三位半数字直流电压表的设计

合集下载

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim
【设计背景及意义】
随着科技的不断发展,数字电压表在各个领域的应用越来越广泛。

三位半数字电压表作为一种常见的测量仪器,具有高精度、高稳定性、易于操作等优点。

本文将介绍如何使用Multisim软件设计一款三位半数字直流电压表,以满足实际应用需求。

【设计原理】
三位半数字直流电压表的设计主要依据以下原理:
1.采用分压式电路实现电压测量;
2.利用模数转换器将模拟信号转换为数字信号;
3.通过数字显示电路将数字信号转换为直观的电压值。

【设计步骤】
1.打开Multisim软件,新建一个项目;
2.添加所需元器件,包括电阻、电容、二极管、晶体管、运算放大器等;
3.连接电路,构建分压式电压测量电路、模数转换电路和数字显示电路;
4.设置元器件参数,如电阻值、电容值等;
5.添加电源和信号源,设置电压值;
6.配置仿真参数,进行仿真实验;
7.分析仿真结果,优化电路设计。

【仿真结果及分析】
经过多次仿真实验,得到以下结果:
1.电压测量范围:0~100V;
2.电压测量精度:0.5%;
3.数字显示:三位半液晶显示屏;
4.响应速度:≤1秒。

通过分析仿真结果,可以看出设计的三位半数字直流电压表具备较高的精度和响应速度,能够满足大部分实际应用场景的需求。

【总结与展望】
本文通过Multisim软件设计了一款三位半数字直流电压表,详细介绍了设计原理、步骤及仿真结果。

在今后的工作中,可以进一步优化电路设计,提高电压表的性能,如降低功耗、扩大测量范围等。

三位半数字电压表设计

三位半数字电压表设计

一、课程设计要求;采用中小规模集成电路、MC14433A/D转换器等电路进行设计三位半数字电压表。

要求如下:1、直流电压测量范围 1999—0001V;199.9—0.1V;19.99—0.01V;1.999—0.001V;2、交流电压测量范围 1999—199V;3、3位半数码显示。

二、方案设计及论证;方案设计一:本设计实际上是将被测模拟量转换为数字量,并进行实时数字显示,主要由以下几部分构成:量程转换电路、AC-DC转换电路、3位半A/D转换单元电路、基准电源单元电路、译码驱动单元以及数码管显示单元。

其中A/D转换器选用三位半MC14433,基准电源选用MC1403,译码驱动器则CD4511,另加四个共阴极LED发光数码管。

原理框图如下:方案设计二:电路中涉及到得集成电路有74LS47、ADC0804、AT89C51。

本电路采用LM7805集成稳压电路,电路由变压器、整流电路、滤波电路、稳压电路组成。

方案设计三:MEGA8单片机、OP07集成运算放大器、模拟开关CD4066、1602LCD 液晶显示器、三斜积分式A /D 转换器。

原理框图如下:方案比较:由于3位半双积分式A/D 转换器MC14433可以满足设计要求,其转换精度为读数的±0.05%±1字,并能很方便地判断出是否超欠量程,以便于量程的自动切换功能的实现,其中集成了双积分式A/D 转换器所有的CMOS 模拟电路和数字电路。

具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容件即可构成一个完整的A/D 转换器,另外价格只有10元多点,是较好的选择, MC1403集成精密稳压源作参考电压,MC1403的输出电压为 2.5V ,当输入电压在4.5~15V 范围内变化时,输出电压的变化不超过3mV ,一般只有0.6mV 左右,输出最大电流为10mA 因此选择方案一。

电力电子技术实验报告-三相半波可控整流电路实验等

电力电子技术实验报告-三相半波可控整流电路实验等

实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件三、实验线路及原理三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。

不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3 时间有电流流过,变压器利用率较低。

图3.1中晶闸管用DJK02 正桥组的三个,电阻R 用D42 三相可调电阻,将两个900Ω接成并联形式,L d电感用DJK02面板上的700mH,其三相触发信号由DJK02-1 内部提供,只需在其外加一个给定电压接到Uct端即可。

直流电压、电流表由DJK02 获得。

图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、预习要求阅读电力电子技术教材中有关三相半波整流电路的内容。

六、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=170°。

三位半数字电压表的设计

三位半数字电压表的设计

摘要摘要当今时代,信息充斥着世界的每一个角落,各种电子技术的发展日新月异,其更新的周期非常短,电子技术应用于各行各业,在国民生产和人民生活中的地位越来越重要。

数字电子产品在我们的日常生活中越来越普及,从普通的计算器到现在的数字电视、数字录音机、MP3等,现在还有具有智能系统的数字电子产品。

甚至许多日常生活用品都运用了数字电子产品,如:手机、剃须刀、笔记本电脑等。

现有的简易模拟电压表由于功能单一,适用的范围少等缺点已不能满足人们的高精度、高速度需要,这里需要的是一种能够提供高精度、高速度的采用数字采集技术的数字式电压表应运而生。

本题目介绍的是三位半数字电压表的设计,本次设计主要包括了对电压表的基本构成,双积分型A/D转换器的工作原理以及通用数字电压表的设计方法与调试技术的学习研究,采用集成芯片ICL7107作为数字电压表的A/D转化及锁存和译码模块,使得电路具有设计简单、集成度及可靠性高的特点。

ICL7107采用大电流反向输出,静态驱动共阴极LED数码管,由±5V双电源供电,显示亮度高但耗电较大,适合制作小型的三位半数字电压表。

该系统设计能够实现0~199mV 、0~1.99V、 0~19.99V、 0~199.9V、 0~1999.9V,共五个量程电压值的测量。

做成电路板,进行测试,可得到测试结果。

关键词: ICL7107 数字电压表 A/D转化量程。

ABSTRACTABSTRACTThe modern era, information filled with every corner of the world, all kinds of the development of electronic technology is developing rapidly, and the cycle of the update is very short, electronic technology application in all industries, in the national production and is becoming more and more important in the life of the people. Digital electronic products in our daily life is becoming more and more popular, from the normal calculator to the present digital television, digital recorder, MP3, now there is an intelligent system of digital electronic products. Even many articles for daily use all the digital electronic products, such as: the cellular phone, razor, notebook computers. The existing simple simulation voltmeter because the function of a single, the applicable scope shortcomings, such as less already cannot satisfy people of high precision, high speed need, here need is a can provide high precision, high speed of the digital collection technology of digital voltmeter arises at the historic moment.This subject introduces three and A half of the digital voltmeter design, the design includes the voltmeter to the basic constitution, the double integral type of A/D converter working principle and design method of general digital voltmeter and commissioning technical study, the integrated chips ICL7107 digital voltmeter as the A/D transformation and lock to save and decoding module, so that the circuit is simple in design, integration and the characteristics of high reliability. ICL7107 with large current reverse output, static drive cathode tube of LED digital, by ± 5 V double power supply, show high brightness but large power consumption, suitable for making small three and a half digital voltmeter. The system design can realize 0 ~ 199 mV, 0 ~ 1.99 V, 0 ~ 19.99 V, 0 ~ 199.9 V, 0 ~ 1999.9 V, a total of five range voltage measurement. Make it circuit boards, test, the test results can be obtained.Keyword: ICL7107 Digital voltmeter A/D Scope目录i目录摘要 (1)ABSTRACT (2)第一章绪论 (1)第二章三位半数字电压表的设计方案 (3)2.1题目及设计目的 (3)2.2设计要求 (3)2.3方案设计 (3)2.4三位半数字电压表的设计思想 (5)第三章三位半数字电压表的硬件电路设计 (7)3.1三位半数字电压表的总原理图及其特点 (7)3.1.1总原理图 (7)3.1.2三位半数字电压表的特点 (7)3.2ICL7107的介绍 (8)3.2.1引脚的介绍 (8)3.2.2ICL7107的性能特点 (10)3.2.3ICL7017的功能检查表 (11)3.3电路的基本结构及系统图 (12)3.3.1基本结构 (12)3.3.2电路的系统图 (12)第四章(电路检验)电路仿真 (15)4.1PROTEUS软件介绍 (15)4.2电路仿真 (16)第五章PCB板的设计 (19)5.1P ROTEL99SE软件介绍 (19)5.2绘制原理图并进行分析 (20)5.3PCB板的设计 (21)第六章电路板的焊接及电路调试过程 (23)6.1焊接的注意事项 (23)ii 目录6.2焊接的过程 (23)6.3调试前准备工作及电路总体调试 (24)6.3.1调试仪器 (24)6.3.2调试方法 (24)6.3.3测试结果分析 (24)6.3.4硬件实物图 (24)6.3.5元器件清单 (25)6.4调试注意事项 (25)6.4.1量程的设计 (25)6.4.2积分电容的选择 (25)第七章结束语 (27)致谢 (29)参考文献 (31)第一章绪论1第一章绪论随着社会的发展,电子市场越来越多,电子产品也越来越普遍,一些高科技的产品以代替了一些旧的产品。

数字万用表设计实验

数字万用表设计实验

数字万用表设计实验By 金秀儒物理三班Pb05206218实验题目:数字万用表设计实验 学号:pb05206218姓名:金秀儒实验目的:1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用实验仪器:1. DM-Ⅰ数字万用表设计性实验仪2. 三位半或四位半数字万用表实验原理:数字万用表的基本组成图1 数字万用表的基本组成模数(A/D )转换与数字显示电路数字信号与模拟信号不同,其幅值(大小)是不连续的。

将被测量与最小量化单位比较,并把结果四舍五入取整后变为十进制起段显码显示出来。

一般N ≥1000即可满测量精度要求。

常见数字表头最大示数为1999,称为三位半(213)数字表。

数字测量仪表的核心是模/数(A/D )转换、译码显示电路。

A/D 转换一般又可分为量化、编码两个步骤。

本实验用实验仪,核心为一个三位半数字表头,由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。

该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。

数字显示屏(LED 或液晶)模数转换,译码驱动基准电压 小数点驱动(配合被测量与量程)过压过流保护过压过流保护分档电阻(量程转换)分压器(量程转换)分流器(量程转换)交流直流变换器 (放大、整流、滤波)直流 被测量 输 入交流V REF电流电压电阻 V IN直流电压测量电路在数字电压表头前加分压器,可扩展直流电压测量的量程。

如图:分压比为 2120rr r U U i += 扩展后的量程为 02210U r r r U i +=考虑到电压表的输入阻抗,设计实用分压电路如图:R 总=R1 +R2 +R3 +R4 +R5各档的分压比为:200mV:( R1 +R2 +R3 +R4 +R5)/ R 总=12 V:( R2 +R3 +R4 +R5)/ R 总=0.1 20V:( R3 +R4 +R5)/ R 总=0.01 200V:( R4 +R5)/ R 总=0.0012000V: R5/ R 总=0.0001出于耐压和安全考虑,最高电压限为 1000V 。

3位半数字表头芯片ICL7107的特点及原理介绍

3位半数字表头芯片ICL7107的特点及原理介绍

3位半数字表头芯片ICL7107的特点及原理介绍(1) 31/2位双积分型A/D转换器ICL7107功能与特点① ICL7107是31/2位双积分型A/D转换器,属于CMoS大规模集成电路,它的最大显示值为士1999,最小分辨率为100uV,转换精度为0.05士1 个字。

② 能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,并将第21脚的GND接第30脚的IN 。

③ 在芯片内部从V+与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压V REF。

④ 能通过内部的模拟开关实现自动调零和自动极性显示功能。

⑤ 输入阻抗高,对输入信号无衰减作用。

⑥ 整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。

⑦ 噪音低,温漂小,具有良好的可靠性,寿命长。

⑧ 芯片本身功耗小于15mw(不包括LED)。

⑨ 不设有一专门的小数点驱动信号。

使用时可将LED共阳极数数码管公共阳极接V+.⑩ 可以方便的进行功能检查。

图1 ICL7107的引脚图及典型电路。

(2) ICL7107引脚功能及主要电气参数V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。

Bck:千位笔画驱动信号。

接千位LEO显示器的相应的笔画电极。

PM:液晶显示器背面公共电极的驱动端,简称背电极。

Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。

第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使 用时一般与输入信号的负端以及基准电压的负极相连。

TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。

VREF + VREF- :基准电压正负端。

三位半数字直流电压表的设计样本

三位半数字直流电压表的设计样本

钦州学院数字电子技术课程设计报告三位半数字直流电压表设计院系物理学院专业过程控制自动化学生班级级1班姓名 xxxx 学号 xxxx指引教师单位 xxxxx指引教师姓名 xxxx 指引教师职称 xxxx7月三位半数字直流电压表过程控制自动化专业级 xxx指引教师 xxx摘要:依照设计指标和规定,结合平时所学理论知识,设计出一种功能较齐全数字直流电压表。

核心词:电压表、电路、设计、A/D转换器目录前言 (1)1 设计技术指标与规定 (1)1.1 设计技术指标 (1)1.2 设计规定 (1)2 方案设计及元器件清单 (1)3 电路工作原理 (2)4 各某些功能 (3)4.1 三位半位双积分A / D 转换器CC14433 性能特点 (3)4.2 基准电源(CC1403) (3)4.3 译码器(MC4511) (4)4.4 显示电路模块 (5)4.5 驱动器 (5)4.6 显示屏 (5)5系统电路总图及原理 (5)5.1 电路构成 (5)5.2 电路工作原理及过程 (6)5.2.1 三位半A/D转换器MC14433 (7)5.2.2 七段锁存-译码-驱动器CD4511 (8)5.2.3 高精度低漂移能隙基准电源MC1403 (9)6 电路连接测试 (9)7 经验体会 (10)参照文献 (10)前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把持续模仿信号转换成不持续、离散数字形式并加以显示仪表。

数字电压表类型诸多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换办法不同。

因而,咱们本次设计电压表就是为了理解电压表原理,从而学会制作电压表。

并且通过电压表制作进一步理解各种在制作中用到中小规模集成电路作用及实用办法。

1 设计技术指标与规定1.1 设计技术指标1. 量程:一档:+1.999V~0~-1.999V 二档:+19.99V~0~-19.99V2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻读数;4. 批示值与原则电压表达值误差最低位在5之内。

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表使用说明书CJ5135系列数显直流电压电流表具有精度高,稳定性好,抗干扰性能优越,显示清晰,工艺精良。

产品外观大方,小巧精致美观,品质优良。

产品特点:产品应用:CJ5135系列数显直流电压电流表,可广泛应用于各种仪器仪表,教学设备,电力电子,工业自动化控制设备,医疗器械,交直流稳压电源,教学设备等作为直流电参数显示部件,提升产品档次,为各类指针式仪表的首选更新换代品。

主要技术参数:(执行标准GB/14913-2002)1. 工作电源:DC 5V±5%单电源 或DC:9V 12V 24V,AC220V可定做2. 工作电流:≤50mA3. 基本量程:±199.9mV或±1.999V4. 输入阻抗:≥1MΩ5. 准确度:±(0.2%读数+2个字)6. 过量程显示:第一位显示"1"或"-1",后三位全不显示7. 工作温度:0-50℃8. 工作湿度:≤85%RH9. 显示字高:LED 0.56"10.外型尺寸:79×42×25(40)(mm)11.开孔尺寸:75×39(mm)12.其他性能:自动归零,自动极性转换.产品连接线说明:仪表接线及开孔尺寸如图所示:CJ5135系列接线图外形及安装尺寸以上接线图仅供参考,请以仪表壳体上的接线图为准温馨提示:本公司其它产品有:液晶显示的温度计,电压/电流面板表,数字调节仪,温控表,智能计数器,时间继电器,频率转速表,JD194系列电量变送器,CD194系列电力仪表,多功能电量测量仪表,DCDC电源模块,公司可根据客户要求定制非标产品.注意事项:1.仪表输入方式根据用户电路不同可分为两种,a:信号地、电源地、模拟地,如三地全部连接在一起就是“共地”,此种情况适用于采用独立工作电源的设备,稳定性好,抗干扰能力强;b:信号地独立,电源地和模拟地相连接,我们称为“浮地”,此情况适用于独立电源、差动放大信号输入设备;用户应根据实际用情况选择合适的输入方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钦州学院数字电子技术课程设计报告三位半数字直流电压表的设计院系物理学院专业过程控制自动化学生班级 2010级1班姓名 xxxx 学号 xxxx指导教师单位 xxxxx指导教师姓名 xxxx 指导教师职称 xxxx2013年7月三位半数字直流电压表过程控制自动化专业2010级 xxx指导教师 xxx摘要:根据设计的指标和要求,结合平时所学的理论知识,设计出一个功能较齐全的数字直流电压表。

关键词:电压表、电路、设计、A/D转换器目录前言 (1)1 设计技术指标与要求 (1)1.1 设计技术指标 (1)1.2 设计要求 (1)2 方案的设计及元器件清单 (1)3 电路的工作原理 (2)4 各部分的功能 (3)4.1 三位半位双积分A / D 转换器CC14433 的性能特点 (3)4.2 基准电源(CC1403) (3)4.3 译码器(MC4511) (4)4.4 显示电路模块 (5)4.5 驱动器 (5)4.6 显示器 (5)5系统电路总图及原理 (5)5.1 电路组成 (5)5.2 电路的工作原理及过程 (6)5.2.1 三位半A/D转换器MC14433 (7)5.2.2 七段锁存-译码-驱动器CD4511 (8)5.2.3 高精度低漂移能隙基准电源MC1403 (9)6 电路连接测试 (9)7 经验体会 (10)参考文献 (10)钦州学院本科课程设计报告前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把连续的模拟信号转换成不连续、离散的数字形式并加以显示的仪表。

数字电压表的类型很多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换方法不同。

因此,我们此次设计电压表就是为了了解电压表的原理,从而学会制作电压表。

而且通过电压表的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。

1 设计技术指标与要求1.1 设计技术指标1. 量程:一档:+1.999V~0~-1.999V 二档: +19.99V~0~-19.99V2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻的读数;4. 指示值与标准电压表示值误差最低位在5之内。

1.2 设计要求1. 画出电路原理图(或仿真电路图);2. 元器件及参数选择;3. 编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。

2 方案设计及元器件清单选用A/D转换芯片MC14433、CC4511、MC1413、MC1403实现电压的测量,用四位数码管显示出最后的转换电压结果。

缺点是工作速度低,优点是精度较高,工作性能比较稳定,抗干扰能力比较强。

具体的元器件清单如表1所示。

数字电压表的设计表一元器件清单3电路的工作原理1.直流数字电压表的核心器件是一个间接型A / D 转换器 它首先将输入的模拟电压信号变换成易于准确测量的时间量 然后在这个时间宽度里用计数器计时 计数结果就是正比于输入模拟电压信号的数字量,并进行实时数字显示。

该系统可采用MC14433——3位半A/D 转换器、MC1413 七路达林顿驱动器阵列、CC4511 BCD到七段锁存-译码-驱动器、能隙基准电源 MCl403 和共阴极 LED 发光数码管组成。

2.本系统是 3位半数字电压表,3位半是指十进制数 0000~1999。

所谓 3 位是指个位、十位、百位,其数字范围均为 0~9,而所谓半位是指千位数,它不能从 0 变化到 9,而只能由 0 变到 l,即二值状态,所以称为半位。

钦州学院本科课程设计报告数字电压表原理框图如图1所示。

图1 数字电压表原理框图4 各部分的功能4.1 三位半位双积分A / D 转换器CC14433 的性能特点CC14433 是CMOS 双积分式三位半A / D 转换器,它是将构成数字和模拟电路的约7700 多个MOS 晶体管集成在一个硅芯片上,芯片有24 只引脚 采用双列直插式,其引脚排列与功能如图2 所示。

图2 CC14433引脚排列引脚功能说明:VAG (1 脚):被测电压VX 和基准电压VR 的参考地VR (2 脚):外接基准电压(2V 或200mV )输入端VX (3 脚):被测电压输入端R1(4 脚)R1/C1(5 脚)、C1(6 脚):外接积分阻容元件端C1=0.1μF (聚酯薄膜电容器),R1=470K Ω (2V 量程);R1=27K Ω (200mV 量程)。

C01(7 脚)C02(8 脚):外接失调补偿电容端 典型值0.1μF 。

DU (9 脚):实时显示控制输入端。

若与EOC (14 脚)端连接 则每次A / D 转换均显示。

CP1(10 脚)CPo (11 脚):时钟振荡外接电阻端 典型值为470K Ω 。

数字电压表的设计VEE (12 脚):电路的电源最负端 接 5V。

VSS (13 脚):除CP 外所有输入端的低电平基准(通常与1 脚连接)。

EOC(14 脚):转换周期结束标记输出端 每一次A / D 转换周期结束(EOC输出一个正脉冲)宽度为时钟周期的二分之一。

OR(15 脚):过量程标志输出端 。

DS4到DS1 (16到19 脚):多路选通脉冲输入端,DS1 对应于千位,DS2 对应于百位,DS3 对应于十位,DS4 对应于个位。

Q0到Q3 (20到23 脚):BCD 码数据输出端,DS2、DS3、DS4 选通脉冲期间 输出三位完整的十进制数,在DS1 选通脉冲期间 输出千位0 或1 及过量程、欠量程和被测电压极性标志信号。

VDD,整个电路的正电源端。

4.2 基准电源(CC1403)提供精密电压,供 A/D 转换器作参考电压,如图3所示。

图3 基准电源CC14034.3 译码器(MC4511)将二—十进制(BCD)码转换成七段信号,如图4所示。

图4 译码器(MC4511)钦州学院本科课程设计报告4.4 显示电路模块这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

如图5所示。

图5 显示电路模块4.5 驱动器(MC1413)驱动显示器的 a,b,c,d,e,f,g 七个发光段,驱动发光数码管(LED)进行显示。

4.6 显示器将译码器输出的七段信号进行数字显示,读出A/D转换结果。

5系统电路总图和原理5.1 电路组成将设计的各个单元电路进行级联,得到数字电子钟系统电路原理图如图6所示。

图6 三位半直流数字电压表接线图数字电压表的设计5.2 电路的工作原理及过程三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。

DS1~DS4输出多路调制选通脉冲信号。

DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。

每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。

DS和EOC的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。

以下依次为DS2,DS3和DS4。

其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。

在对应DS2,DS3和DS4选通期间,Q0~Q3输出BCD全位数据,即以8421码方式输出对应的数字0~9.在DS1选通期间,Q0~Q3输出千位的半位数0或l及过量程、欠量程和极性标志信号。

在位选信号DS1选通期间Q0~Q3的输出内容如下:Q3表示千位数,Q3=0代表千位数的数宇显示为1,Q3=1代表千位数的数字显示为0。

Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即UX>0;Q2的电平为0,表示极性为负,即UX<0。

显示数的负号(负电压)由MC1413中的一只晶体管控制,符号位的“-”阴极与千位数阴极接在一起,当输入信号UX为负电压时,Q2端输出置0, Q2 负号控制位使得驱动器不工作,通过限流电阻RM 使显示器的“-”(即g 段)点亮;当输入信号UX为正电压时,Q2端输出置1,负号控制位使达林顿驱动器导通,电阻RM接地,使“-”旁路而熄灭。

小数点显示是由正电源通过限流电阻RDP供电燃亮小数点。

若量程不同则选通对应的小数点。

过量程是当输入电压UX超过量程范围时,输出过量程标志信号OR----。

当Q3=0,Q0=1时,表示Ux处于过量程状态;当Q3=1,Q0=1时,表示Ux处于欠量程状态。

当OR---- = 0 时,|UX|>1999,则溢出。

|UX|>UR则OR----输出低电平。

当OR---- = 1时,表示|UX|<UR 。

平时OR输出为高电平,表示被测量在量程内。

MC14433的OR----端与MC4511的消隐端BI____直接相连,当UX超出量程范围时,OR____输出低电平,即OR---= 0 →BI---- = 0 ,MC4511译码器输出全0,使发光数码管显示数字熄灭,而负号和小数点依然发亮。

钦州学院本科课程设计报告5.2.1 三位半A/D转换器MC14433在数字仪表中,MC14433电路是一个低功耗三位半双积分式A/D转换器。

和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。

如果必要设计应用者可参考相关参考书。

使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI 和自动调零补偿电容C0)就能执行三位半的A/D转换。

MC14433内部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00MΩ以上;(2)和外接的RI、CI构成一个积分放大器,完成V/T 转换即电压—时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。

比较器的输出用作内部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。

除“模拟电路”以外,MC14433 内部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。

借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。

MC14433内部的控制逻辑是A/D 转换的指挥中心,它统一控制各部分电路的工作。

根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。

相关文档
最新文档