )|y =x ,x ∈R } ,那么A ∩B 中的元素个数为________.解析:由⎩⎪⎨⎪⎧y =x 2y =x 得⎩⎪⎨⎪⎧x =0y =0 或⎩⎨⎧x =1y =1.答案:28.设集合A ={x |-1<x <2} ,B ={x |x <a } ,假设A ∩B ≠∅ ,那么a 的取值范围是________.解析:利用数轴分析可知 ,a >-1.答案:a >-1三、解答题(每题10分 ,共20分)9.集合A ={1,3,5} ,B ={1,2 ,x 2-1} ,假设A ∪B ={1,2,3,5} ,求x 及A ∩B . 解:∵B ⊆(A ∪B ) , ∴x 2-1∈(A ∪B ).∴x 2-1=3或x 2-1=5 ,解得x =±2或x =± 6. 假设x 2-1=3 ,那么A ∩B ={1,3}; 假设x 2-1=5 ,那么A ∩B ={1,5}.10.设集合A ={x |x 2-3x +2=0} ,B ={x |x 2-4x +a =0} ,假设A ∪B =A ,求实数a 的取值范围.解:A ={1,2} ,∵A ∪B =A ,∴B ⊆A .集合B 有两种情况:B =∅或B ≠∅. (1)B =∅时 ,方程x 2-4x +a =0无实数根 , ∴Δ=16-4a <0.∴a >4. (2)B ≠∅时 ,当Δ=0时 ,a =4 ,B ={2}⊆A 满足条件;当Δ>0时 ,假设1,2是方程x 2-4x +a =0的根 , 由根与系数的关系知1+2=3≠4 ,矛盾 ,∴a =4. 综上 ,a 的取值范围是a ≥4.一、选择题(每题5分 ,共10分)1.集合A ={1,2} ,B ={x |mx -1=0} ,假设A ∩B =B ,那么符合条件的实数m 的值组成的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1 12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 0 12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 -12解析:当m =0时 ,B =∅ ,A ∩B =B ;当m ≠0时 ,x =1m ,要使A ∩B =B ,那么1m =1或1m=2 ,即m =1或m =12,选C.答案:C2.定义集合{x |a ≤x ≤b }的 "长度〞是b -a .m ,n ∈R ,集合M =xm ≤x ≤m +23 ,N =xn-34≤x ≤n ,且集合M ,N 都是集合{x |1≤x ≤2}的子集 ,那么集合M ∩N 的 "长度〞的最|小值是( )A.23B.12C.512D .13解析:集合M ,N 的 "长度〞分别为23 ,34 ,又M ,N 都是集合{x |1≤x ≤2}的子集 ,如图 ,由图可知M ∩N 的 "长度〞的最|小值为53-54=512.答案:C二、填空题(每题5分 ,共10分)3.集合A ={1,3 ,m } ,B ={1 ,m } ,A ∪B =A ,那么m =________.解析:由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1 ,经检验 ,m =1时 ,B ={1,1}矛盾 ,m =0或3时符合题意.答案:0或34.设集合A ={5 ,a +1} ,集合B ={a ,b }.假设A ∩B ={2} ,那么A ∪B =______________. 解析:∵A ∩B ={2} ,∴2∈A .故a +1=2 ,a =1 ,即A ={5,2};又2∈B ,∴b =2 ,即B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}三、解答题(每题10分 ,共20分)5.A ={x |2a ≤x ≤a +3} ,B ={x |x <-1或x >5} ,假设A ∩B =∅ ,求a 的取值范围. 解:A ∩B =∅ ,A ={x |2a ≤x ≤a +3}. (1)假设A =∅ ,有2a >a +3 ,∴a >3. (2)假设A ≠∅ ,如下图.那么有⎩⎪⎨⎪⎧2a ≥-1a +3≤5 2a ≤a +3解得-12≤a ≤2.综上所述 ,a 的取值范围是-12≤a ≤2或a >3.6.集合M ={x |2x -4=0} ,N ={x |x 2-3x +m =0}. (1)当m =2时 ,求M ∩N ,M ∪N . (2)当M ∩N =M 时 ,求实数m 的值. 解:由得M ={2}. (1)当m =2时 ,N ={1,2}. ∴M ∩N ={2} ,M ∪N ={1,2}. (2)假设M ∩N =M ,那么M ⊆N , ∴2∈N . ∴4-6+m =0. ∴m =2.活页作业(五) 补集及集合运算的综合应用(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.全集U ={0,1,2} ,且∁U A ={2} ,那么A 等于( ) A .{0} B .{1} C .∅D .{0,1}解析:∵∁U A ={2} ,∴A ={0,1}. 答案:D2.A ={x |x +1>0} ,B ={-2 ,-1,0,1} ,那么(∁R A )∩B =( ) A .{-2 ,-1} B .{-2} C .{-1,0,1}D .{0,1} 解析:解不等式求出集合A ,进而得∁R A ,再由集合交集的定义求解. 因为集合A ={x |x >-1} ,所以∁R A ={x |x ≤-1}. 那么(∁R A )∩B ={x |x ≤-1}∩{-2 ,-1,0,1} ={-2 ,-1}. 答案:A3.如下图 ,U 是全集 ,A ,B 是U 的子集 ,那么图中阴影局部表示的集合是( )A.A∩B B.B∩(∁U A)C.A∪B D.A∩(∁U B)解析:阴影局部在B中且在A的外部 ,由补集与交集的定义可知阴影局部可表示为B∩(∁U A).答案:B4.设集合M={x|x=3k ,k∈Z} ,P={x|x=3k+1 ,k∈Z} ,Q={x|x=3k-1 ,k∈Z} ,那么∁Z(P∪Q)=( )A.M B.PC.Q D.∅解析:x=3k ,k∈Z表示被3整除的整数;x=3k+1 ,k∈Z表示被3整除余1的整数;x=3k-1表示被3整除余2的整数 ,所以∁Z(P∪Q)=M.答案:A5.集合A={x|x<a} ,B={x|1<x<2} ,且A∪(∁R B)=R,那么实数a的取值范围是( ) A.a≤1B.a<1C.a≥2D.a>2解析:如下图 ,假设能保证并集为R ,那么只需实数a在数2的右边 ,注意等号的选取.选C.答案:C二、填空题(每题5分 ,共15分)6.集合U={2,3,6,8} ,A={2,3} ,B={2,6,8} ,那么(∁U A)∩B=________.解析:(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}7.设全集U=R ,集合A={x|x≥0} ,B={y|y≥1} ,那么∁U A与∁U B的包含关系是______________.解析:∵∁U A={x|x<0} ,∁U B={y|y<1} ,∴∁U A∁U B.如图.答案:∁U A∁U B8.设全集S={1,2,3,4} ,且A={x∈S|x2-5x+m=0} ,假设∁S A={2,3} ,那么m=________.解析:因为S={1,2,3,4} ,∁S A={2,3} ,所以A={1,4} ,即1,4是方程x2-5x+m=0的两根 ,由根与系数的关系可得m=1×4=4.答案:4三、解答题(每题10分 ,共20分)9.全集U={2,3 ,a2-2a-3} ,A={2 ,|a-7|} ,∁U A={5} ,求a的值.解:由|a-7|=3 ,得a=4或a=10.当a=4时 ,a2-2a-3=5 ,当a=10时 ,a2-2a-3=77∉U ,所以a=4.10.集合A={x|3≤x<7} ,B={x|2<x<10} ,C={x|x<a}.(1)求(∁R A)∩B;(2)假设A⊆C ,求a的取值范围.解:(1)∵A={x|3≤x<7} ,∴∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a} ,且A⊆C ,如下图 ,∴a≥7.∴a的取值范围是{a|a≥7}.一、选择题(每题5分 ,共10分)1.全集U=R,集合A={x|-2≤x≤3} ,B={x|x<-2或x>4} ,那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3} ,∁U B={x|-2≤x≤4} ,如图 ,∴(∁U A)∩(∁U B)={x|3<x≤4}.应选A.答案:A2.设A ,B ,I均为非空集合 ,且满足A⊆B⊆I ,那么以下各式中错误的选项是( ) A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=IC.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B解析:方法一符合题意的Venn图 ,如图.观察可知选项A ,C ,D 均正确 ,(∁I A )∪(∁I B )=∁I A ,应选项B 错误.方法二 运用特例法 ,如A ={1,2,3} ,B ={1,2,3,4} ,I ={1,2,3,4,5}.逐个检验只有选项B 错误.答案:B二、填空题(每题5分 ,共10分)3.全集U =R ,A ={x |x <-3 ,或x ≥2} ,B ={x |-1<x <5} ,那么集合C ={x |-1<x <2}=______________.(用A ,B 或其补集表示)解析:如下图 ,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )4.某班共50人 ,参加A 项比赛的共有30人 ,参加B 项比赛的共有33人 ,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人 ,那么只参加A 项不参加B 项的有____人.解析:如下图 ,设A ,B 两项都参加的有x 人 ,那么仅参加A 项的共(30-x )人 ,仅参加B 项的共(33-x )人 ,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人 ,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50 ,解得x =21 ,所以只参加A 项不参加B 项的共有30-21=9(人).故填9.答案:9三、解答题(每题10分 ,共20分)5.设全集是实数集R ,A ={x |2x 2-7x +3≤0} ,B ={x |x 2+a <0}. (1)当a =-4时 ,求A ∩B 和A ∪B ;(2)假设(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3,当a =-4时 ,B ={x |-2<x <2} ,∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2 ,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x <12 或x >3 ,当(∁R A )∩B =B 时 ,B ⊆∁R A .①当B =∅ ,即a ≥0时 ,满足B ⊆∁R A ;②当B ≠∅ ,即a <0时 ,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12 ,解得-14≤a <0.综上可得 ,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.6.设全集I =R ,集合M ={x |(x +3)2≤0} ,N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R } ,假设B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3} ,N ={x |x 2+x -6=0}={-3,2}.∴∁I M ={x |x ∈R 且x ≠-3}. ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2} , ∵B ∪A =A ,∴B ⊆A . ∴B =∅或B ={2}.当B =∅时 ,a -1>5-a ,∴a >3;当B ={2}时 ,⎩⎪⎨⎪⎧a -1=25-a =2解得a =3.综上所述 ,所求a 的取值范围是{a |a ≥3}.活页作业(六) 函数的概念(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.设f:x→x2是集合A到集合B的函数 ,如果集合B={1} ,那么集合A不可能是( ) A.{1} B.{-1}C.{-1,1} D.{-1,0}解析:假设集合A={-1,0} ,那么0∈A ,但02=0∉B.应选D.答案:D2.各个图形中 ,不可能是函数y=f(x)的图象的是( )解析:因垂直x轴的直线与函数y=f(x)的图象至|多有一个交点.应选A.答案:A3.假设函数y=f(x)的定义域为M={x|-2≤x≤2} ,值域为N={y|0≤y≤2} ,那么函数y=f(x)的图象可能是( )解析:选项A ,定义域为{x|-2≤x≤0} ,不正确.选项C ,当x在(-2,2]取值时 ,y 有两个值和x对应 ,不符合函数的概念.选项D ,值域为[0,1] ,不正确 ,选项B正确.答案:B二、填空题(每题4分 ,共8分)4.假设(2m ,m+1)表示一个开区间 ,那么m的取值范围是________.解析:由2m<m+1 ,解得m<1.答案:(-∞ ,1)5.函数y=f(x)的图象如下图 ,那么f(x)的定义域是________________;其中只与x 的一个值对应的y值的范围是________________.解析:观察函数图象可知f (x )的定义域是[-3,0]∪[2,3]; 只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 答案:[-3,0]∪[2,3] [1,2)∪(4,5] 三、解答题6.(本小题总分值10分)求以下函数的定义域. (1)y =2x +1+3-4x . (2)y =1|x +2|-1.解:由得⎩⎪⎨⎪⎧2x +1≥0⇒x ≥-12 3-4x ≥0⇒x ≤34∴函数的定义域为⎣⎢⎢⎡⎦⎥⎥⎤-1234. (2)由得 ,|x +2|-1≠0 , ∴|xx ≠-3 ,x ≠-1.∴函数的定义域为(-∞ ,-3)∪(-3 ,-1)∪(-1 ,+∞).一、选择题(每题5分 ,共10分)1.四个函数:(1)y =x +1;(2)y =x 3;(3)y =x 2-1; (4)y =1x.其中定义域相同的函数有( )A .(1) ,(2)和(3)B .(1)和(2)C .(2)和(3)D .(2) ,(3)和(4)解析:(1) ,(2)和(3)中函数的定义域均为R ,而(4)函数的定义域为{x |x ≠0}. 答案:A2.函数f (x )=-1 ,那么f (2)的值为( ) A .-2 B .-1 C .0D .不确定解析:∵f (x )=-1 ,∴f (2)=-1. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={1,2,3} ,B ={4,5} ,那么从A 到B 的函数f (x )有________个.解析:抓住函数的 "取元任意性 ,取值唯一性〞 ,利用列表方法确定函数的个数.f (1) 4 4 4 4 5 5 5 5 f (2) 4 4 5 5 4 4 5 5 f (3)45454545由表可知 ,这样的函数有8个 ,故填8. 答案:8 4.函数y =x +26-2x -1的定义域为________.(并用区间表示)解析:要使函数解析式有意义 ,需满足⎩⎪⎨⎪⎧ x +2≥06-2x ≥0 6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇒-2≤x ≤3 ,且x ≠52.∴函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3.答案:⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3三、解答题5.(本小题总分值10分)将长为a 的铁丝折成矩形 ,求矩形面积y 关于边长x 的解析式 ,并写出此函数的定义域.解:设矩形一边长为x ,那么另一边长为12(a -2x ) ,所以y =x ·12(a -2x )=-x 2+12ax .由题意可得⎩⎪⎨⎪⎧0<x <a 2 0<12a -2x <a2解得0<x <a2,即函数定义域为⎝ ⎛⎭⎪⎪⎫0 a 2.活页作业(七) 函数概念的综合应用(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.函数f (x )=x +1x,那么f (1)等于( ) A .1 B .2 C .3D .0解析:f (1)=1+11=2.答案:B2.以下各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1 ,x ∈Z 与y =2x -1 ,x ∈Z解析:A 中两函数定义域不同 ,B 、D 中两函数对应关系不同 ,C 中定义域与对应关系都相同.答案:C3.函数y =x +1的值域为( ) A .[-1 ,+∞) B .[0 ,+∞) C .(-∞ ,0]D .(-∞ ,-1]解析:∵x +1≥0 ,∴y =x +1 ≥0. 答案:B二、填空题(每题4分 ,共8分) 4.函数y =x +1x的定义域为________. 解析:要使函数式有意义 ,需使⎩⎪⎨⎪⎧x +1≥0x ≠0 ,所以函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}5.函数f (x )=2x -3 ,x ∈{x ∈N |1≤x ≤5} ,那么函数的值域为__________________. 解析:函数的定义域为{1,2,3,4,5}. 故当x =1,2,3,4,5时 ,y =-1,1,3,5,7 ,即函数的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7} 三、解答题6.(本小题总分值10分)假设f (x )=ax 2- 2 ,且f (f (2))=- 2 ,求a 的值. 解:因为f (2)=a (2)2-2=2a - 2 ,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,2a -2=0或a =0 ,所以a=22或a =0.一、选择题(每题5分 ,共10分)1.以下函数中 ,值域为(0 ,+∞)的是( ) A .y =x B .y =100x +2C .y =16xD .y =x 2+x +1解析:A 中y =x 的值域为[0 ,+∞); C 中y =16x的值域为(-∞ ,0)∪(0 ,+∞);D 中y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34的值域为⎣⎢⎢⎡⎭⎪⎪⎫34 +∞;B 中函数的值域为(0 ,+∞) ,应选B. 答案:B2.假设函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,那么a 的值是( )A .-1或3B .-1C .3D .不存在解析:由⎩⎪⎨⎪⎧a 2-2a -3=0 a -3≠0得a =-1.答案:B二、填空题(每题5分 ,共10分)3.函数f (x )=x -1.假设f (a )=3 ,那么实数a =________. 解析:因为f (a )=a -1=3 ,所以a -1=9 ,即a =10. 答案:104.给出定义:假设m -12<x ≤m +12(其中m 为整数) ,那么m 叫做离实数x 最|近的整数 ,记作{x } ,即{x }=m .在此根底上给出以下关于函数f (x )=|x -{x }|的四个结论.①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎢⎡⎦⎥⎥⎤-1212. 那么其中正确的序号是________.解析:由题意得f ⎝ ⎛⎭⎪⎫-12=-12--12=-12-(-1)=12 ,①正确; f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4 ,②错误; f ⎝ ⎛⎭⎪⎫-14=-14--14=⎪⎪⎪⎪⎪⎪-14-0=14,f ⎝ ⎛⎭⎪⎫14=14-14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14 ,③正确; y =f (x )的定义域为R ,值域为⎝ ⎛⎦⎥⎥⎤-1212 ,④错误.答案:①③ 三、解答题5.(本小题总分值10分)函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12 ,f (3)+f ⎝ ⎛⎭⎪⎫13的值. (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x是定值.(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+ f (2 017)+f ⎝⎛⎭⎪⎫12 017的值.(1)解:∵f (x )=x 21+x2 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解:由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1 ,f (3)+f ⎝ ⎛⎭⎪⎫13=1 ,f (4)+f ⎝ ⎛⎭⎪⎫14=1 ,… ,f (2 017)+f ⎝⎛⎭⎪⎫12 017=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017=2 016.活页作业(八) 函数的表示法(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.小明骑车上学 ,开始时匀速行驶 ,途中因交通堵塞停留了一段时间 ,后为了赶时间加快速度行驶.与以上事件吻合得最|好的图象是( )解析:方法一:出发时距学校最|远 ,先排除A ,中途堵塞停留 ,距离不变 ,再排除D ,堵塞停留后比原来骑得快 ,因此排除B ,选C.方法二:由小明的运动规律知 ,小明距学校的距离应逐渐减小 ,由于小明先是匀速运动 ,故前段是直线段 ,途中停留时距离不变 ,后段加速 ,直线段比前段下降得快 ,故应选C.答案:C 2.f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,那么f (x )=( )A.x +1x -1B .1-x 1+x C.1+x1-xD .2x x +1解析:设t =1-x 1+x ,那么x =1-t 1+t ,f (t )=1-t 1+t ,即f (x )=1-x1+x .答案:B3.函数f (x )是一次函数 ,2f (2)-3f (1)=5,2f (0)-f (-1)=1 ,那么f (x )=( ) A .3x +2 B .3x -2 C .2x +3D .2x -3解析:设f (x )=kx +b (k ≠0) ,那么⎩⎨⎧22k +b -3k +b =52b --k +b =1.解得⎩⎪⎨⎪⎧k =3 b =-2∴f (x )=3x -2. 答案:B4.f ⎝ ⎛⎭⎪⎫12x -1=2x +3 ,且f (m )=6 ,那么m 等于( )A .-14B.14C.32D .-32解析:设12x -1=m ,那么x =2m +2 ,∴f (m )=2(2m +2)+3=4m +7=6 ,∴m =-14.答案:A5.函数f (2x +1)=3x +2 ,且f (a )=2 ,那么a 的值等于( ) A .1 B .3 C .5D .-1解析:由f (2x +1)=3x +2 ,令2x +1=t , ∴x =t -12.∴f (t )=3·t -12+2.∴f (x )=3x -12+2.∴f (a )=3a -12+2=2.∴a =1.答案:A二、填空题(每题5分 ,共15分)6.如图 ,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0) ,(1,2) ,(3,1) ,那么f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵f (3)=1 ,1f 3=1 ,∴f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2.答案:27.函数f (x ) ,g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321那么f (g (1))=____________. 解析:∵g (1)=3 ,∴f (g (1))=f (3)=1. 又∵x ,f (g (x )) ,g (f (x ))的对应值表为x 1 2 3 f (g (x ))131g (f (x ))3 1 3∴f (g (x ))>g (f (x ))答案:1 28.假设f (x )是一次函数 ,f (f (x ))=4x -1 ,那么f (x )=______.解析:设f (x )=kx +b (k ≠0) ,那么f (f (x ))=kf (x )+b =k (kx +b )+b =k 2x +kb +b =4x ⎩⎪⎨⎪⎧k 2=4 kb +b =-1解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎨⎧k =-2b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:2x -13或-2x +1三、解答题(每题10分 ,共20分) 9.下表表示函数y =f (x ).x0<x <5 5≤x <1010≤x <1515≤x ≤20y =f (x )-46810(1)写出函数的定义域、值域; (2)写出满足f (x )≥x 的整数解的集合.解:(1)从表格中可以看出函数的定义域为(0,5)∪[5,10)∪[10,15)∪[15,20]=(0,20].函数的值域为{-4,6,8,10}.(2)由于当5≤x <10时 ,f (x )=6 ,因此满足f (x )≥x 的x 的取值范围是5≤xx ∈Z ,故x ∈{5,6}.10.函数f (x )=g (x )+h (x ) ,g (x )关于x 2成正比 ,h (x )关于x 成反比 ,且g (1)=2 ,h (1)=-3 ,求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1≠0) ,h (x )=k 2x(k 2≠0) , 由于g (1)=2 ,h (1)=-3 , 所以k 1=2 ,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0 ,+∞). (2)由(1)得f (4)=2×42-34=612.一、选择题(每题5分 ,共10分)1.正方形的周长为x ,它的外接圆的半径为y ,那么y 关于x 的解析式为( )A .y =12xB .y =24xC .y =28x D .y =216x 解析:正方形边长为x4 ,而(2y )2=⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫x 42,∴y 2=x 232.∴y =x 42=28x .答案:C2.以下函数中 ,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x );对于C ,f (2x )=2x +1≠2f (x );对于D ,f (2x )=-2x =2f (x ).答案:C二、填空题(每题5分 ,共10分)3.观察以下图形和所给表格中的数据后答复以下问题:梯形个数 1 2 3 4 5 … 图形周长58111417…当梯形个数为. 解析:由表格可推算出两变量的关系 ,或由图形观察周长与梯形个数关系为l =3n +2(n ∈N *).答案:l =3n +2(n ∈N *)4.R 上的函数f (x )满足:(1)f (0)=1;(2)对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,那么f (x )=________.解析:因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,所以令y =x ,有f (0)=f (x )-x (2x -x +1) ,即f (0)=f (x )-x (x +1) ,又f (0)=1 ,所以f (x )=x (x +1)+1=x 2+x +1 ,即f (x )=x 2+x +1.答案:x 2+x +1三、解答题(每题10分 ,共20分)5.画出函数f (x )=-x 2+2x +3的图象 ,并根据图象答复以下问题: (1)比拟f (0) ,f (1) ,f (3)的大小;(2)假设x 1<x 2<1 ,比拟f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.解:因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线 ,描点 ,得函数图象如图:(1)根据图象 ,容易发现f (0)=3 ,f (1)=4 ,f (3)=0 ,所以f (3)<f (0)<f (1). (2)根据图象 ,容易发现当x 1<x 2<1时 ,有f (x 1)<f (x 2).(3)根据图象 ,可以看出函数的图象是以(1,4)为顶点 ,开口向下的抛物线 ,因此 ,函数值域为(-∞ ,4].6.函数f (x )=xax +b(a ,b 为常数 ,且a ≠0)满足f (2)=1 ,方程f (x )=x 有唯一解 ,求函数f (x )的解析式 ,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x , 即ax 2+(b -1)x =0.因为方程f (x )=x 有唯一解 , 所以Δ=(b -1)2=0 ,即b =1. 又f (2)=1 , 所以22a +1=1 ,a =12.所以f (x )=x 12x +1=2x x +2.所以f (f (-3))=f (6)=128=32.活页作业(九) 分段函数、映射(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合M ={x |0≤x ≤6} ,P ={y |0≤y ≤3} ,那么以下对应关系中 ,不能构成M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析:由映射定义判断 ,选项C 中 ,x =6时 ,y =6∉P . 答案:C2.在给定映射f :A →B ,即f :(x ,y )→(2x +y ,xy )(x ,y ∈R )的条件下 ,与B 中元素⎝ ⎛⎭⎪⎪⎫16 -16对应的A 中元素是( ) A.⎝ ⎛⎭⎪⎪⎫16 -136 B.⎝ ⎛⎭⎪⎪⎫13 -12或⎝ ⎛⎭⎪⎪⎫-14 23 C.⎝ ⎛⎭⎪⎪⎫136 -16 D.⎝ ⎛⎭⎪⎪⎫12 -13或⎝ ⎛⎭⎪⎪⎫-23 14 解析:由⎩⎪⎨⎪⎧ 2x +y =16 xy =-16 得⎩⎪⎨⎪⎧ x =13y =-12或⎩⎪⎨⎪⎧x =-14y =23.应选B.答案:B3.以下图象是函数y =⎩⎪⎨⎪⎧x 2x <0x -1 x ≥0的图象的是( )解析:由于f (0)=0-1=-1 ,所以函数图象过点(0 ,-1);当x <0时 ,y =x 2,那么函数图象是开口向上的抛物线y =x 2在y 轴左侧的局部.因此只有图象C 符合.答案:C4.f (x )=⎩⎨⎧ x -5x ≥6f x +2x <6那么f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.f (x )=⎩⎨⎧2xx >0f x +1x ≤0那么f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于( ) A .-2 B .4 C .2D .-4解析:∵f ⎝ ⎛⎭⎪⎫43=2×43=83 ,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43 ,∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:B二、填空题(每题5分 ,共15分)6.函数f (x )的图象如下图 ,那么f (x )的解析式是____________________.解析:由图可知 ,图象是由两条线段组成.当-1≤x <0时 ,设f (x )=ax +b ,将(-1,0) ,(0,1)代入解析式 ,那么⎩⎨⎧ -a +b =0 b =1.∴⎩⎨⎧a =1b =1.∴f (x )=x +1.当0≤x ≤1时 ,设f (x )=kx ,将(1 ,-1)代入 ,那么k =-1 ,∴f (x )=-x .。

高中数学(人教版A版必修一)全册课时练习及期末测试题(含答案)

高中数学(人教版A版必修一)全册课时练习及期末测试题(含答案)

第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4.元素与集合的关系关系概念记法读法元素与集合的关系属于如果________的元素,就说a属于集合Aa∈A a属于集合A 不属于如果________中的元素,就说a不属于集合Aa∉A a不属于集合A名称自然数集正整数集整数集有理数集实数集符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()A.1B.-2C.6D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有()A.2个元素B.3个元素C.4个元素D.5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2_______R,-3_______Q,-1_______N,π_______Z.三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.能力提升12.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.] 2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D[集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C[因A中含有3个元素,即a2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B[由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.]6.A[方法一因为|x|=±x,x2=|x|,-3x3=-x,所以不论x取何值,最多只能写成两种形式:x、-x,故集合中最多含有2个元素.方法二令x=2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.] 7.①④解析①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析当x=0,1,-1时,都有x2∈A,但考虑到集合元素的互异性,x≠0,x≠1,故答案为-1.9.∈∈∉∉10.解(1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解由-3∈A,可得-3=a-2或-3=2a2+5a,∴a=-1或a=-3 2.则当a=-1时,a-2=-3,2a2+5a=-3,不符合集合中元素的互异性,故a=-1应舍去.当a=-32时,a-2=-72,2a2+5a=-3,∴a=-3 2.12.解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3表示成列举法,正确的是()A.{2,3}B.{(2,3)}C.{x=2,y=3}D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有() A.-1∈A B.0∈AC.3∈A D.2∈A6()A.BC.{1,2}D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.14159};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1}B.{y|(y-1)2=0}C.{x=1}D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z } 作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎨⎧ x +y =5,2x -y =1.得⎩⎨⎧x =2,y =3.所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.] 5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2} 解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标; ②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④. 10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1000,n ∈N };③{x|x>8};④{1,2,3,4,5,6}.11.解因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A中代表的元素是x,满足条件y=x2+3中的x∈R,所以A=R;集合B中代表的元素是y,满足条件y=x2+3中y的取值范围是y≥3,所以B={y|y≥3}.集合C中代表的元素是(x,y),这是个点集,这些点在抛物线y=x2+3上,所以C={P|P是抛物线y=x2+3上的点}.12.C[由集合的含义知{x|x=1}={y|(y-1)2=0}={1},而集合{x=1}表示由方程x=1组成的集合,故选C.]13.A[M={x|x=2k+14,k∈Z},N={x|x=k+24,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.]1.1.2集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A、B,如果集合A 中________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作______(或______),读作“__________”(或“__________”).2.Venn图:用平面上______曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念定义符号表示图形表示集合相等如果__________,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素__________,称集合A是B的真子集A B(或B A)(1)定义:______________的集合叫做空集.(2)用符号表示为:____.(3)规定:空集是任何集合的______.5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么___________________________.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是()A.P=Q B.C.Q D.P∩Q=∅2.满足条件M⊆{1,2,3,4,5}的集合M的个数是()A.3B.6C.7D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A,则A≠∅.其中正确的个数是()A.0B.1C.2D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=MC.S P=M D.P=S题号二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若B,则实数a的取值范围是________.9.已知集合{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a 的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含)等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2 集合间的基本关系知识梳理1.任意一个 A ⊆B B ⊇A A 含于B B 包含A 2.封闭 3.A ⊆B 且B ⊆A x ∈B ,且x ∉A 4.(1)不含任何元素 (2)∅ (3)子集 5.(1)A ⊆A (2)A ⊆C 作业设计1.B [∵P ={x |y =x +1}={x |x ≥-1},Q ={y |y ≥0} ∴Q ,∴选B.]2.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.] 3.C4.B [只有④正确.] 5.B [由N ={-1,0},知M ,故选B.]6.C [运用整数的性质方便求解.集合M 、P 表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.] 7.①②解析 ①、②显然正确;③中π与M 的关系为元素与集合的关系,不应该用”符号;④中{π}与M 的关系是集合与集合的关系,不应该用“∈”符号. 8.a ≥2解析 在数轴上表示出两个集合,可得a ≥2. 9.6解析 (1)若A 中有且只有1个奇数, 则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 10.解 A ={-3,2}.对于x 2+x +a =0, (1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立; (2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;(3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立, 则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6. 11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示.要使B ⊆A ,则⎩⎨⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎨⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3. ∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A ={x |1a <x <2a }. 又∵B ={x |-1<x <1},A ⊆B , ∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.13.5解析若A中有一个奇数,则A可能为{1},{3},{1,2},{3,2},若A中有2个奇数,则A={1,3}.1.1.3集合的基本运算第1课时并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.(1)定义:一般地,________________________的元素组成的集合,称为集合A与B的并集,记作________.(2)并集的符号语言表示为A∪B=_________________________________________________________________ _______.(3)并集的图形语言(即Venn图)表示为下图中的阴影部分:(4)性质:A∪B=________,A____,A∪B=A⇔________,A____A∪B.2.交集(1)定义:一般地,由________________________元素组成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=_________________________________________________________________ _______.(3)(4)性质:A∩B=______,A∩____,A∩B=A⇔________,1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于()A.{x|x<1}B.{x|-1≤x≤2}C.{x|-1≤x≤1}D.{x|-1≤x<1}3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是()A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N 为()A.x=3,y=-1B.(3,-1)C.{3,-1}D.{(3,-1)}5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于() A.1B.2C.3D.46.集合M={1,2,3,4,5},集合N={1,3,5},则()A.N∈M B.M∪N=MC.M∩N=M D.M>N二、填空题7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B ∪C)={x|a≤x≤b},则a=______,b=______.三、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.613.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.1.3 集合的基本运算 第1课时 并集与交集知识梳理一、1.由所有属于集合A 或属于集合B A ∪B 2.{x |x ∈A ,或x ∈B } 4.B ∪A A A B ⊆A ⊆ 二、1.属于集合A 且属于集合B 的所有 A ∩B 2.{x |x ∈A ,且x ∈B } 4.B ∩A A ∅ A ⊆B ⊆ 作业设计 1.A2.D [由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.]3.D [参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .] 4.D [M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎨⎧ x +y =2,x -y =4,得⎩⎨⎧x =3,y =-1.] 5.C [依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3,故选C.] 6.B [∵M ,∴M ∪N =M .] 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴ (B ∪C ) ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3}, 即方程x 2+px +q =0的两个实根为1,3. ∴⎩⎨⎧ 1+3=-p 1×3=q ,∴⎩⎨⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a=0或a=1 2.12.D[x的取值为1,2,y的取值为0,2,∵z=xy,∴z的取值为0,2,4,所以2+4=6,故选D.] 13.解符合条件的理想配集有①M={1,3},N={1,3}.②M={1,3},N={1,2,3}.③M={1,2,3},N={1,3}.共3个.第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集自然语言对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A相对于全集U的补集,记作________符号语言∁U A=____________图形语言3.补集与全集的性质(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁UA)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于() A.{2}B.{2,3}C.{3}D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是() A.A=∁U P B.A=PC.A P D.P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是()A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x ∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]2.C[∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]3.D[由B={2,5},知∁U B={1,3,4}.A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]4.B[由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a ∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]6.D[由A∪B={1,3,4,5,6},得∁U(A∪B)={2,7},故选D.]7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8}{7,8}{0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.U9.∁U∁U A解析画Venn图,观察可知∁U∁U A.10.解∵∁U A={5},∴5∈U且5∉A.又b ∈A ,∴b ∈U ,由此得⎩⎨⎧a 2+2a -3=5,b =3.解得⎩⎨⎧ a =2,b =3或⎩⎨⎧a =-4,b =3经检验都符合题意.11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3}; 当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎨⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.§1.1习题课课时目标 1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1}B.{x|x<3}C.{x|-1<x<3}D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于() A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.A B.a∉AC.{a}∉A D.{a A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e}D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a P⊆{a,b,c}的集合P的个数是()A.2B.3C.4D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是()A.M=P B.PC.M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________.9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B 者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于Venn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1习题课双基演练1.C[∵A={x|x>-1},B={x|x<3},∴A∩B={x|-1<x<3},故选C.]2.A[画出数轴,将不等式-3<x≤5,x<-5,x>5在数轴上表示出来,不难看出M∪N={x|x<-5或x>-3}.]3.D4.A[∵∁I M={d,e},∁I N={a,c},∴(∁I M)∩(∁I N)={d,e}∩{a,c}=∅.]5.A=B解析4k-3=4(k-1)+1,k∈Z,可见A=B.6.解∵A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A(B∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B[Q={x|-2<x<2},可知B正确.]2.B[集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.]3.B[∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴P.]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).]5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎨⎧a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2. 7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ; 当x =2时,x -1=1∈A ,x +1=3∈A ; 当x =3时,x -1=2∈A ,x +1=4∉A ; 当x =5时,x -1=4∉A ,x +1=6∉A ; 综上可知,A 中只有一个孤立元素5. 8.4解析 ∵A ∪(∁U A )=U , 由∁U A ={5}知,a 2-2a -3=5, ∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2. a =4经验证,符合题意. 9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5}, 故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N ) ={x |x <1或x ≥5}. 10.解 (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B 表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解在数轴上表示出集合M与N,可知当m=0且n=1或n-13=0且m+34=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N={x|23≤x≤34},长度为34-23=112;当n=13且m=14时,M∩N={x|14≤x≤13},长度为13-14=112.综上,M∩N的长度的最小值为1 12.§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A 中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y是x的函数②对于不同的x,y的值也不同③f(a)表示当x=a时函数f(x)的值,是一个常量④f(x)一定可以用一个具体的式子表示出来A.1个B.2个C.3个D.4个2.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②3.下列各组函数中,表示同一个函数的是()A.y=x-1和y=x2-1 x+1B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=(x)2x和g(x)=x(x)24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2-1,值域为{1,7}的“孪生函数”共有()A.10个B.9个C.8个D.4个5.函数y=1-x+x的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}6.函数y=x+1的值域为()A.[-1,+∞) B.[0,+∞)C.(-∞,0] D.(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x 1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A中的任一个值,按照对应关系所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.]3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.] 5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2,g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数, 所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010.9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).。

新课标人教A版高中数学(必修一)课后习题解答全册答案完整版

新课标人教A版高中数学(必修一)课后习题解答全册答案完整版

人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

课时提升作业(二十七)指数型、对数型函数模型的应用举例(25分钟 60分)一、选择题(每小题5分,共25分)1.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( )A.14400亩B.172800亩C.17280亩D.20736亩【解析】选C.设第x 年造林y 亩,则y=10000(1+20%)x-1,所以x=4时,y=10000×1.23=17280(亩).2.(2015·四平高一检测)某化工厂2014年的12月份的产量是1月份产量的n 倍,则该化工厂这一年的月平均增长率是 ( ) A.n 11 B.n12C.√n 12-1D.√n 11【解析】选D.设月平均增长率为x,第一个月的产量为a,则有a(1+x)11=na,所以1+x=√n 11,所以x=√n 11-1.3.(2015·长沙高一检测)在一次教学实验中,运用图形计算器采集到如下一组数据:则x,y 的函数关系与下列各类函数中最接近的是(其中a,b 为待定系数)( )A.y=a+bx B.y=a+bxC.y=a+log b xD.y=a ·b x【解析】选D.因为f(0)=1,所以A.y=a+bx ,C.y=a+log b x 不符合题意.先求y=a+bx,由{a +b ×0=1,a +b =2.02,得{a =1,b =1.02,所以y=1+1.02x,当x=-2时,1+1.02×(-2)=-1.04,不满足题意,选项B 错误. 下面求y=a ·b x ,由{a ·b 0=1,ab =2.02,得{a =1,b =2.02,所以y=2.02x ,满足题意,选项D 正确.4.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y(万公顷)关于年数x 的函数关系较为近似的是 ( ) A.y=0.2x B.y=x 2+2x 10C.y=2x 10D.y=0.2+log 16x【解题指南】利用所给函数,分别令x=1,2,3,计算相应的函数值,即可求得结论. 【解析】选C.对于A,x=1,2时,符合题意,x=3时,y=0.6,与0.76相差0.16; 对于B,x=1时,y=0.3;x=2时,y=0.8;x=3时,y=1.5,相差较大,不符合题意; 对于C,x=1,2时,符合题意,x=3时,y=0.8,与0.76相差0.04,与A 比较,更符合题意; 对于D,x=1时,y=0.2;x=2时,y=0.45;x=3时,y<0.6,相差较大,不符合题意.5.某种植物生长发育的数量y 与时间x 的关系如表:则下面的函数关系式中,能表达这种关系的是( )A.y=2x-1B.y=x2-1C.y=2x-1D.y=1.5x2-2.5x+2【解析】选D.画散点图或代入数值,选择拟合效果最好的函数,可知应选D.二、填空题(每小题5分,共15分)6.(2015·镇江高一检测)某细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),则这种细菌由一个繁殖成4096个需要经过小时.【解析】设共分裂了x次,则有2x=4096,即2x=212,所以x=12.所用的时间为15分钟×12=180分钟=3小时.答案:3) 7.“学习曲线”可以用来描述学习某一任务的速度,假设函数t=-144lg(1−N90中,t表示达到某一英文打字水平所需的学习时间,N表示每分钟打出的字数.则当N=40时,t= .(已知lg5≈0.699,lg3≈0.477))【解析】当N=40时,则t=-144lg(1−4090=-144lg59=-144(lg5-2lg3)≈36.72.答案:36.728.(2015·扬州高一检测)现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1;乙:y=3x-1.若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.(填“甲”或“乙”)【解析】图象法,即描出已知的三个点的坐标并画出两个函数的图象如图所示,比较发现选甲更好.答案:甲三、解答题(每小题10分,共20分)9.某种新式杀菌剂,每喷洒一次就能杀死某物质上的细菌的60%,要使该物质上的细菌少于原来的0.1%,则至少要喷洒多少次?(lg2≈0.3010)【解析】设喷洒x次,该物质上原有细菌为a,则a(1-60%)x<0.1%·a,即(1-60%)x<0.1%,xlg0.4<lg10-3,解得x>lg10−3lg0.4=−32lg2−1≈7.5,故至少要喷洒8次.10.某工厂今年1月,2月,3月,4月生产某种产品分别为1万件,1.2万件,1.3万件,1.37万件,为了以后估计每个月的产量,以1,2两个月的产品数据为依据.用一个函数模型模拟产品的月产量y与月份数x的关系,模拟函数可选用f(x)=-0.05x2+qx+r或g(x)=a·0.5x+c,其中q,r,a,c为常数,请问用上述哪个函数作为模拟函数较好?说明理由.【解析】用g(x)=a·0.5x+c作为模拟函数较好,理由如下:f(x)=-0.05x 2+qx+r 由f(1)=1,f(2)=1.2得{−0.05+q +r =1,4×(−0.05)+2q +r =1.2,q=0.35,r=0.7,f(3)=1.3,f(4)=1.3;而对于g(x)=a ·0.5x +c,由g(1)=1,g(2)=1.2,得{0.5a +c =1,0.52a +c =1.2,a=-0.8,c=1.4,g(3)=1.3,g(4)=1.35,所以用g(x)=a ·0.5x +c 作为模拟函数较好. 【拓展延伸】函数建模的基本思想(20分钟 40分)一、选择题(每小题5分,共10分)1.(2015·舟山高一检测)若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x 年后剩留量为y,则x,y 的函数关系是 ( ) A.y=(0.957 6)x 100B.y=(0.957 6)xC.y=(0.957 6100)x D.y=1-(0.0424)x 100【解析】选A.设镭一年放射掉其质量的t%,则有95.76%=1·(1-t%)100,t%=1-(95.76100)1100,所以y=(1-t%)x=(0.9576)x100.2.一种放射性元素,每年的衰减率是8%,那么a千克的这种物质的半衰期(剩余量为原来的一半所需的时间)t等于( )A.lg0.50.92B.lg0.920.5C.lg0.5lg0.92D.lg0.92lg0.5【解析】选C.由题意得a(1-8%)t=a2,所以0.92t=0.5.两边取对数得lg0.92t=lg0.5,所以tlg0.92=lg0.5.故t=lg0.5lg0.92.【误区警示】解答本题容易因忽视利用两边取对数的方法求出t的值而致误.另外对数的运算性质应用不当也易导致出错.二、填空题(每小题5分,共10分)3.(2015·鹰潭高一检测)在不考虑空气阻力的情况下,火箭的最大速度v(米/秒)和燃料的质量M(千克)、火箭(除燃料外)的质量m(千克)的函数关系式是v=2000·ln(1+Mm).当燃料质量是火箭质量的倍时,火箭的最大速度可达12000米/秒.【解析】当v=12000时,2000·ln(1+Mm)=12000,所以ln(1+Mm )=6,所以Mm=e6-1.答案:e6-1【补偿训练】用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是.【解题指南】先将污垢原量视为单位1,再把洗x次后污垢含量表示出来,列出不等式,最后解不等式求出.【解析】选B.设要洗x次,则(1−34)x≤1100,所以x≥1lg2≈3.32,因此至少要洗4次.答案:44.(2015·邵武高一检测)如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=a t,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m2;③浮萍从4m2蔓延到12m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是.【解析】由图象知,t=2时,y=4,所以a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.答案:①②三、解答题(每小题10分,共20分)5.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的√22.(1)求每年砍伐面积的百分比.(2)到今年为止,该森林已砍伐了多少年?【解析】(1)设每年砍伐面积的百分比为x(0<x<1),则a(1-x)10=12a,即(1-x)10=12,解得x=1-(12)110.(2)设经过m 年,森林剩余面积为原来的√22,则a(1-x)m =√22a,即(12)m 10=(12) 12,m 10=12,解得m=5,故到今年为止,已砍伐了5年.【延伸探究】本题条件不变的情况下,问今后最多还能砍伐多少年?【解析】设从今年开始,以后砍n 年,则n 年后森林剩余面积为√22a(1-x)n .令√22a(1-x)n ≥14a,即(1-x)n ≥√24,可得(12)n 10≥(12)32,n 10≤32,解得n ≤15,故今后最多还能砍伐15年.6.(2015·十堰高一检测)某地区大力加强对环境污染的治理力度,使地区环境污染指数逐年下降,自2010年开始,连续6年检测得到的数据如表:根据这些数据,建立适当的函数模型,预测2021年的环境污染指数.(精确到0.1)(参考数据:0.83=0.512,0.84=0.410,0.85=0.328,0.810=0.107)【解析】设年份为变量x,且2010年为0,2011年为1,…,2015年为5,环境污染指数为y.作出年份x 与环境污染指数y 的散点图(略). 由散点图可设函数模型为y=a ·b x . 取(0,2.000),(5,0.655)代入得{2=a ·b 0,0.655=a ·b 5,所以{a =2,b ≈0.8. 所以函数模型为y=2×0.8x . 令x=11,得y=2×0.811≈0.2.故预测2021年该地区的环境污染指数约为0.2.关闭Word 文档返回原板块。

相关文档
最新文档