三位半数字电压表方案与对策

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:

当今社会是信息科技的时代,科技技术发展日新月异,科学发展的程度是各国竞争的核心力量,尤其是电子信息技术显得更加重要。在信息处理技术,模数混合系统中,对模拟信号的采样一般是使用专计电路比较复杂,用到集成芯片比较多,给设计带来不便。为克服这些缺点,这次设计中采用了高级集成芯片ICL7107作为对模拟信号的采样,使设计更简单,可靠性得到提高。

本题目介绍的是三位半数字电压表的设计,本次设计主要包括了对电压表的基本构成,双积分型A/D转换器的工作原理以及通用数字电压表的设计法与调试技术的学习研究,采用集成芯片TL7107作为数字电压表的A/D转化及锁存和译码模块,使得电路具有设计简单、集成度及可靠性高的特点。TL7107采用大电流反向输出,静态驱动共阴极LED数码管,由±5V双电源供电,显示亮度高但耗电较大,适合制作小型的三位半数字电压表。该系统设计能够实现0~199mV 、0~1.99V、 0~19.99V、 0~.9V、 0~1999.9V,共五个量程电压值的测量。做成电路板,进行测试,可得到测试结果.

一、绪论

在数字和显示技术中,为了实现数字显示,需要把连续变化的模拟量变化成数字量,这宗变化就是A/D转化。为了使模拟量变化成数字量,必须经过取样、量化过程。量化单位越小,整量化的误差就越小,数字量就越接近连续量本真的值。数字式仪表是能把连续的被测量自动地变成断续的、用数字编码式的、并以十进制数字自动显示测量结果的一种测量仪表。它把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起。成为仪器、仪表领域中独立而完整的一个分支。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。数字电压表则采用先进的数显技术,使测量结果一

目了然,只要仪表不发生跳读现象,测量结果就是唯一的。数字电压表具备了很多传统模拟仪表所不能相比拟的优势特点。

二、三位半数字电压表的设计案

2.1题目及设计目的

1、题目:3 1/2位数字电压表

2、设计目的:通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作容和具体的设计法,同时复习、巩固以往的模电、数电容。

2.2 设计要求(1) 测量围:直流电压 0V 一 1.999V,0V 一 .9mV。 (2) 组装调试 3位半数字电压表。(3) 画出数字电压表结构图,写出心得体会。

2.3 案设计

设计:主要器件由芯片MC14433和共阴极半导体组成。MC1443是美国摩托罗拉公司生产的单片3位半A/D转换器,它适合构成带B码输出的3位半LED显示数字电压表,是目前应用较为普遍的一种低速A/D转换器。MC14433的性能特点:(1)MC14433属于CMOS大规模集成电路,其转换准确度为±0.05%。含时钟振荡器,仅需外接一只振荡电阻。能获得超量程(OR)、欠量程(UR)信号,便于实现自动转换量程能增加读数保持(HOLD)功能。电压量程分两挡:200mV、2V,最大显示值分别为199.9mV、1.999V。量程与基准电压呈1∶1的关系,即UM=UREF。(2)需配外部的段、位驱动器,采用动态扫描显示式,通常选用共阴极LED数管。(3)有多路调制的BCD码输出,可直接配μP构成智能仪表。(4)工作电压围是±4.5 V~±8V,典型值为±5V,功耗约8mW。

仿真:主要器件由芯片TC7102共阴LED组成。由于TC7102是把模拟电路与逻辑电路集成在一块芯片上,属于大规模CMOS集成电路,因此本案主要有以下特点:(1)采用单电源供电,可使用9V迭层电池,有助于实现仪表的小型化。(2)芯片部有异或门输出电路,能直接驱动LED。(3)功耗低。芯片本身消耗电流仅1.8mA,功耗约16mV。(4)输入阻抗极高,对输入信号无衰减作用。(5)能通过部的模拟开关实现自动调零和自动显

示极性的功能。(6)噪声低,失调温标和增益温标均很小。具有良好的可靠性,使用寿命长。(7)整机组装便,无须外加有源器件,可以很便地进行功能检查。

2.4案选择

在设计思路上我们选择了MC14433,但由于在各个仿真软件中,我们无法找到MC14433元器件,故我们采用在思路上选择MC14433设计,仿真环节采用TC7102,这样既能有效地了解实验原理,更能仿真出实验结果。

三、三位半数字电压表的硬件电路设计

3.1 MC14433引脚功能说明

MC14433 采用24引线双列直插式封装,外引线排列,参考图所示的引脚标注.各主要引脚功能说明如下:(1) 端:VAG,模拟地,是高阻输入端,作为输入被测电压UX和基准电压VREF的参考点地。(2) 端:RREF,外接基准电压输入端。 (3) 端:UX,是被测电压输入端。 (4) 端:RI,外接积分电阻端。(5) 端:RI/CI,外接积分元件电阻和电容的公共接点。 (6) 端,C1,外接积分电容端,积分波形由该端输出。(7) 和 (8) 端:C01和C02,外接失调补偿电容端。推荐外接失调补偿电容C0取0.1μF(9) 端:DU,实时输出控制端,主要控制转换结果的输出,若在双积分放电期即阶段5开始前,在DU端输入一正脉冲,则该期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。若该端通过一电阻和EOC 短接,则每次转换的结果都将被输出。 (10) 端:CPI (CLKI),时钟信号输入端。 (11) 端:CPO (CLKO),时钟信号输出端。(12) 端:VEE,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为0.8mA,所有输出驱动电路的电流不流过该端,而是流向VSS端。(13) 端:VSS 负电源端.(14) 端:EOC,转换期结束标志输出端,每一A/D转换期结束,EOC 端输出一正脉冲,其脉冲宽度为时钟信号期的1/2。(15) 端:OR ,过量程标志输出端,当|UX|>VREF 时,OR输出低电平,正常量程OR为高电平。

相关文档
最新文档