鼓式制动器-外文文献及翻译

合集下载

盘式制动器中英文对照外文翻译文献

盘式制动器中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:An Experimental Analysis of Brake Efficiency Using fourFluids in a Disc Brake SystemABSTRACTThe paper studies disc brake failure in Mini-buses using an experimental analysis to test the maximum braking force when different brake fluids such as clean, less dirty, dirty and soapy water solution were used in the braking system. The experimental results clearly showed that the soap solution appears to be the best fluid as far as low viscosity and stability of viscosity with increase in temperature are concerned. However, the soap solution is not compatible with other fluid which makes it difficult to be substitute as a clean brake fluid. The result of the Thepra Universal Brake Testing Equipment used for the braking efficiency test indicated that a pedal brake of 117 kN produce a brake force of 0.96 kN for clean brake fluid, 0.91 kN for the less dirty, 0.85 kN for dirty and 1.44 kN forsoap solution. The value of 1.44 kN which was achieved when the soap solution was used indicated a positive braking force and the indicating that soap solution could be used to produce a high pedal force within a very short time (about 10-30 min) and can therefore be used only in case of emergency. The brake efficiency test indicated that under hot conditions the braking efficiency is reduced and the presence of air in the system renders the braking ineffective because higher pedal force was needed to be able to produce a significant braking force which is noted for causing brake failure.Keywords: Brake fade, brake failure, disc brake, efficiency, pedal force INTRODUCTIONWhen a vehicle is accelerated, energy supplied by the engine causes the vehicle’s speed to increase. Part of this energy is instantly used up in overcoming frictional and tractive resistance but a large amount of it remains stored in the vehicle. According to Heinz (1999) this energy of motion is called the kinetic energy and the existence of kinetic energy is observed when a vehicle is moving and neutral gear is selected. The vehicle does not immediately come to rest; instead it travels for a considerable distance before it becomes stationary. In this case the stored energy is used to drive the vehicle against the resistances that oppose the vehicle’s motion. Relying on these r esistances to slow down a vehicle could cause many problems, so an additional resistance called a brake is needed to convert the kinetic energy to heat energy at a faster rate in order to reduce the speed of the vehicle Mcphee and Johnson (2007). This reduces the speed of the vehicle at a faster rate and brings the vehicle to rest within the shortest possibletime when the brakes are applied.From the point of view of Johnson et al. (2003) most automotive systems in use today utilize front disc brakes, but four-wheel disc systems are also common In disc brakes, the rotor rotates with the wheel and the pads move out to rub the rotor when the brakes are applied. Most disc brakes use floating calipers. The caliper slides in and out as the brakes are applied and released. The piston moves the inside pad out and pushes the outside pad into the rotor by sliding the caliper back toward the rotor.The use of disc brakes to reduce speed or bring the vehicle to rest when in motion cannot be over emphasized if the safety of the occupant is to be guaranteed Heinz (1999). To bring a vehicle to a stop, the disc brakes have to absorb all the energy given to thevehicle by the engine and that due to the momentum of the vehicle. This energy must then be dissipated. In most vehicle disc brakes, the energy is absorbed by friction, converted into heat and the heat dissipated to the surrounding air (Thoms, 1988). As the energy is absorbed, the vehicle is slowed down; in other words, its motion is retarded. The brakes must also pull up the vehicle smoothly and in a straight line to bring the vehicle to a stop position.It is therefore very important that the disc brakes of vehicles operate with the highest efficiency. This couldreduce the rate of accidents due to brake failure so that life and property could be preserved and also to ensure that occupants of these commercial vehicles go about their normal lives without any fear of being involved in an accident. Available crash data in Ghana suggests that about 1,900 persons are killed annually in road traffic crashes (Afukaar et al., 2008) and that more than 40% of the road traffic fatalities are occupants of cars, buses and trucks. Most often than not, some of the road accidents involving commercial vehicles, such as the mini-buses have been attributed to the failure of the disc brakes. The reason for testing the viscosity of these brake fluids, especially that of the soap solution was as a result of the practice of most Ghanaian drivers sometimes using the soapy solution as a substitute to the original brake fluid in the braking system and also using dirty brake fluid which has been used for bleeding purposes. The main objective of this study which is part of a larger work seeks to investigate and establish the reasons for the disc brake failure due to brake fluid also check the efficiency of the four different types of fluids used in the transmission of braking forces. The study looked at the maximum braking force when using clean, less dirty, dirty and soapy water solution in the braking system. It also looked at the braking force when the braking system is with or without servo unit and operating under cold or hot condition with air or without air in the braking systemDISC BRAKESThe disc brake consists of an exposed disc which is attached to the hub flange; the two friction pads arepressed on to this disc to give a braking action. Figure 1a, shows the disk brake system of a car and pad that is separated from wheel assembly to better shows the disk and the pad in sliding contact. As it can be seen, typical disk brake system and caliper assembly of a solid disk brake rotor is completely noticeable. Figure 1b shows schematic form of the disk and the pad in sliding contact assembly.(a) (b)Fig. 1: Disc brakeThe pads are moved by hydraulic pistons working in cylinders formed in a caliper that is secured to a fixed part of the axle. When the hydraulic pressure is applied to the two cylinders held in the fixed caliper, the pistons move; this action forces the friction pads into contact with the rotating cast iron disc. The sandwiching action of the pads on the disc gives a retarding action and heat generated from the energy of motion is conducted to the disc.Greater part of the disc is exposed to the air; therefore heat is easily radiated, with the result that the brake can be used continuously for long periods before serious fade occurs. Since the friction pads move at a right angle to the disc, any drop in the friction value does not affect the force applied to the pad. As a result this type of brake is not less sensitive to heat (Mudd, 1972). The disc brake was developed to minimize the fade problems. When fading occurs, the driver has to apply a much larger effort and in extreme cases it becomes impossible to bring the vehicle to rest. No assistance is obtained from the rotating disc to aid the driver in the application of a disc brake to achieve a given retardation. A disc brake requires a greater pedal pressure and toachieve this pressure required the hydraulic braking system using a good quality brake fluid in its operation.The fluid used in the hydraulic braking systems is a vegetable oil with certain additives. According to Nunney et al. (1998) a good brake fluid should have the following requirements, low viscosity, high boiling point, compatibility with rubber components, lubricating properties, resistance to chemical ageing and compatibility with other fluids. However, mostGhanaian drivers sometimes used other fluid such as dirty brake fluid, less dirty fluid and even soapy water sometimes as a substituted to the original brake fluid. This study among other things will also investigate which of these brake fluid, clean, dirty, less dirty and soapy water will have the best viscosity, high boiling point and less braking force.MATERIALS AND METHODSThe design used for this study was experiment which employed the used of viscometer and Thepra Universal Automotive Brake Testing machine to check the efficiency of the four fluids in the transmission of braking forces.Laboratory analysis: The viscosity tests on the four different liquids were carried out at the Kwame Nkrumah University of Science and Technology (KNUST) Thermodynamics laboratory. The liquids were clean brake fluid, less dirty brake fluid, dirty brake fluid and soap solution. It was necessary to find out how the viscosity of different qualities of brake fluid affected braking efficiency and to find out whether there was any correlation between these and the occurrence of brake failure.Viscosity test on the various fluids used: The viscosity test was carried out on a Redwood Viscometer in Fig. 2 on the four different kinds of fluids to determine their viscosities. The apparatus consists of a vertical cylinder containing the fluid under test which was allowed to flow through a calibrated orifice situated at the centre of the cylinder base. The orifice is closed by a ball valve when it is not being used.Fig. 2: Redwood viscometer used to determine the viscosity of the fluidsThe oil cylinder is surrounded by a water jacket which maintains the lubricant under test at a required temperature by means of a Bunsen burner flame applied to the heating tube. The thermometer for the water in the jacket is mounted in a paddle-type stirrer which can be rotated by hand, using the handle (Zammit, 1987).Procedure for testing various viscosities of the fluids: To test the viscosity of a fluid, the water jacket was filled with water with the orifice ball valve in position. Fluid was poured into the cylinder to the level of the pointer. A 50 mL measuring flask was placed centrally under the orifice. The water was stirred gently until the water and fluid thermometers were the same (room temperature, 30ºC). Thetemperature was recorded. The ball valve was then raised and a stopwatch used to record the time (in seconds) for a 50 mL of fluid to flow into the measuring flask. The test was repeated with the fluid temperatures increasing by 10ºC each time up to 90ºC. All the data for the four differentfluids were recorded as shown in Table 1Thepra universal stand automotive brake testing equipment:The ThepraUniversal Stand Automotive brake testing equipment is structured in such a way that the driven part, such as brake disc, was plugged on to the motor shaft. The brake anchor plate and the caliper are fastened to a flange via a linkage of bar which is connected to the flange. The brake force is measured and displayed on a digital indicator. The individualunits are plugged into the two span-frames which are fastened to both sides. All the brake components used in the testing equipment are original vehicle components. The pedalforce is measured at the actuating linkage of the brake master cylinder and displayed on a digital indicator (Technolab, 2009)RESULTS AND DISCUSSIONExperimental results of viscosity test: Table 1 present the results of viscosity test inan experiment for the four fluids, using the Redwood Viscometer.From the test results obtained using Redwood viscometer, Viscosity-Temperature graphs for the fluids were plotted. Figure 3 shows the plot of viscosity againsttemperature of the four fluids.Table 1: Viscosity testValues of the various viscosities werecalculated using the formula:V = hfρgD232hfvwhere,V : The Viscosityhf : The capillary heightρ : The density of the fluidg : Acceleration due to gravityD : The diameter of the orificev : The velocity (Bird et al., 1960) Fig. 3: Viscosity-temperature relationship of the fluidsFrom Fig. 3 the dirty fluid has the highest viscosity followed by the less dirty fluid, clean fluid and soap solution in that order. From the results shown in Fig. 2 and theviscosity test shown in Table 1, the soap solution appear to be the best fluid as far as lowviscosity and stability of viscosity with increase in temperature are concerned. However, it is less compatible with other fluids, difficult to mix easily with other brake fluids and has a low boiling point which will not make it suitable to be substitute as clean brake fluid (Nunney et al., 1998).The clean brake fluid is next as far as viscosity and stability of viscosity with increase in temperature are concerned. On the other hand, it satisfies all the other requirements of a good fluid for the braking system given in Table 1. According to Mudd (1972) and Nunney et al. (1998), a good brake fluid should have properties such as high boiling point, compatibility with rubber components, good lubrication properties, resistance to chemical ageing (long shelf life) and compatibility with other fluids. The less dirty fluid is very unstable as far as viscosity change with temperature increase is concerned. It is therefore not very reliable in a braking system since its behavior changes as the braking system heats up. The viscosity of the dirty fluid is stable with increase in temperature, however, it is very viscous (235-178 kgs/m3 in the temperature range 30 to 90ºC). It will therefore not be good and effective in brake force transmission. From these results and literature, it is obvious that the clean brake fluid is more suitable for the transmission of braking force as it’s possess all the good brake fluid qualities.Experimental results of the disc brake system:These sections present the results and discussion of the experiments using the four fluids in a Disc brake system under different conditions. Test results for hot and cold conditions of the Disc brake system using a servo system and without using a servo system were considered.Disc brake in cold condition with and without servo unit: The result in Table 2 clearly shows the pedal force and the brake force for clean, less dirty, dirty and soap solution when using disc brake in cold condition with servo unit with the Thepra Universal Brake Testing Equipment. A pedal brake of 117 kN produce a brake force of 0.96 kN for a clean brake fluid,Table 2: Results of disc brake in cold condition with servoTable 3: Results of disc brake in hot condition with servo0.91 kN for the less dirty, 0.85 kN for dirty and 1.44 kN for soap solution. Comparatively, a maximum brake force is achieved when the fluid is clean. When there is the presence of dirt,the brake force decreases and therefore more pedal force is needed to take up thewithout servoloss created by the dirt.Hence the greater the dirt, the greater thepedal force required.The value of 1.44kN which wasachieved when the soap solution wasused indicated a positive braking force compared with all the three fluids at the same pedal force. Subsequent pedal forces applied as shown in Table 2 gave a reduction in the brake force when soap solution was used. The implication was that soap solution could be used to produce a high pedal force within a very short time (about 10-30 min) and can therefore be used in case of emergency.From Table 2, it can be observed that for the same pedal force of 117 KN the soap solution transmitted the highest amount of brake force followed by the clean fluid, less dirty fluid and dirty fluid in that order. This implies that in cold condition using servo, the soap solution performs best followed by the clean, less dirty and dirty respectively.Disc brake in hot condition with servo unit: When the experiment was carried out using a disc brake under the hot conditions with the introduction of a servo, a pedal force of 120 kN gave a brake force of 0.95 kN for clean fluid, 0.90 kN for less dirty, 0.85 kN for a dirty fluid and 0.19 KN for soap solution. The result could be explain that, the clean brake fluid gave the highest brake force follow by less dirty, dirty and soap solution. It was observed that the soap solution perform poorly at this time recording a brake force of 0.19 KN as shown in Table 3.Disc brake in hot condition without servo: Figure 4 shows a plot of disc brake inhot condition without servo unit. It can be observed that, under hot conditions for the disc brake without servo, the trend is generally the same. The soap solution performed very badly compare with the other fluids, unlike its performance under cold conditions. This may be due to evaporation of the fluid making the fluid compressible; as if air was in the braking system. Generally, the clean fluid performed best in terms of transmission of brake force followed by the less dirty, dirty and soap solution in that order.Disc brake with air in system under cold condition: Braking force for this experiment was generally low as compared with the case when air was not trapped in the system as shown in Table 4. When the experiment was conducted with a pedal force of 165 kN, braking force ofTable 4: Results of disc brake with air in system under cold condition with servoFig. 5: Results of disc brake with air in system under hot condition with servo0.32 kN soap solution was obtained, for 0.37 KN for dirty, 0.28 KN for less dirty and 0.30 kN for clean fluid. This is in line with literature because according to Mudd (1972) the presence of air in the braking system makes the system ineffective since much of the drivers effort will be used to compress the air leaving very little for the brake application.Again, the soap solution did not give the least braking force because when the system is cold, soap solution is effective and its density is higher since there is nooccurrence of evaporation of the solution.Disc brake with air in system under hot condition: The Fig. 5 shows the plot of a graph indicating disc brake with air in the system under hot condition clearly shows that, when a pedal force of 152 kN was applied, a brake force of 1.11 kN was obtained for clean, 0.37 kN for less dirty, 0.28 kN for dirty and 0.26 kN for soap solution. It was observed that the maximum brake force was attained when the fluid was clean and on the introduction of dirty fluid, the brake force reduced drastically, though the pedal force was very high at 152 kN in the hot condition.Soap solution provides the least brake force because the air content in the system increases due to evaporation and hence the pedal force compresses air rather than transmitting power. As the system heats up, the air in the system expands thereby reducing the braking efficiency which results in brake failure.CONCLUSIONThe study was conducted using an experiment performed on a Thepra Brake Testing Equipment to check the efficiency of the four fluids in the transmission of braking forces. According tothe viscometer test shown that the soap solution appears to be the best fluid as far as low viscosity and stability of viscosity with increase in temperature is concerned. However, it is less compatible with other fluids, difficult to mix easily with other brake fluids and has a low boiling point which will not make it suitable to be substituted as a clean brake fluid.Again, when air is trapped in the braking system, which results in the brake fluid being compressible, higher pedal force was needed to be able to produce a significant braking force.Also, when brakes are operated under hot conditions its efficiency is reduced, a fault known as brake fade occurs as a result of the heating up of the brakes which creates less frictional resistance between rotating disc and the frictional pads.Finally, Soap solution when used at cold condition produces high braking force but becomes less effective after prolong use due to the presence of heat which evaporates the soap solution.REFERENCESAfukaar, F., K. Agyemang, W. Ackaah and I. Mosi, 2008. Road traffic crashes inGhana, statistics 2007. Consultancy Service Report for National Road SafetyCommission of Ghana.Bird, R., S. Wright and E.N. Light, 1960. Transport Phenomena, Gibrine Publishing Company,Heinz, H., 1999. Vehicle and Engine Technology. 2nd Edn.,Butterworth-Heinemann Publications, Nurumberg, pp: 235-291Johnson, D., B. Sperandei and R. Gilbert, 2003. Analysis of the flow through a vented automotive brake rotor. J. Fluids Eng., 125: 979-986.Mcphee, A.D. and D.A. Johnson, 2007. Experimental heat transfer and flow analysis of a vented brake rotor. Int. J. Thermal Sci., 47(4): 458-467.译文:一个使用四个液体系统分析盘式制动器的制动效率的实验摘要当车辆加速时能量由发动机提供使汽车的速度增加。

(机械类)毕业设计说明书附英文翻译-盘式-鼓式制动器测绘与三维实体造型及动画设计

(机械类)毕业设计说明书附英文翻译-盘式-鼓式制动器测绘与三维实体造型及动画设计

汽车制动系统(鼓,片式)测绘与三维实体造型及动画设计摘要:制动系统作用:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定,是汽车中必不可少的组成之一。

本次设计的主要工作包括:对盘式、鼓式制动系统实物进行测绘,基于Solidworks三维参数化建模得到三维模型,对制动系统进行系统动画设计,仿真其工作原理,并基于solidworks motion进行运动分析,更加直观地了解其构造与工作状态。

关键字:盘式;鼓式;动画设计;运动分析;工作原理Automotive brake system (drum, chip) mapping and three-dimensional solid modeling and animation designABSTRACT:the mandatory requirements of the driver slow down or even stop; to have been suspended in the vehicle in various road conditions (including the ramp) stable parking; the downhill speed of cars Stable, is one of the car integral. The design of the main tasks include: disc, drum brake system physical mapping, three-dimensional parameters based on modeling solidworks be three-dimensional model of the brake system of the animation system design, simulation and its working principle, and based on solidworks motion For motion analysis, more intuitive understanding of its structure and working condition.KEY WORDS: disc; drum; animation design; motion analysis; work目录1 前言 (3)1.1 本次毕业设计课题的目的、意义 (3)1.2 完成过程 (4)2 制动器概况 (5)2.1汽车制动器概述 (5)2.2 汽车制动器的优越性 (6)3 盘式基本组成和工作原理 (7)3.1基本组成 (8)3.2基本原理 (12)3.3基本原理和优缺点 (15)4 鼓式基本组成和工作原理 (17)4.1基本组成 (17)4.2基本原理 (21)4.3 驻车制动 (22)5 图片附录 (24)6 参考文献 (35)7 致谢 (36)8 外文翻译 (37)1 前言1.1 本次毕业设计课题的目的、意义毕业设计是培养学生综合运用本学科的基本理论、专业知识和基本技能,提高分析与解决实际问题的能力,完成工程师的基本训练和初步培养从事科学研究工作的重要环节。

鼓式制动器

鼓式制动器

鼓式制动器简介鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。

鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。

现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。

相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。

而由于散热性能差,在制动过程中会聚集大量的热量。

制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。

另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。

当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。

四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。

不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。

优点自刹作用:鼓式刹车有良好的自刹作用,由于刹车来令片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度(当然不会大到让你很容易看得出来)刹车来令片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别可能祗有大型采气动辅助,而小型车采真空辅助来帮助刹车。

成本较低:鼓式刹车制造技术层次较低,也是最先用于刹车系统,因此制造成本要比碟式刹车低。

缺点由于鼓式刹车刹车来令片密封于刹车鼓内,造成刹车来令片磨损后的碎削无法散去,影响刹车鼓与来令片的接触面而影响刹车性能。

鼓刹最大的缺点是下雨天沾了雨水后会打滑,造成刹车失灵这才是其最可怕的领从蹄式制动器增势与减势作用,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)。

关于鼓式制动器的汽车技术论文

关于鼓式制动器的汽车技术论文

关于鼓式制动器的汽车技术论文鼓式制动器是利用摩擦力实现驻车或使行驶中的汽车减速、停车的装置,由于制动效能高、结构简单、价格便宜,在汽车上得到广泛的使用。

下面是小编为大家精心推荐的汽车技术论文鼓式制动器,希望能够对您有所帮助。

汽车技术论文鼓式制动器篇一某型汽车鼓式制动器的设计摘要:根据某型汽车制动器的主要技术参数,得到了该车型的同步附着系数和前后轮制动力分配系数。

通过计算,设计了鼓式制动器,得到了制动鼓直径、摩擦衬片宽度和包角等制动蹄主要参数,以及制动力矩和制动因数等制动性能参数。

关键词:汽车;制动;鼓式制动器0.引言汽车制动系统是汽车最重要系统之一,在车辆的安全方面就扮演着至关重要的角色,特别是近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显,对其进行设计研究具有重要的意义。

1.制动系统设计计算1.1 轻型货车主要技术参数设计参数:整车质量:满载:3000kg,空载:1200kg;质心位置:a=2.0m b=1.6m,重心高度:hg=0.74m(空载)hg=0.82m(满载);轴距:L=3.6m;轮距:B=1.50m;轮胎规格:7.0-16。

1.2 同步附着系数φ的确定轿车制动制动力分配系数β采用恒定值得设计方法。

欲使汽车制动时的总制动力和减速度达到最大值,应使前、后轮有可能被制动同步抱死滑移,这时各轴理想制动力关系为Fμ1+Fμ2=φG,Fμ1/Fμ2=(L2+φhg)/(l1-φhg)式中:Fu1:前轴车轮的制动器制动力;Fu2:后轴车轮的制动器制动力;G:汽车重力L1:汽车质心至前轴中心线的距离;L2:汽车质心至后轴中心线的距离;hg:汽车质心高度。

由上式可知,前后轮同时抱死时前、后轮制动器制动力是φ的函数,如果汽车前后轮制动器制动力能按I曲线的要求匹配,则能保证汽车在不同的附着系数的路面制动时,前后轮同时抱死。

然而,目前大多数汽车的前后制动器制动力之比为定值。

常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动力分配系数,并以符号β来表示,即β=Fμ1/Fμ2前、后制动器的制动器制动力分配系数影响到汽车制动时方向稳定性和附着条件利用程度。

制动器零件中英文对照

制动器零件中英文对照

CE-1FRT BRAKE[breik]ASS'Y — LH/RH 前左/右转向节带盘式制动器轮毂总成KNUCKLE[’nʌkl]ASS'Y WITH HUB[hʌb]BEARING[’bεəriŋ]— LH/RH左/右转向节带轮毂总成KNUCKLE M/C — LH/RH左/右转向节KNUCKLE CASTING[’kɑ:stiŋ]- LH/RH左/右转向节毛坯BEARING — 1ST GEN双列球轴承CIRCLIP ['sə:klip]孔用弹性挡圈HUB FLANGE[flændʒ]前轮毂WHEEL[hwi:l]MT'G BOLT[bəult]前轮毂螺栓SPLASH[splæʃ]SHIELD[ʃi:ld]前防溅罩BOLT - D/COVER 六角梅花头组合螺栓M6×14DISC[disk]M/C 前制动盘FLANGE BOLT 支架安装螺栓M12×1。

25×28FRT. CALIPER ['kælipə(r)] ASS'Y-LH/RH 前左/右制动钳总成CYLINDER['silində] M/C [PLATING['pleitiŋ]] -LH/RH 前左/右制动钳体CYLINDER CAST’G [PLATING]- LH/RH 前左/右制动钳体毛坯BOOT[bu:t]PISTON['pistən] ASS’Y前钳体活塞防尘罩RIM[rim] - BOOT PISTON 骨架BOOT PISTON前活塞防尘罩SEAL[si:l]PISTON 前活塞密封圈PISTON M/C 前钳体活塞CARRIER['kæriə]M/C [PLATING]制动钳支架CARRIER CASTING 制动钳支架毛坯GUIDE[ɡaid] PILLAR['pilə]SHIELD[ʃi:ld] 导柱防尘盖GUIDE PILLAR CUSHION[’kuʃən] COLLAR['kɔlə] 导柱缓冲套GUIDE ROD[rɔd]导柱ASS’Y PAD[pæd] - LH/RH 左/右内/外制动衬块总成BERAKE LINING[’lainiŋ] WEAR[’wεə]SENSOR[’sensə,-sɔ:]- LH/RH左/右报警弹簧片SNAP[snæp] RING[riŋ]卡簧VIBRATION[vai'breiʃən] DAMPING[’dæmpiŋ]PIECE[pi:s] 内/外减振片PAD KIT[kit] 内/外制动衬块LINING 摩擦材料INTERNAL[in’tə:nəl]BRAKE PAD BASEPLATE[beis—pleit]内制动衬块底板EXTERNA L[ik'stə:nəl] BRAKE PAD BASEPLATE 外制动衬块底板PLACING[’pleisiŋ] STEEL[sti:l]WIRE ['waiə] 限位钢丝BLEED [bli:d] SCREW [skru:]放气螺钉CAP[kæp] BLEED SCREW 放气螺钉防尘罩PLUG [plʌɡ]堵头REAR [riə]CORNER[’kɔ:nə]ASS’Y — LH/RH 左/右后鼓式制动器带轮毂总成DRUM [drʌm] M/C 后制动鼓DRUM CASTING 后制动鼓毛坯WHEEL BEARING ASS’Y - 3RD GEN 左/右后轮毂轴承单元DRUM BRAKE ASS'Y-LH/RH左/右后制动器总成BACK [bæk]PLATE ASS'Y-LH/RH 左/右后制动底板总成BACK PLATE PIERCING[’piəsiŋ]-LH/RH 左/右后制动底板CABLE ['keibl]GUIDE—LH/RH 左/右拉线导向块RIVET['rivit] 铆钉LOCATING[ləu’keitiŋ] PLATE 支承块BEARING SLICE[slais] 支承片SHOE[ʃu:]HOLD[həuld]DOWN[daun]PIN[pin]制动蹄压下销HEXAGON[’heksəɡən]HEAD[hed] ASSEMBLING[ə’sembliŋ]BOLT六角头组合螺栓LINED SHOE ASS'Y -LH/RH左/右从蹄带摩擦片拉杆总成WAVE[weiv]—PATTERN[’pætən]GASKET[’ɡæskit]波形垫圈OPERATING[’ɔpəreitiŋ]LEVER['li:və,’le-]—LH/RH 左/右拉杆PULLING['puliŋ]ROD RIVET 拉杆铆钉WEB[web] 制动蹄筋BRAKE SHOE STRETCHED[stretʃd] SPRING[spriŋ]制动蹄拉紧弹簧BRAKE SHOE DEPRESSING[di’presiŋ]SPRING PIECE 制动蹄压下弹簧片LINED SHOE ASS'Y 制动领蹄带摩擦片总成ADJUSTER[ə’dʒʌstə] ASS'Y-LH/RH 左/右调整器总成ADJUSTING ROD ASSEMBLY 调整杆总成GUIDE BAR[bɑ:]导向杆SUPPORTING[sə'pɔ:tiŋ]BLOCK[blɔk] 支撑块SUPPORT II 支架ⅡPULLING PIECE 拔片STOP PLATE 限位板ROUND[raund]WIRE SNAP RINGS FOR SHAFT轴用钢丝挡圈ADJUSTING COVER-LH/RH左/右调整套STETCHING SCREW—LH/RH 左/右调整螺杆SHOE RETURN[ri'tə:n]SPRING—UPPER(A)制动蹄回位弹簧DUST[dʌst] COVER 分泵活塞防尘罩BLEED[bli:d] SCREW[skru:] 放气螺钉CAP BLEED SCREW 放气螺钉防尘罩PARKING['pɑ:kiŋ]CABLE ASS'Y — LH/RH 左/右手制动拉索总成SPRING 弹簧FIXED[fikst] MOUNT[maunt]II -LH/RH 左/右固定架ⅡSTEEL WIRE INTERLAYER PROTECTION PIPE[paip] 钢丝夹层保护管FASTENER[’fɑ:sənə]卡扣PIPE CLAMP[klæmp]III — LH/RH 左/右管夹ⅢPROTECTIVE SLEEVE III 保护套ⅢSTEEL WIRE ROPE[rəup]ASSEMBLY- LH/RH 左/右钢丝索总成(鼓式)RR。

关于鼓式制动器的汽车技术论文(2)

关于鼓式制动器的汽车技术论文(2)

关于鼓式制动器的汽车技术论文(2)汽车技术论文鼓式制动器篇二盘式制动器制动振动噪声研究摘要:本文基于对制动噪声的理论机理、建模和实验研究、测试程序和摩擦材料表面微观结构及其组份对制动噪声的影响分析,提出了发展新型摩擦材料来研究和消除制动振动噪声的思路。

关键词:综述;制动振动;制动噪声;摩擦材料近年来,随着、汽车保有量和盘式制动器和各类非石棉摩擦材料应用的急剧增加,各国都在逐步限制制动噪声。

表1为对不同制动噪声的抱怨,表2为对各项制动指标重视的优先次序,我国也即将把制动噪声列为车辆年检的一项重要内容。

虽然人们很早就开始研究制动噪声问题,并形成多种解释制动噪声机理的理论模型、以及解决特定问题的工程实用方法,但迄今为止对制动噪声的研究从发生机理到分析方法仍未取得一致 [1]。

1 制动噪声的分类、特征及其影响因素1.1 制动噪声的分类及其特征不同研究者对制动噪声的分类不同\,但频率是各种文献分析制动噪声时普遍采用的基本特征参数。

一般根据制动器部件振动频率的频段将制动噪声分成三类:低频振动噪声、低频尖叫和高频尖叫。

1.1.1低频振动噪声低频制动噪声(100~500Hz),如Groan、Hum、Moan和Judder等。

对于Groan,文献[2]认为通过改变系统阻尼、刚度或在制动盘表面覆盖固体润滑膜等可以抑制这类噪声。

Hum和Moan[3]的振动频率在100~400Hz之间,其潜在影响因素包括:对偶件间、卡钳与摩擦片间的压力分布状况等。

Judder(5~100hz)主要由车辆的悬挂和转向系统的共振造成,并受轮速变化的影响。

1.1.2 低频和高频尖叫低频尖叫的频率在1~3kHz之间;高频率尖叫的频率在2~16KHz 之间或上限到人耳听力的极限。

其中频率在1~16kHz之间的制动尖叫声严重影响车辆的舒适性和环保品质。

为此,很多学者[4]对这类噪声进行了大量的研究,然而如图1和图2所示,其发生倾向、频率与摩擦片承受的载荷、温度之间关系复杂,故至今仍末产生统一认识。

中英文文献翻译-盘式制动器的应用

中英文文献翻译-盘式制动器的应用

附录A 外文文献原文China's engineers and users also stay in QianPan HouGu on the idea, and, before and after the application of the disc brake is commercial vehicle braking performance increase the optimal scheme. Because HouGu type brake on the temperature, the braking performance is very big, lead to the front axle attenuation disc brakes to bear on the part of the load, cause too much of the disc brake, brake piece of life of overload shorter. For cars in the braking process, because the role of the front, inertial load always takes all the car load 70% 80%, so the front wheel brake force to than the rear wheels. Manufacturers to cut costs, use the front disc brake, rear wheel drum brake mix of matching method. The QianPan HouGu type mixed brake, this is mainly due to the cost considerations. With the rapid development of China's national economy, the average consumer safety and environmental requirements of cars is increasing day by day, the miniature car industry from tiny truck started, the transition to tiny coaches, and then promoted to use tiny cars as transport, become the necessity of historical development; On the other hand, all miniature car companies already will capital and power steering mini car industry, to adapt to the different needs of consumers out mini car products, some private enterprises will also mini car into the breach of the car market as, constantly of price war, make mini car prices have no longer "too high", and began to close to ordinary people.Disc brake caliper disc and main overall type two kinds, modern car on the application of the most caliper disc brake, it is the rotation of the element is brake disc, fixed element is brake caliper. And, according to the brake caliper movement way and can be divided into set caliper disc brake, sliding caliper disc brake caliper disc brake and, including sliding caliper disc brake application more widely. The working principle of caliper disc brake is similar to a bicycle brake, braking process, the brake caliper will brake piece of extrusion to brake disc, along with the brake disc and lining block of the friction between the gradually will fall speed. And sliding caliper disc brake is brake caliper can be relatively brake disc axial sliding; Only in the inside of the brake disc set oil cylinders, and the outside of the brake block is in the grips attached on the body. Disc brakes in use process, also can appear fault, among them the more common wind resistance, underpowered and brake system has noise etc.Disc brake parts of fever in a narrow focus on the brake lining block, the unit and pressure than drum brakes, brake lining large block and clamp body of the piston direct contact with, so the quantity of heat of braking extremely easily to the brake fluid. So, make disc brakes easy to produce gas resistance phenomenon. But, if take corresponding measures, also can prevent air resistance happens.Miniature and affordable in our country are big car market, in recent years the domestic demand expansion drive the car market demand for miniature of the increase. Authorities say China's economy has entered into the platform, the moderate growth will pull the stable growth of car market. Last year, Chinese each enterprise benefits to improve, per capita disposable income increase, cause individual needs to improve the car; Countries carrying out the strategy for western development, to WeiChe market is tremendous potential demand of no doubt. From 0.9 to 1.6 L L, the price is suitable for China's national conditions, suitable for the current status of the development of the China is. Automobile brake clamps body stent is one of important parts, along with the car now design processing development of manufacturing technology, the brake clamps body in support of materials and processing method and so on is also in constant development, identify processing technology and clamping plan and design, attain thus to the automobile brake clamps body stents processing technology further deeper understanding;The main use of the software has Pro/e, ANSYS and CAPP. Pro/E software using 3 d entity the exact modeling, intuitive parts to reproduce the parts, accurate experience design intention, for parts of the process arrangement after help. Pro/E Mechanica module and the software ANSYS software, finite element analysis, combining do analysis processing produces in the process of the maximum displacement and the maximum stress, and the cutting tool for cutting dosages of the size of the choice to provide reliable basis. This topic use CAPP software developed including making the process route and process design, the complete process documents and improve the process of standardization and standardization. Early detection and solve. According to the retrieval, this in processing industries, and no one made the corresponding introduction. Pro/E software can be accurately to establish various large and complex models. ANSYS software in products manufacturing advance found potential problems, but its modeling ability are weak. The two tools combined, foster strengths and circumvent weaknesses, give full play to the advantages of two kinds of software research and development, is the first choice of complex mechanical structurescheme. This is also I choose the two software reasons. Previous engineering personnel with Pro/E complete three dimensions solid parts design, then use to Mechanica parts structure finite element analysis to find the place, and weak structure is improved. And I'm Pro/E, ANSYS will be applied to the design process of parts, make the past only in process actual implementation, can come into the open process defect, process design stage in can and The error after reflects the workpiece machining allowance method to calculate is, by definition, the processing, surface: its smallest machining allowance (Zbmin) are processing parts of two adjacent step freeways will limit of the difference of the minimum size; Its the biggest machining allowance (Zbmax) are processing parts of two adjacent step freeways will limit of the difference of the largest size. Inside surface processing, the minimum machining allowance is processed spares the maximum limit adjacent freeways will step size poor; Its the biggest machining allowance is processing components work of two adjacent step of the difference of the minimum size limit.The assistant time and basic time coincidence method, using the workbench processing center, get the staff in the cutting process completed work, and then, for auxiliary of the area is larger, and the volume of parts and relatively small, so can use one processing DuoGe parts to make the parts, the piece processing time as little as the basis, double the nc machining center area can also arranged four parts. The rotary worktable, two workpiece in processing at the same time, the clamping workpiece, the other two rotating, processing of just install two workpiece.Selection of cutting parameter and the formulation of &fair standards. Choose the right to improve the cutting dosages, cutting efficiency and guarantee the necessary tools durability and economy, ensure machining quality, has the vital role. Reasonable choice when processing cutting dosages should first choose a as far as possible big, secondly, optimizing the back of choice a larger feeding, and the last in the cutting tool durability, process system stiffness, machine tool power under the terms of the license, the rational choice of cutting speed. &fair standards also says time is fixed in a certain technology organization established under the condition of complete unit out products (such as a parts) or a job (such as a process that must be consumed time). &fair standards is not only, also be the measure index productivity arrange production plan, the calculations of the productioncost is an important basis for new or expansion of the factory, is also (or workshop) computing devices and workers number of basis.Brake caliper disc brake the car body is the critical, brake movement is in the grips body on the final. Installed in clamp body on parts and 16 pieces. One of the more important parts: brake caliper piston, piston callipers at the stents, sealing ring, friction piece, brake caliper shaft pins, spring of and purge screw, etc. Studio, brake fluid through the clamp body JinYou mouth will be pressure to brake caliper Detroit, and by the brake friction pressure before the pistons will to block, press the brake disc, and make clamp body in the brake caliper shaft pins, driving the sliding friction, also after pressure brake disc brake, complete action. The car brake disc brake caliper body shape, structure, material complex special for QT450-10, hardness is HB143-217, machining allowance for 3 mm, form and position tolerances stricter requirements. This product is the important parts, and related to China's automobile brake disc importied problem. In the existing gm in machine tool is completed or processing difficult brake caliper body, especially the lumen of processing, tank must determine the process, to ensure the quality of the processing equipment. Because in general on the machine processing, so blank datum positioning to repeated use, the request to have the precise location of the datum plane, this and use machining center is a very big difference. Such as we are in the process of slot PNE480 CNC machine even with pure inside the car, to ensure that slot cavity type, detection is precision with anatomical projection and after adjustment method of projection.Were now being mass production craft ready to work, according to the auto industry "high starting point, large quantities of specialization," the policy, we have identified on the domestic equipment, save funds, and choose the XK6040 CNC milling machine.附录B 外文文献翻译中国的工程师和用户还停留在前盘后鼓的理念上,而前、后盘式制动器的应用才是商用车提高制动性能的最佳方案。

制动器的英文版及翻译

制动器的英文版及翻译

The BrakesThe brakes function by absorbing in friction the energy possessed by the moving car. In so doing they convert the energy into hear. There are tow types of brakes, the drum brake and the disc brake. Either or both types may be fitted. But where both types are used it is usual for the disc brakes to be fitted to the front wheels. In both drum and disc brakes, a hydraulic system applies the brakes. The hydraulic system connects the brake pedal to the brake parts at each wheel.1 、Drum BrakesThe drum brake consists of a pair of semicircular brake shoes mounted on a fixed back plate and situated inside a drum. This drum is fixed to the road wheel and rotates with it .One end of each shoe is on a pivot and a spring holds the other end in contact with the piston of a hydraulic cylinder.(In front brakes it is usual to use two hydraulic cylinders in order to equalize the pressures exerted by the shoes, as shown in Fig.7.1)Each shoe is faced with material ,known as brake lining ,which produces high frictio nal resistance.The hydraulic system comprises a master cylinder and the slave cylinders which are the cylinders on the road wheels. The slave cylinders are connected to the master cylinder by tubing and the whole system is filled with hydraulic fluid .A piston in the master cylinder is connected to the brake pedal, so that when the driver depresses the pedal the fluid is forced out to each slave cylinder and operates their pistons. The fluid pushes the pistons out of their cylinders. They ,in turn, push against the inner ends of the brake shoes and force them against the drums in each wheel. We say that the brakes are on. This friction of the shoes against the drums, which are fixed to the road wheels, slows down or stops the car.As the brake pedal is allowed to come up, the hydraulic fluid returns to its original position, the pistons retract, and a spring attached to each brake shoe returns it also to its original position. Free of the brake drum. Now we say that the brakes are off.(Fig.7.2)The brakes may also be operated by mechanical linkages from the foot pedal and hand brake lever. Common practice is to operate both front and rear brakes hydraulically with a secondary mechanical system operating the rear brakes only from the hand lever. One of the great advantages of hydraulic operation is that the system is self-balancing, which means that the same pressure is automatically produced at all four brakes, whereas mechanical linkages have to be very carefully adjusted for balance. Of course, if more pressure is put on one of the brakes than on the others there is a danger that the car will skid.The mechanical linkage on the rear brakes is a system of rods or cables connecting the handbrake lever to the brake-shoe mechanism, which work entirely independently of the hydraulic system. Drum brakes are prone to a reduction in the braking effort, known as “fade”, caused by the overheating of the brake linings and the drum. Fade can affect all or only some of the brakes at a time, but it is not permanent, and full efficiency returns as soon as the brakes have cooled down. However, fading is unlikely to occur except after the brakes have been used repeatedly in slowing the car from a high speed or after braking continuously down a steep hill. Descending such a hill, it would have been preferable to use engine braking by changing down into a lower gear. Drum brakes can be made less prone to fade by improving the cooling arrangements, by arranging formore air to be deflected over them, for example.2 Disc BrakesThe disc brake consists of a steel disc with friction pads operated by slave hydraulic cylinders. The steel disc is attached to the road wheel and rotates with it. Part of this steel disc is enclosed in a caliper. This caliper contains two friction pads,one on each side of the disc, and two hydraulic cylinders, one outside each pad. The pads are normally held apart by a spring, but when the driver depresses the brake pedal, pistons from the hydraulic cylinders force the pads against the sides of the disc. Because the disc is not enclosed all the way round, the heat generated when the brakes are applied is dissipated very much more quickly than it is from brake shoes which are entirely enclosed inside a drum. This means that disc brakes are less prone to fade than drum brakes.(Fig.7.3)3 、Anti-lock Brake System (ABS)The function of an anti-lock, or anti-skid, braking system is to prevent the wheels from locking under hard braking. Maximum braking force is obtained just before the wheels lock and skid. Such anti-skid system ate useful on slippery surfaces, such as ice and snow, where the wheels may lock easily. Locked wheels are dangerous because the car needs a much longer distance to stop. Locked wheels also can cause the driver to lose control.The system uses a sensor that knows when one wheel (or a pair of wheel) is skidding. (Fig.7.4) The sensor sends a signal to a computer, which signals a modulator valve. The modulator connects into the hydraulic system and can momentarily release the brake pressure and prevent the wheels from locking.(The pressure release is so fast that a driver is seldom aware of it.) pressure is then reapplied until the sensor again senses that the wheel is about to lock up. Thus, this system keeps the wheels as close to lock up as possible, without actually allowing the wheels to lock up and skid. This is called incipient lock up. Maximum braking occurs at that point. If any part of the system should fail to work, the system goes into a “fail-safe” mode. The brakes operate normally, as they would on a car that is not equipped with ABS. Today , ABS is an optional or standard feature that typically is found on expensive luxury cars and sports cars. In the future, ABS may be available for all cars.3.1、ABS overviewAnti-lock braking system is using the body of a rubber balloon, while hitting the brakes, will give brake oil pressure, feeding through to the ABS body, using of the air in the middle of the air layer to return the pressure, make wheels evade the locked points. When the wheel will arrive next locked point, brake oil pressure makes balloon in a repeat function, so can function eight to thirty times in one second equivalent constantly brake, relax, namely, similar to the "mechanical braking ". Therefore, ABS anti-lock braking system, can avoid the orientation losing control , the wheel’s lateral sliding coming up and the wheels rubbing on one point with the ground without being locked in the emergency brake,so it can make the brake friction efficiency achieves ninety percent. It also can reduce the braking consumption and prolong the brake wheel drum, disc and tire twice with the service life of the vehicle in the ABS. On the dry tarmac road or on snowy or on rainy days, the slippery performance reached 80% - 90%, 30% -10%, 15% - 20%. Ordinary braking system on a wet road surface brake, or in the emergency brake, it’s easy for wheels to be locked owing to the braking force exceeds the friction force of the tires and ground. In recent years, the consumers of the vehicle emphasis on the safety , so most of the cars have ABS listed as standard. Without ABS, emergency brake usually cause tire locked, then, the rolling friction becomes sliding friction, as a result, braking force dramatically decreased. And if front wheels are locked first, the vehicle will lose the steering ability; if the rear tires are first locked, the vehicle is easy to slide laterally , so the direction becomes impossible to control. Through electronic or mechanicalcontrol, the ABS system controls the braking fluid pressure at a fast speed to avoid the wheelslocked. Insure the tire have the biggest braking force and the turning ability when braking, and make the vehicle have the ability to evade the obstacles in emergency braking. With the rapid development of the automotive industry, safety increasingly become the important basis of that people choose and buy cars. At present the widespread adoption of holding brake system (ABS) that people can fully meet the safety of requirements. Automobile brake prevent embrace system, referred to as the ABS, is to improve the car an important device passive safety. Someone said brake prevent embrace system is auto safety measures relay belts after another major progress. Automobile braking system is the bus passengers safety is the most important relationship to one of the second systems. With the rapid development of the automotive industry, automobile safety for people appeals more and more attention. Automobile brake prevent embrace system, is another major progress to improve the safety.ABS braking system is controlled by automobile microcomputer, when braking, it can keep the wheel rotating to help driver control vehicle parking safely. The anti-locked braking system detects wheel speed by speed sensor, and then send the wheel speed signals to the microcomputer. The microcomputer controls wheel slipping rate by increasing or decreasing the brake pressure repeatedly according to the input wheel speed to keep wheel rotate. In braking process, keeping wheel rotate not only ensures the ability of controlling driving direction, but also provides higher brake force than the locked wheel in most circumstances, .3.2、The working principle of ABSIt includes control devices and ABS warning lights, in different ABS system, the structure of brake pressure adjusting device and working principle of electronic control devices are often different, the internal structure and control logic of ABS system usually includes the wheel speed sensors, brake pressure adjusting device, electronic identical and so on. In common ABS system, each wheel is installed a rotational speed sensor on the wheel speed, input the signal to electronic control device. The electronic control unit states monitoring and determination according to each wheel speed sensors’ sign al about each wheel movement, and has formed the corresponding control instruction. Brake pressure adjusting device is mainly composed by pressure regulating solenoid valves, electric pump composition and liquid container components compose an independent whole, braking main cylinder and the cylinder brake wheel connected by the brake pipe. Brake pressure adjusting device is controlled by the electronic unit to control all brake wheel cylinders’ brake pressure. The working process of ABS can be divided into general braking, brake pressure kept brake pressure decrease and brake pressure increase stage. In general braking phase, ABS doesn't intervene brake pressure control, pressure regulating electromagnetic valve assembly in various into liquid solenoid valves are no electricity and is open, each produced liquid are no electricity and electromagnetic valve is in the closed position, electric pump also operates without electricity, and brake main cylinder to each brake wheel cylinder brake lines are in communication condition, and the brake wheel cylinder to liquid brake lines are in close condition, the brake wheel cylinder brake pressure change with the output pressure brake master cylinder, the brakingprocess at this time is completely the same with conventional braking system braking process.In braking process, when the electronic control detects that the wheels primarily tend to embrace dies according to the wheel speed sensors of the wheel speed signal input, ABS came into the braking anti-lock process. For example, when the electronic control unit judges the front-right wheel tends to embrace, the electronic control unit will make control scrape the dynamic pressure front-right wheel failure into liquid solenoid valves electricity, make the fluid electromagnetic valve closed, brake main cylinder output brake fluid no longer enter into brake wheel cylinder, right now, right at the end of a fluid electromagnetic valve still energized and closed, the right brake wheel cylinder brake fluid also won't outflow, the right brake wheel cylinder scraping dynamic pressure stays certain, and other arms tend to be dead wheel with still brake pressure braking main cylinder and the increase of output pressure increases; If the right brake wheel cylinder brake pressure keep certain, the electronic control unit front-right wheel failure still tend to judge lock, the electronic control unit and move out liquid solenoid valves also electrify into a state of opening, the part right brake wheel cylinder brake wave will pass is open from fluid electromagnetic valve flow back to liquid container, make right brake wheel cylinder brake pressure holding diminishes quickly front-right wheel failure will start to eliminate death trend, with the right brake wheel cylinder brake pressure decreases, the front-right wheel under the action of inertia force will speed up gradually; accelerate gradually When the electronic control device determines the lock front-right wheel failure to completely eliminate according to the wheel speed sensors input signal, the electronic control unit makes right into the fluid electromagnetic valve and a liquid solenoid valves are without electricity, make into fluid electromagnetic valve to open, use liquid into closed electromagnetic valve, also make electric pump operation, energized to brake wheel cylinder pump brake fluid, output by brake main cylinder brake fluid electromagnetic valve into the right brake wheel cylinders, make right brake wheel cylinder brake pressure increased rapidly, opening up a front-right wheel failure and slow rotation. ABS control the sliding rate of wheels which tend to be locked through holding the brake force of wheels that tends to be locked repeatedly ,adhesion coefficient is in peak within the scope of the sliding rate, until the bus speed reduced to very low or brake main cylinder pressure no longer tend to be locked. Brake pressure to adjust cycle of frequency can reach 3 ~ 20HZ. In the ABS each has on the fluid and the fluid electromagnetic valve in corresponding at each brake wheel cylinder, but by the electronic control device to control, therefore, respectively, the brake wheel cylinder brake pressure can be independently adjustment so that four wheels are not occur braking lock phenomenon. Although various ABS structure form and working process is not exactly the same, are based on the brake holding pressure adaptive cycle adjustment of wheel which tends to be locked, to prevent the controlled wheels holding in death occurred when brake.3.3、ABS functionThe braking performance is one of main auto performance, it is also related to the security of driving. Evaluate the braking performance of a car , the basic index is brake acceleration ,braking distance and direction of braking time and braking stability.Braking stability points to that the vehicle can still be specified in the direction of auto brake when driving in the direction of track. If cars proceed high-speed brake (especially when emergency brake) and make the wheel fully embrace die, it is very dangerous. If front wheel is locked, it will make cars lose steering ability. If the rear wheel is locked, it will appear to swing tail or switching (running deviation, sideslip) especially in the road is all wet slippery case, it will cause the traffic safety great harm. Automobile braking force depends on the brake friction, but the braking force which can make the car brake to slow, and also restricted by ground adhesion coefficient. When brake produces braking force increases to certain value, the tires will appear slipping on the ground. Its sliding rateδ = (Vt - Va) / Vt x 100%δ: delta - sliding rate;Vt - theoretical speed of the car;Va - the actual speed of the car.According to the experiments confirm, when wheel sliding rate delta range from 15% to 20% , the ground adhesion coefficient reach maximum, therefore, in order to get the best braking effect, we must control the slip rate in 15% ~ 20% range.ABS function will namely decrease the brake force when the wheels will embrace dies, , and when the wheel will not hold died and increase braking force, so repeated action, braking effect is the best.3.4、The problems needing attention when ABS is used(1) After replace brake or replace hydraulic brake system components, it should exhaust the air in the brake pipe, lest affect braking system work normally.(2)The car equipped with ABS should be replaced every year. Otherwise, brake fluid hygroscopic is very strong, water will not only reduce the boiling point to make it easy to produce corrosion, and still can cause braking performance recession.(3) To examine ABS braking system should pull power firstly.制动系简介制动器通过摩擦的形式吸收运动车辆所具有的能量而起作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鼓式制动器-外文文献及翻译Drum brakeA drum brake with the drum removed as used on the rear wheel of a car or truck. Note that in this installation, a cable-operated parking brake uses the service shoes.A drum brake is a brake in which the friction is caused by a set of shoes or pads that press against a rotating drum-shaped part called a brake drum.The term "drum brake" usually means a brake in which shoes press on the inner surface of the drum. When shoes press on the outside of the drum, it is usually called a clasp brake. Where the drum is pinched between two shoes, similar to a conventional disk brake, it is sometimes called a "pinch drum brake", although such brakes are relatively rare. A related type of brake uses a flexible belt or "band" wrapping around the outside of a drum, called a band brake.HistoryA drum brake at the rear wheel of a motorbikeKawasaki W800The modern automobile drum brake was invented in 1902 by Louis Renault, though a less-sophisticated drum brake had been used by Maybach a year earlier. In the first drum brakes, the shoes were mechanically operated with levers and rods or cables. From the mid-1930s the shoes were operated with oil pressure in a small wheel cylinder and pistons(as in the picture), though some vehicles continued with purely-mechanical systems for decades. Some designs have two wheel cylinders.The shoes in drum brakes are subject to wear and the brakes needed to be adjusted regularly until the introduction of self-adjusting drum brakes in the 1950s. In the 1960s and 1970s brake drums on the front wheels of cars were gradually replaced with disc brakes and now practically all cars use disc brakes on the front wheels, with many offering disc brakes on all wheels. However, drum brakes are still often used for handbrakes as it has proven very difficult to design a disc brake suitable for holding a car when it is not in use. Moreover, it is very easy to fit a drum handbrake inside a disc brake so that one unit serves as both service brake and handbrake.Early type brake shoes contained asbestos. When working on brake systems of older cars, care must be taken not to inhale any dust present in the brake assembly. The United States Federal Government began to regulate asbestos production, and brake manufacturers had to switch to non-asbestos linings. Owners initially complained of poor braking with the replacements; however, technology eventually advanced to compensate.A majority of daily-driven older vehicles have been fitted with asbestos-free linings. Many other countries also limit the use of asbestos in brakes. Early automotive brake systems, after the era of hand levers of course, used a drum design at all four wheels. They were called drum brakes because the components were housed in a round drum that rotated along with the wheel. Inside was a set of shoes that, when the brake pedal was pressed, would force the shoes against the drum and slow the wheel. Fluid was used to transfer the movement of the brake pedal into the movement of the brake shoes, while the shoes themselves were made of a heat-resistant friction material similar to that used on clutch plates. This basic design proved capable under most circumstances, but it had one major flaw. Under high braking conditions, like descending a steep hill with a heavy load or repeated high-speed slow downs, drum brakes would often fade and lose effectiveness. Usually this fading was the result of too much heat build-up within the drum. Remember that the principle of braking involves turning kinetic energy (wheel movement)into thermal energy (heat). For this reason, drum brakes can only operate as long as they can absorb the heat generated by slowing a vehicle's wheels. Once the brake components themselves become saturated with heat, they lose the ability to halt a vehicle, which can be somewhat disconcerting to the vehicle's operator.Self-applying characteristicDrum brakes have a natural "self-applying" characteristic.[1] The rotation of the drum can drag either or both of the shoes into the friction surface, causing the brakes to bite harder, which increases the force holding them together. This increases the stopping power without any additional effort being expended by the driver, but it does make it harder for the driver to modulate the brake's sensitivity. It also makes the brake more sensitive to brake fade, as a decrease in brake friction also reduces the amount of brake assist.Disc brakes exhibit no self-applying effect because the hydraulic pressure acting on the pads is perpendicular to the direction of rotation of the disc. Disc brake systems usually have servo assistance ("Brake Booster") to lessen the driver's pedal effort, but some disc braked cars (notably race cars) and smaller brakes for motorcycles, etc., do not need to use servos.Note: In most designs, the "self applying" effect only occurs on one shoe. While this shoe is further forced into the drum surface by a moment due to friction, the opposite effect is happening on the other shoe. The friction force is trying to rotate it away from the drum. The forces are different on each brake shoe resulting in one shoe wearing faster. It is possible to design a two-shoe drum brake where both shoes are self-applying (having separate actuators and pivoted at opposite ends), but these are very uncommon in practice.Drum brake designsRendering of a drum brakeDrum brakes are typically described as either leading/trailing or twin leading.[1]Rear drum brakes are typically of a leading/trailing design(For Non Servo Systems), or [Primary/Secondary] (For Duo Servo Systems) the shoes being moved by a single double-acting hydraulic cylinder and hinged at the same point.[1] In this design, one of the brake shoes will always experience the self-applying effect, irrespective of whether the vehicle is moving forwards or backwards.[1]This is particularly useful on the rear brakes, where the footbrake (handbrake or parking brake) must exert enough force to stop the vehicle from travelling backwards and hold it on a slope. Provided the contact area of the brake shoes is large enough, which isn't always the case, the self-applying effect can securely hold a vehicle when the weight is transferred to the rear brakes due to the incline of a slope or the reverse direction of motion. A further advantage of using a single hydraulic cylinder on the rear is that the opposite pivot may be made in the form of a double lobed cam that is rotated by the action of the parking brake system.Front drum brakes may be of either design in practice, but the twin leading design is more effective.[1]This design uses two actuating cylinders arranged so that both shoes will utilize the self-applying characteristic when the vehicle is moving forwards.[1] The brake shoes pivot at opposite points to each other.[1]This gives the maximum possible braking when moving forwards, but is not so effective when the vehicle is traveling in reverse.[1]The optimum arrangement of twin leading front brakes with leading/trailing brakes on the rear allows for more braking force to be deployed at the front of the vehicle when it is moving forwards, with less at the rear. This helps to prevent the rear wheels locking up, but still provides adequate braking at the rear when it is needed.[1]The brake drum itself is frequently made of cast iron, although some vehicles have used aluminum drums, particularly for front-wheel applications. Aluminum conducts heat better than cast iron, which improves heat dissipation and reduces fade. Aluminum drums are also lighter than iron drums, which reduces unsprung weight. Because aluminum wears more easily than iron, aluminum drums will frequently have an iron or steel liner on the inner surface of the drum, bonded or riveted to the aluminum outer shell.AdvantagesDrum brakes are used in most heavy duty trucks, some medium and light duty trucks, and few cars, dirt bikes, and ATV's. Drum brakes are often applied to the rear wheels since most of the stopping force is generated by the front brakes of the vehicle and therefore the heat generated in the rear is significantly less. Drum brakes allow simple incorporation of a parking brake. Drum brakes are also occasionally fitted as the parking (and emergency) brake even when the rear wheels use disk brakes as the main brakes. In this situation, a small drum is usually fitted within or as part of the brake disk also known as a banksia brake.In hybrid vehicle applications, wear on braking systems is greatly reduced by energy recovering motor-generators (see regenerative braking), so some hybrid vehicles such as the GMC Yukon hybrid and Toyota Prius (except the third generation) use drum brakes.Disc brakes rely on pliability of caliper seals and slight runout to release pads, leading to drag, fuel mileage loss, and disc scoring. Drum brake return springs give more positive action and, adjusted correctly, often have less drag when released.Certain heavier duty drum brake systems compensate for load when determining wheel cylinder pressure; a feature unavailable when disks are employed. One such vehicle is the Jeep Comanche. The Comanche can automatically send more pressure to the rear drums depending on the size of the load, whereas this would not be possible with disks.Due to the fact that a drum brakes friction contact area is at the circumference of the brake, a drum brake can provide more braking force than an equal diameter disc brake. The increased friction contact area of drum brake shoes on the drum allows drum brake shoes to last longer than disc brake pads used in a brake system of similar dimensions and braking force. Drum brakes retain heat and are more complex than discbrakes but are often times the more economical and powerful brake type to use in rear brake applications due to the low heat generation of rear brakes, a drum brakes self applying nature, large friction surface contact area, and long life wear characteristics(%life used/kW of braking power).Brake technology, just like suspension technology and fuel-system technology, has come a long way in recent years. What began in the '60s as a serious attempt to provide adequate braking for performance cars has ended in an industry where brakes range from supremely adequate to downright phenomenal. The introduction of components like carbon fiber, sintered metal and lightweight steel, along with the adoption of ABS, have all contributed to reduced stopping distances and generally safer vehicles (though ABS continues to provide controversy).Although drum brakes are often the better choice for rear brake applications in all but the highest performance applications, vehicle manufactures are increasingly installing disc brake system at the rear wheels. This is due to the popularity rise of disc brakes after the introduction front ventilated disc brakes. Front ventilated disc brakes performed much better than the front drum brakes they replaced. The difference in front drum and disc brake performance caused car buyers to purchase cars that also had rear disc brakes. Additionally rear disc brakes are often associated with high performance race cars which has increase their popularity in street cars. Rear disc brakes in most applications are not ventilated and offer no performance advantage over drum brakes. Even when rear discs are ventilated, it is likely that the rear brakes will never benefit from the ventilation unless subjected to very high performance racing style driving.DisadvantagesDrum brakes, like most other types, are designed to convert kinetic energy into heat by friction.[1] This heat is intended to be further transferred to atmosphere, but can just as easily transfer into other components of the braking system.Brake drums have to be large to cope with the massive forces that are involved, and they must be able to absorb and dissipate a lot of heat. Heat transfer to atmosphere can be aided by incorporating cooling fins onto the drum. However, excessive heating can occur due to heavy orrepeated braking, which can cause the drum to distort, leading to vibration under braking.The other consequence of overheating is brake fade.[1]This is due to one of several processes or more usually an accumulation of all of them.1. When the drums are heated by hard braking, the diameter of the drum increases slightly due to thermal expansion, this means the brakes shoes have to move farther and the brake pedal has to be depressed further.2. The properties of the friction material can change if heated, resulting in less friction. This is usually only temporary and the material regains its efficiency when cooled,[1]but if the surface overheats to the point where it becomes glazed the reduction in braking efficiency is more permanent. Surface glazing can be worn away with further use of the brakes, but that takes time.3. Excessive heating of the brake drums can cause the brake fluid to vapourise, which reduces the hydraulic pressure being applied to the brake shoes.[1]Therefore less retardation is achieved for a given amount of pressure on the pedal. The effect is worsened by poor maintenance. If the brake fluid is old and has absorbed moisture it thus has a lower boiling point and brake fade occurs sooner.[1]Brake fade is not always due to the effects of overheating. If water gets between the friction surfaces and the drum, it acts as a lubricant and reduces braking efficiency.[1]The water tends to stay there until it is heated sufficiently to vapourise, at which point braking efficiency is fully restored. All friction braking systems have a maximum theoretical rate of energy conversion. Once that rate has been reached, applying greater pedal pressure will not result in a change of this rate, and indeed the effects mentioned can substantially reduce it. Ultimately this is what brake fade is, regardless of the mechanism of its causes.Disc brakes are not immune to any of these processes, but they deal with heat and water more effectively than drums.Drum brakes can be grabby if the drum surface gets light rust or if the brake is cold and damp, giving the pad material greater friction. Grabbing can be so severe that the tires skid and continue to skid even when the pedal is released. Grabbiness is the opposite of fade: when the pad friction goes up, the self-assisting nature of the brakes causes application force to go up. If the pad friction and self-amplification are high enough, the brake will stay on due to self-application even when the external application force is released.Another disadvantage of drum brakes is their complexity. A person must have a general understanding of how drum brakes work and take simple steps to ensure the brakes are reassembled correctly when doing work on drum brakes. Incompetent mechanics should not attempt working on drum brakes.Re-arcingBefore 1984, it was common to re-arc brake shoes to match the arc within brake drums. This practice, however, was controversial as it removed friction material from the brakes and caused a reduction in the life of the shoes as well as created hazardous asbestos dust. Current design theory is to use shoes for the proper diameter drum, and to simply replace the brake drum when necessary, rather than perform the re-arcing procedure. Before you can appreciate the difference between drum and disc brakes, you have to understand the common principles that both systems use when stopping a car: friction and heat. By applying resistance, or friction, to a turning wheel, a vehicle's brakes cause the wheel to slow down and eventually stop, creating heat as a byproduct. The rate at which a wheel can be slowed depends on several factors including vehicle weight, braking force and total braking surface area. It also depends heavily on how well a brake system converts wheel movement into heat (by way of friction) and, subsequently, how quickly this heat is removed from the brake components. This is where the difference between drum brakes and disc brakes becomes pronounced.AdjustmentEarly drum brakes (before about 1955) required periodic adjustment to compensate for drum and shoe wear. If not done sufficiently often long brake pedal travel ("low pedal") resulted. Low pedal can be a severe hazard when combined with brake fade as the brakes can become ineffective when the pedal bottoms out.Self adjusting brakes may use a mechanism that engages only when the vehicle is being stopped from reverse motion. This is a traditional method suitable for use where all wheels use drum brakes (most vehicles now use disc brakes on the front wheels). By operating only in reverse it is less likely that the brakes will be adjusted while hot (when the drums areexpanded), which could cause dragging brakes that would accelerate wear and increase fuel consumption.Self adjusting brakes may also operate by a ratchet mechanism engaged as the hand brake is applied, a means suitable for use where only rear drum brakes are used. If the travel of the parking brake actuator lever exceeds a certain amount, the ratchet turns an adjuster screw that moves the brake shoes toward the drum.There are different Self Adjusting Brake Systems. Basically can be divided in to RAI and RAD. RAI systems are much more efficient than RAD systems and have built in systems that avoids the systems to recover when the brake is over heating. The most famous RAI are developed by Lucas, Bendix, Bosch, AP. For RAD systems the most famous are Bendix, AP, VAG ( Volkswagen ) and FORD recovery systems.The manual adjustment knob is usually at the bottom of the drum and is adjusted via a hole on the opposite side of the wheel. This requires getting underneath the car and moving the clickwheel with a flathead screwdriver. It is important and tedious to adjust each wheel evenly so as to not have the car pull to one side during heavy braking, especially if on the front wheels. Either give each one the same amount of clicks and then perform a road test, or raise each wheel off the ground and spin it by hand measuring how much force it takes and feeling whether or not the shoes are dragging.Use in musicA brake drum can be very effective in modern concert and film music to provide a non-pitched metal sound similar to an anvil. Some have more resonance than others, and the best method of producing the clearest sound is to hang the drum with nylon cord or to place it on foam. Other methods include mounting the brake drum on a snare drum stand. Either way, the brake drum is struck with hammers or sticks of various weight.It is also commonly used in steelpan ensembles, where it is called "the iron."鼓式制动器鼓式制动器是由一组摩擦蹄片挤压一个叫做制动鼓的旋转鼓状部分实现摩擦动。

相关文档
最新文档