21年考研数学二真题及答案

合集下载

2021年考研数学二真题及答案

2021年考研数学二真题及答案

2021年考研数学二真题一、选择题:(1~8小题,每题4分,共32分。

以下每题给出的四个选项中,只有一个选项是符合题目要求的。

) (1)以下反常积分中收敛的是 (A)∫√x+∞2xx (B)∫xxx+∞2xx(C)∫1xxxx+∞2xx (D) ∫xx x+∞2xx 【答案】D 。

【解析】题干中给出4个反常积分,别离判定敛散性即可取得正确答案。

∫√x+2=2√x |2+∞=+∞;∫xxxx+∞2xx =∫xxx +∞2x (xxx )=12(xxx )2|2+∞=+∞;∫1xxxx+∞2xx =∫1xxx+∞2x (xxx )=ln (xxx )|2+∞=+∞; ∫xxx +∞2xx=−∫x +∞2xx −x=−xx−x|2+∞+∫x −x +∞2xx=2x−2−x−x |2+∞=3x −2,因此(D)是收敛的。

综上所述,此题正确答案是D 。

【考点】高等数学—一元函数积分学—反常积分 (2)函数x (x )=lim x →0(1+xxx x x )x 2x在(-∞,+∞)内(A)连续 (B)有可去中断点 (C)有跳跃中断点 (D)有无穷中断点 【答案】B【解析】这是“1∞”型极限,直接有x(x)=limx→0(1+xxx xx)x2x=x lim x→0x 2x(1+xxx xx−1)=e x limx→0xxxxx=x x(x≠0),x(x)在x=0处无概念,且limx→0x(x)=limx→0x x=1,因此x=0是x(x)的可去中断点,选B。

综上所述,此题正确答案是B。

【考点】高等数学—函数、极限、持续—两个重要极限(3)设函数x(x)={x αcos1xβ,x>0,0,x≤0(α>0,x>0).假设x′(x)在x=0处连续,则(A)α−β>1(B)0<α−β≤1(C)α−β>2(D)0<x−β≤2【答案】A【解析】易求出x′(x)={xx α−1cos1xβ+βxα−β−1sin1xβ,x>0,0,x≤0再有x+′(0)=limx→0+x(x)−x(0)x=limx→0+xα−1cos1xβ={0, α>1,不存在,α≤1,x−′(0)=0于是,x′(0)存在⟺α>1,现在x′(0)=0.当α>1时,limx→0xα−1cos1xβ=0,lim x→0βxα−β−1sin1xβ={0, α−β−1>0,不存在,α−β−1≤0,因此,x′(x)在x=0持续⟺α−β>1。

21考研数学二试题及答案

21考研数学二试题及答案

21考研数学二试题及答案试题:一、选择题(本题共5小题,每小题3分,共15分。

在每小题的四个选项中,只有一项是符合题目要求的,请将正确选项的字母标号涂在答题卡上。

)1. 设函数 \( f(x) = x^2 - 4x + 3 \),则方程 \( f(x) = 0 \) 的实根个数为()。

A. 0B. 1C. 2D. 32. 已知 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),若\( \lim_{x \to 0} [3x + f(x)] = 0 \),则 \( \lim_{x \to 0}f(x) \) 的值为()。

A. 0B. 1C. 2D. -33. 设 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( A \) 的伴随矩阵 \( A^* \) 的行列式值为()。

A. 5B. 6C. 7D. 84. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x^3 dx \) 的值为()。

A. \( \frac{1}{4} \)B. \( \frac{1}{5} \)C. \( \frac{1}{6} \)D. \( \frac{1}{8} \)5. 设随机变量 \( X \) 服从参数为 \( \lambda \) 的泊松分布,若\( P(X = 1) = 0.1 \),则 \( \lambda \) 的值为()。

A. 0.1B. 1C. 10D. 100二、填空题(本题共5小题,每小题4分,共20分。

请将答案填写在答题纸上指定位置。

)6. 若 \( \frac{dy}{dx} = 3x^2 - 2x \),则 \( y = \int (3x^2 - 2x) dx \) 的一个原函数是 \( y = \_\_\_\_\_\_\_\_\_\)。

2021考研数学(二)真题(含详细解析)

2021考研数学(二)真题(含详细解析)

2k 1 1 2n n
lim
n
n k 1
f
k
1
n
1
f (x)dx .选(B).
0
(8)二次型 f (x1, x2, x3) (x1 x2 )2 (x2 x3)2 (x3 x1)2 的正惯性指数与负惯性指数依次为( )
(A)2,0
(B)1,1
(C)2,1
(D)1,2
【答案】B
【解析】方法 1: f (x1, x2, x3) (x1 x2 )2 (x2 x3)2 (x3 x1)2 2x22 2x1x2 2x2x3 2x1x3 ,其二

(A)
lim
n
n k 1
f
2k 1 2n
1 2n
(B)
lim
n
n k 1
f
2k 1 1 2n n
(C)
lim
n
n k 1
f
k 1 2n
1 n
【答案】B
(D)
lim
n
n k 1
f
Hale Waihona Puke k 2 2n n【解析】由于
k n
k
2k 1 2n
k 1 n
,则 lim n
n k 1
f
t 1 1)et
t2
确定,则
d2y dx2
t0
.
【答案】 2 3
【解析】利用参数方程的求导公式
dy dx
yt xt
' '
4tet 2t 2et 1

d2y dx2
d dx
dy dx
d dx
4tet 2et
2t 1
d dt

考研数学二(一元函数积分学)历年真题试卷汇编10(题后含答案及解析)

考研数学二(一元函数积分学)历年真题试卷汇编10(题后含答案及解析)

考研数学二(一元函数积分学)历年真题试卷汇编10(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(87年)设,其中f(x)连续,s>0,t>0,则I的值A.依赖于s,t.B.依赖于s,t,x.C.依赖于t,x不依赖于s.D.依赖于s不依赖于t.正确答案:D解析:由此可见,I的值只与s有关,所以应选(D).知识模块:一元函数积分学2.(88年)设f(x)与g(x)在(一∞,+∞)上皆可导.且f(x)<g(x),则必有A.f(-x)>g(一x)B.f’(x)<g’(x)C.D.∫0xf(t)dt<∫0xg(t)dt正确答案:C解析:由于f(x)和g(x)在(-∞,+∞)上皆可导,则必在(一∞,+∞)上连续,则知识模块:一元函数积分学3.(88年)由曲现(0≤x≤π)与x轴围成的平面图形绕x轴旋转而成的旋转体体积为A.B.C.D.正确答案:B解析:知识模块:一元函数积分学4.(89年)曲线y=cosx与x轴所围成的图形,绕x轴旋转一周所成旋转体的体积为A.B.πC.D.π2正确答案:C解析:知识模块:一元函数积分学5.(90年)设函数f(x)在(一∞,+∞)上连续,则d[∫f(x)dx]等于A.f(x)B.f(x)dxC.f(x)+CD.f’(x)dx正确答案:B解析:d[∫f(x)dx]=(∫f(x)dx)’dx=f(x)dx 知识模块:一元函数积分学6.(90年)设f(x)是连续函数,且F(x)=f(t)dt,则F’(x)等于A.一e-xf(e-x)一f(x)B.一e-xf(e-x)+f(x)C.e-xf(e-x)一f(x)D.e-xf(e-x)+f(x)正确答案:A解析:由于F(x)=-∫0xf(t)dt则F’(x)=一f(e-x)e-x一f(x),故应选(A).知识模块:一元函数积分学填空题7.(87年)∫f’(x)dx=______,∫abf’(2x)dx=_______.正确答案:f(x)+C,解析:∫f’(x)dx=f(x)+C, 知识模块:一元函数积分学8.(87年)积分中值定理的条件是______,结论是_______。

2021考研数学二真题及答案解析

2021考研数学二真题及答案解析

2021年全国硕士研究生招生考试数学(二)(科目代码:302)考试时间:180分钟,试卷总分:150分考生注意事项1.答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。

2.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。

3.填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。

4.考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)考生编号考生姓名一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0x →,23(e 1)d x t t -⎰是7x 的A.低阶无穷小.B.等价无穷小.C.高阶无穷小.D.同阶但非等价无穷小.【答案】 C.【解析】()()2366755e 1d 2e12limlim lim 077x t x x x x t xxxx→→→--===⎰,故选C.2.函数e 1,0,()1,0x x f x x x ⎧-≠⎪=⎨⎪=⎩在0x =处A.连续且取极大值B.连续且取极小值C.可导且导数等于零D.可导且导数不为零【答案】D【解析】因为)0(11e lim 0f x xx ==-→,故连续;又因为211e 11e lim 220=--=--→x x x x x x x ,故可导,所以选D.3.有一圆柱体底面半径与高随时间变化的速率分别为2/cm s ,3/cm s -,当底面半径为10cm ,高为5cm 时,圆柱体的体积与表面积随时间变化的速率分别为A.32125/,40/cm s cm s ππB.32125/,40/cm s cm s ππ-C.32100/,40/cm s cm s ππ-D.32100/,40/cm s cm sππ--【答案】 C.【解析】d 2d r t =,d 3d ht=-;2πV r h =,22π2πS rh r =+.2dV d d 2ππ100πd d d r hrh r t t t =+=-.dS d d d 2π2π4π40πd d d d r h rh r r t t t t=++=.4.设函数()ln (0)f x ax b x a =->有2个零点,则ba的取值范围A.(e,)+∞ B.(0,e)C.1(0,eD.1(,)e+∞【答案】A.【解析】()ln f x ax b x,=-若0<b ,不满足条件,舍去;若0>b ,令()=0bf x a x'=-,得b x a =.在()()000b b ,f x ,,f x .a a ⎛⎫⎛⎫''<∞> ⎪ ⎪⎝⎭⎝⎭,()()0x x lim f x ,lim f x +→+∞→=+∞=+∞,令=ln 1ln 0b b b f b b b ,a a a ⎛⎫⎛⎫-=-<⎪ ⎪⎝⎭⎝⎭得ln 1b a >,即e b a >.故选A.5.设函数()sec f x x =在0x =处的2次泰勒多项式为21ax bx ++,则A.11,2a b ==-B.11,2a b ==C.10,2a b ==- D.10,2a b ==【答案】 D.【解析】()()()()()220sec 002f f x x f f x x o x '''==+++()22112x o x =++.所以可得0a =,12b =.6.设函数(,)f x y 可微,且222(1,e )(1),(,)2ln ,xf x x x f x x x x +=+=则d (1,1)f =A.d d x y +B.d d x y -C.d yD.d y-【答案】选C【解析】由于2)1()e ,1(+=+x x x f x ,两边同时对x 求导得)1(2)1(e )e ,1()e ,1(221+++=+'++'x x x x f x f x x x .令0=x 得01)1,1()1,1(21+='+'f f ,xx x x x x x f x x f 12ln 42),(),(22221⋅+='+';令1=x 得2)1,1(2)1,1(21='+'f f .因此0)1,1(1='f ;1)1,1(2='f .所以y f d )1,1(d =,故选C.7.设函数()f x 在区间[0,1]上连续,则1()d f x x =⎰A.1211lim22nn k k f n n →∞=-⎛⎫ ⎪⎝⎭∑B.1211lim2nn k k f n n →∞=-⎛⎫ ⎪⎝⎭∑C.2111lim2nn k k f n n→∞=-⎛⎫ ⎪⎝⎭∑D.212lim2nn k k f n n→∞=⎛⎫ ⎪⎝⎭∑【答案】选B【解析】将[]1,0的区间n 等分,每一份取区间中点的函数值⎪⎭⎫⎝⎛-n n k f 21,故选B.8.二次型222123122331(,,)()()()f x x x x x x x x x =+++--的正惯性指数与负惯性指数依次为A.02,B.11,C.12,D.21,【答案】选B【解析】()()()()222123122331,,f x x x x x x x x x =+++--222222112222333131222x x x x x x x x x x x x =+++++-+-221223132222x x x x x x x =+++.二次型对应矩阵为011121110⎛⎫ ⎪⎪ ⎪⎝⎭,11101||121=1211111E A λλλλλλλλ--+---=----------100(1)122111(1)((2)(1)2](1)(3)λλλλλλλλλ=+------=+---=+-则11p q ==.9.设3阶矩阵()()123123=,,,,,,=A αααB βββ若向量组123,,ααα可以由向量组123,,βββ线性表出,则()A.=Ax 0的解均为=Bx 0的解.B.T =A x 0的解均为T =B x 0的解.C.=Bx 0的解均为=Ax 0的解.D.T =B x 0的解均为T =A x 0的解.【答案】D【解析】由题意,可知=A BC ,T =0B x 的解均为T T =0C B x 的解,即T=0A x 的解,D 选项正确.10.已知矩阵101211125-⎛⎫⎪=- ⎪ ⎪-⎝⎭A ,若下三角可逆矩阵P 和上三角可逆矩阵Q ,使得PAQ 为对角矩阵,则、P Q 分别取().100101100100.010,013.210,010001001321001100101100123.210,013.010,012321001131001A B C D ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭【答案】C【解析】通过代入验证100101100210013010.3210011012111250010⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪-= ⎪⎪⎪ ⎪ ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎭-⎝选C二、填空题(11-16小题,每小题5分,共30分)11.23d x x x +∞--∞=⎰.【答案】1ln3【解析】222201123d 3d 3ln 3ln 3x x x x x x +∞+∞---+∞===-=⎰⎰原式12.设函数()y y x =由参数方程()22e 1,41e tt x t y t t ⎧=++⎪⎨=-+⎪⎩确定,则220d d t y x =.【答案】23.【解析】()()()4e 41e 2d 2d 2e 1t tt y t t t y t x x t '+-+==='+,()22000d 2d d 122d d d 2e 13t t t t t yt x t x====⋅==+13.设函数(,)z z x y =由方程(1)ln arctan(2)1x z y z xy ++-=确定,则(0,2).zx ∂=∂【答案】1【解析】将0,2x y ==代入得1=z ,又对()(1)ln arctan 21x z y z xy ++-=两边同时求x 的导数得212(1)01(2)z z y z x y x z x xy ∂∂+++-=∂∂+将0,2,1x y z ===代入上式得1zx∂=∂.14.已知函数21()t t x f t dx dy y=⎰,则.2f π⎛⎫'= ⎪⎝⎭【答案】π22πcos .【解析】()22211111d d d d d d t tt y t y x x x f t x y y sin x sin x y,y y y ⎛⎫=== ⎪⎝⎭⎰⎰⎰⎰⎰则()21d t x f t sin x t'=⎰,所以22ππ2211ππ2π2d =π22π2π2x x f sin x cos cos .⎛⎫ ⎪⎛⎫⎝⎭⎪⎝⎭⎛⎫'=-=⎪⎝⎭⎰15.微分方程0y y '''-=的通解.y =【答案】12123e esin cos 22x xC C x C x -⎛⎫++ ⎪ ⎪⎝⎭,其中123,,C C C 为任意常数.【解析】设其特征方程为310r -=,则12313131;;.2222r r r ==-+=--故其通解为1212333e esin cos 22x xC C x C x -⎛⎫++ ⎪ ⎪⎝⎭.16.多项式12121()211211xx x x f x x x-=-中3x 项的系数为.【答案】5-【解析】3x 项为()()1+2+213331415x x x -+-=-,因此3x 项系数为5-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)求极限20011lim()1sin xt xx e dt e x→+--⎰.【解析】()2200001e d sin sin e d e 11lim lim e 1sin e 1sin x x t t x x x x x t x x t x x →→⎛⎫++-+ ⎪-= ⎪-- ⎪⎝⎭⎰⎰2222200sin sin e d e 1sin e d sin e 1limlim lim xxt xt xx x x x x t x t x xx x →→→+-+-+==+⎰⎰()()23322020011+1+e d 1162lim lim 1.22xt x x x x o x x x o x t xx→→----=+=-+=⎰18.(本题满分12分)已知()1x x f x x=+,求()f x 的凹凸区间及渐近线.22,0,11(),01x x x xf x x x x ⎧-≤≠-⎪⎪+=⎨⎪>⎪+⎩2'001lim 0x x x f x+→-+=(0)=2'001lim0x x x f x-→--+=(0)=所以2211,0,1(1)'()0,011,0(1)x x x f x x x x ⎧-+<≠-⎪+⎪⎪==⎨⎪⎪->+⎪⎩()2''1101lim2x x f x +→--+=(0)=()2''01101lim2x x f x-→-+-+=-(0)=所以()()3320,11''()201x x x f x x x ⎧-<≠-⎪+⎪=⎨⎪>⎪+⎩1x <-时,''0f >10x -<<时,''0f <0x >时,''0f >因此,凹区间()(),1,0,-∞-+∞,凸区间()1,0-22lim ,lim 11x x x x x x→+∞→-∞-=+∞=+∞++,因此没有水平渐近线;1,10x x =-+=,且2211lim ,lim 11x x x x x x +-→-→---=-∞=+∞++,因此存在铅直渐近线1x =-;221lim 1,lim 11x x x x x x xx →+∞→+∞+=-=-+,因此存在斜渐近线1y x =-;221lim1,lim 11x x x x x x xx →-∞→+∞-+=--+=+,因此存在斜渐近线1y x =-+;19.(本题满分12分)()f x满足216x x C =-+⎰,L 为曲线()(49)y f x x =≤≤,L 的弧长为S ,L 绕x 轴旋转一周所形成的曲面面积为A ,求S A 和.31221131()3x f x x x =-=-41192241()2223s x x dx -==+=⎰⎰311192222411=2234259A x x x x dx ππ-⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭=⎰20.(本题满分12分)()y y x =微分方程66xy y '-=-,满足10y =(1)求()y x (2)P 为曲线()y y x =上的一点,曲线()y y x =在点P 的法线在y 轴上截距为p I ,为使p I 最小,求P 的坐标。

2023年考研《数学二》真题及详解【完整版】

2023年考研《数学二》真题及详解【完整版】

2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】一、选择题:1〜10小题,每小题5分,共50分。

在每小题给出的四个选项中, 合题目要求的,请将所选项前的字母填在答题纸指定位置上。

只有一个选项是最符1.曲线y = xln (e^-LA 的渐近线方程为()。

A. y=x+eB. y=x+l/eC. y=xD. y=x —1/e【试题答案】B【试题解析】由已知y = xln (e^ —\ JC 1xlnyk = lim — = lim ----X —00JQXTOO,则可得:limln e +X —00 I1=1b = lim (y-Ax) = lim XT8 ' / XToox-1扁仁上、—X=limxL|' 1、e +--------1_ l X-lyX —>00、x — l)1lim xln XToo1+limXToo所以斜渐近线方程为y=x+l/e 。

2.__,x<0函数 x/l +、2[(x + l)cosx,x > 0的原函数为(A.尸("In +— jv ) jv < 0(x + l)cos x - sin x, x > 0B.尸("In ^/1 + %2 —1, x V 0(x + l)cos x - sin x, x > 0C.In ^/1 + x 2 + x) x V 0(x + l)sin x + cos >In^|/1+%2+x1,jv V0D.F(x)=<(x+l)sin x+cos>0【试题答案】D【试题解析】当xWO时,可得:当x〉0时,可得:j f(x)ch=j(x+l)cos xdx=j(x+l)dsinx=(x+l)sin x-j sin xdx=(x+l)sin x+cos x+C2在x=O处,有:lim In@+J1+工2>G=G,lim(x+l)sin%+cos%+C2=1+C2由于原函数在(一8,+8)内连续,所以Ci=l+C2,令C2=C,则C1=1+C,故In1+%2+x1+C,x V0j/(x)dx=<(x+l)sin x+cos x+C,x>0In+x2+1,x<0令C=0,则f(x)的一个原函数为F(x)=<(x+l)sin x+cos>03.设数列{Xn},{yn}满足xi=yi=l/2,x n+i=sinx n,yn+i=y「,当n—8时()。

2020考研数学二真题含答案解析

2020考研数学二真题含答案解析

2020年全国硕士研究生招生考试数学二试题一、选择题:1~8题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

(1)当x 0时,下列无穷小量中最高阶的是A. ()x0(e 1)dte1x 1t 2 B.x0ln(1 t )dt3 C.sin x0sin t dt2 D.1 cos xsin 3tdt(2)函数f (x ) A.1个(3)ln1 x(e x 1)(x 2)的第二类间断点的个数为C.3个D.4个()B.2个arcsin xx (1 x )dx 1()2A.42 2B.8 C.(n )4D. 8()(4)已知函数f (x ) x ln(1 x ),当n 3时,f A.(0)(n 2)!nD.n !n 2B.n !n 2 C.(n 2)!n()xy ,xy 0 (5)关于函数f (x ,y )x ,y 0,给出下列结论: y ,x 0f ① x2f 1;②x yB.3(0,0)(0,0)1;③(x ,y ) (0,0)limf (x ,y ) 0;④lim lim f (x ,y ) 0.y 0x 0其中正确的个数为A.4(C.2D.1(D.)(6)设函数f (x )在区间 2,2 上可导,且f (x ) f (x ) 0.则A.)f ( 2)1f ( 1)B.f (0) e f ( 1)C.f (1) e 2f ( 1)f (2) e 3f ( 1)*(7)设4阶矩阵A (a ij )不可逆,a 12的代数余子式A 12 0, 1, 2, 3, 4为矩阵A 的列向量组,A 为A 的伴随矩阵,则方程组A *x 0的通解为A.x k 1 1k 22k 33,其中k 1,k 2,k 3为任意数B.x k 1 1k 22k 34,其中k 1,k 2,k 3为任意数C.x k 1 1k 23k 34,其中k 1,k 2,k 3为任意数D.x k 12k 23k 34,其中k 1,k 2,k 3为任意数()(8)设A 为3阶矩阵, 1, 2为A 的属于特征值1的线性无关的特征向量, 3为A 的属于特征值-1的特1001征向量,则满足P AP 0 10 的可逆矩阵P 可为001A.( 13, 2, 3)B.( 1 2, 2, 3)C.( 1 3, 3, 2)()D.( 1 2, 3, 2)二、填空题:9~14小题,每小题4分,共24分.请将答案写在横线上.x t 2 1d 2y (9)设,则22dxy ln(t t 1)(10) ________.t 110dy1yx 3 1dx ________.(0, )(11)设z arctan xy sin(x y ),则dz ________.(12)斜边长为2a 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,记重力加速度为g ,水的密度为 ,则该平板一侧所受的水压力为________.(13)设y y (x )满足y 2y y 0,且y (0) 0,y (0) 1,则y (x )dx ________.a(14)行列式a1 1 11a 0110a________.0 11三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或验算步骤.(15)(本题满分10分)x 1 x求曲线y x 0 的斜渐近线方程. 1 x x(16)(本题满分10分)已知函数f x 连续且lim x 01f (x ) 1,g (x ) f (xt )dt ,求g (x )并证明g (x )在x 0处连续.0x求函数f x ,y x 8y xy 的极值.33(18)(本题满分10分)21 x 2x 设函数f (x )的定义域为 0, 且满足2f (x ) x f.求f (x ),并求曲线2 x 1 x 213y f (x ),y ,y 及y 轴所围图形绕x 轴旋转所成转体的体积.22(19)(本题满分10分)设平面区域D 由直线x 1,x 2,y x 与x 轴围成,计算Dx 2 y 2dxdy .x设函数f (x ) x 1e t dt .22(Ⅰ)证明:存在 (1,2),使得f ( ) (2 )e ;(Ⅱ)证明:存在 (1,2),使得f (2) ln 2 e .2(21)(本题满分11分)设函数f (x )可导,且f (x ) 0,曲线y f (x )(x 0)经过坐标原点O ,其上任意一点M 处的切线与x 轴交于T ,又MP 垂直x 轴与点P .已知由曲线y f (x ),直线MP 以及x 轴所围图形的面积与 MTP 的面积之比恒为3:2,求满足上述条件的曲线的方程.设二次型f (x 1,x 2,x 3) x 1 x 2x 3 2ax 1x 2 2ax 1x 3 2ax 2x 3经过可逆线性变换222 x 1 y 1222x P 2 y 2 化为二次型g (y 1,y 2,y 3) y 1 y 24y 3 2y 1y 2. x y 33(Ⅰ)求a 的值;(Ⅱ)求可逆矩阵P .(23)(本题满分11分)设A 为2阶矩阵,P ( ,A ),其中 是非零向量且不是A 的特征向量.(Ⅰ)证明P 为可逆矩阵;(Ⅱ)若A A 6 0,求P AP ,并判断A 是否相似于对角矩阵.2 12020考研数学真题(数学二)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上....1.当x →0+时,下列无穷小量中最高阶的是()A.⎰x0(e -1)dtB.⎰ln(1+t )dtC.⎰0t 2x3sin x0sin t dtD.⎰21-cos xsin 3tdt解析:本题选D.考查了无穷小量的阶的比较,同时考查了变上限积分的函数的求导方法、洛必达法则等。

2024年考研数学二真题及答案解析参考

2024年考研数学二真题及答案解析参考

2024年全国硕士研究生入学统一考试数学(二)试题解析一、选择题:1~10小题,每小题5分,共50分。

下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(1)函数)2)(1(1)(--=x x xx f 的第一类间断点的个数是()(A)3(B)2(C)1(D)0【答案】(C)【解析】无定义的点为1,2,0e xx x x =--→)2)(1(11lim ,+∞=--→-)2)(1(12lim x x x x,+∞=--→+)2)(1(1lim x x x x,所以第一类间断点的个数是1个,故选C.(2)设函数)(x f y =由参数方程⎪⎩⎪⎨⎧=+=231t ey tx 确定,则=-++∞→)]2()22([lim f x f x x ()(A)e 2(B)34e (C)32e (D)3e【答案】(B )【解析】容易看出函数)(x f 可导,且232)(2t t e dtdx dt dyx f t ==',当1,2==t x 时,e t te f t t 3232)2(122=='=,所以e f xf x f f x f x x x 34)2(22)2(22lim 2)2(22lim ='=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++∞→+∞→,故选B(3)设函数⎰⎰==xxdt t f x g dt t x f 03sin 0)()(,sin )(,则()(A))(x f 是奇函数,)(x g 是奇函数(B))(x f 是奇函数,)(x g 是偶函数(C))(x f 是偶函数,)(x g 是偶函数(D))(x f 是偶函数,)(x g 是奇函数【答案】(D )【解析】令⎰=xdt t x h 03sin )(,此时)(x h 是一个偶函数,所以,)(sin )(x h x f =为偶函数,从而)(x g 为奇函数,故选D.(4)已知数列{})0(≠n n a a ,若{}n a 发散,则()(A )⎭⎬⎫⎩⎨⎧+n n a a 1发散(B )⎭⎫⎩⎨⎧-n n a a 1发散(C )⎭⎬⎫⎩⎨⎧+n na a e e1发散(D )⎭⎬⎫⎩⎨⎧-n n a a e e 1发散【答案】(D )【解析】对于A 选项,令251,2,21,2=+=⋅⋅⋅=n n n n a a u a ,所以⎭⎬⎫⎩⎨⎧+n n a a 1收敛;对于B 选项,令11--=n n a )(,此时01=-=n n n a a u ,所以⎭⎬⎫⎩⎨⎧-n n a a 1收敛;对于C 选项,令11--+=+=-=e e e e u a n na a n n n ,)(收敛,故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010考研数学二真题及答案一、选择题1.的无穷间断点的个数为函数222111)(xx x x x f +--= A0 B1 C2 D3详解:222111)(xx x x x f +--=有间断点1,0±=x 20201111)1)(1()1()(lim limlim x x x x x x x x f x x x +=+-+-=→→→,所以0=x 为第一类间断点221121)(lim 1=+=→x f x ,所以1=x 为连续点 ∞=+-+-=-→-→21111)1)(1()1()(limlim xx x x x x f x x ,所以1-=x 为无穷间断点。

所以选择B 。

2.设21,y y 是一阶线性非齐次微分方程)()(x q y x p y =+'的两个特解,若常数μλ,使21y y μλ+是该方程的解,21y y μλ-是该方程对应的齐次方程的解,则A 21,21==μλB 21,21-=-=μλC 31,32==μλD 32,32==μλ详解:因21uy y -λ是0)(=+'y x P y 的解,故0))(()2121=-+'-uy y x P uy y λλ( 所以0)())((2211=+'-+'uy y u y x P y λ 而由已知q y x P y q y x P y =+'=+'2211)(,)( 所以0)()(=-x q u λ又21uy y +λ是非齐次)()(x q y x P y =+'的解; 故)())(()(2121x q uy y x P uy y =++'+λλ所以)()()(x q x q u =+λ 所以21==u λ。

3.=≠==a a x a y x y 相切,则与曲线曲线)0(ln 2 A4e B3e C2e De详解:因2x y =与)0(ln ≠=a x a y 相切,故212a x xa x =⇒⋅= 在2x y =上,2a x =时,2ln 212lnaa a a y == 在)0(ln ≠=a x a y 上,2ax =时,2ln a a y =2ln 21a a = 所以选择C4.设,m n 为正整数,则反常积分0⎰的收敛性A 仅与m 取值有关B 仅与n 取值有关C 与,m n 取值都有关D 与,m n 取值都无关 详解:dx xx m dx xx m dx xx m nnn⎰⎰⎰-+-=-1212210212)1(ln )1(ln )1(ln ,其中dx xx m n⎰-2102)1(ln 在0=x 是瑕点,由无界函数的反常积分的审敛法知:其敛散性与n 有关,而dx xx m n⎰-1212)1(ln 在1=x 是瑕点,由于0)1(ln )1(21lim =---→nx xx m x δ,其中δ是可以任意小的正数,所以由极限审敛法知对任意m ,都有dx xx m n⎰-1212)1(ln 收敛,与m 无关。

故选B 。

5.设函数(,)z z x y =由方程(,)0y z F x x=确定,其中F 为可微函数,且20,F '≠则z z xy x y∂∂+∂∂= A x B z C x - D z -详解:221222211)()(F x zF x y F xF x z F x y F FF y zzx '⋅'+⋅'=⋅'-'+-'-=''-=∂∂,6.(4)2211lim ()()nnx i j nn i n j →∞==++∑∑= A 1201(1)(1)xdx dy x y ++⎰⎰B 1001(1)(1)x dx dy x y ++⎰⎰ C 11001(1)(1)dx dy x y ++⎰⎰ D 112001(1)(1)dx dyx y ++⎰⎰详解:∑∑∑∑==∞→==∞→⎥⎦⎤⎢⎣⎡+⋅⋅+=++n i nj x n i nj x n j n n i n nj n i n n11221122)(1)1())((lim lim7.设向量组线性表示,,,:,可由向量组s I βββααα⋯⋯21r 21II ,,:,下列命题正确的是:A 若向量组I 线性无关,则s r ≤B 若向量组I 线性相关,则r>sC 若向量组II 线性无关,则s r ≤D 若向量组II 线性相关,则r>s 详解:由于向量组I 能由向量组II 线性表示,所以)()(II r I r ≤,即s r r s r ≤≤),,(),,(11ββαα 若向量组I 线性无关,则r r r =),,(1αα ,所以s r r s r ≤≤),,(),,(11ββαα ,即s r ≤,选(A )。

8.设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于A 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭B 1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭C 1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭ D 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ 详解:设λ为A 的特征值,由于,02=+A A 所以02=+λλ,即0)1(=+λλ, 这样A 的特征值为-1或0。

由于A 为实对称矩阵,故A 可相似对角化,即Λ-A ,,3)()(=Λ=r A r因此,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=Λ0111,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=Λ0111~A 。

二填空题9.3阶常系数线性齐次微分方程022=-'+''-'''y y y y 的通解y=__________详解:022=-'+''-'''y y y y ,对应方程为,02223=-++λλλ0)2()2(2=-+-λλλ,0)1)(2(2=+-λλ,2=λ,i ±=λ所以通解为x C x C e C x sin cos 3221++10.曲线1223+=x x y 的渐近线方程为_______________详解:21222lim =+∞→x x x x , 0122221223323lim lim =+--=-+∞→∞→x x x x x x x x x ,所以x y 2= 11.函数__________)0(0)21ln()(==-=n y n x x y 阶导数处的在 详解:由麦克劳林展开有:()(),!21)1(1n n nn x n f x n ⋅=-⋅--()()!02n f n n n =-,()()()!120--=n f n n 12.___________0的弧长为时,对数螺线当θπθe r =≤≤ 详解:π≤≤x 0,θe r =。

13.已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加,则当l=12cm,w=5cm 时,它的对角线增加的速率为___________ 详解:设()(),,t y w t x l ==由题意知,在0t t =时刻()120=t x ,()50=t y ,且()()3,200='='t y t x , 又 ()()()t y t x t S 22+=, 所以 ()()()()()()()t y t x t y t y t x t x t S 22+'+'='所以 ()()()()()()()351235212220202000=+⋅+⋅=+'+'='t y t x t y t y t x t x t S14.设A ,B 为3阶矩阵,且__________,2,2,311=+=+==--B A B A B A 则 详解:由于()()A B B AB E B B A A +=+=+----1111,所以 因为,2=B 所以2111==--B B ,因此32123111=⨯⨯=+=+---B B A A B A 。

三解答题15.的单调区间与极值。

求函数⎰--=2212)()(x t dt e t x x f16.(1)比较10ln [ln(1)]nt t dt +⎰与10ln (1,2,)n t t dt n =⎰的大小,说明理由.(2)记10ln [ln(1)](1,2,),n n u t t dt n =+=⎰求极限lim .n x u →∞17.设函数y=f(x)由参数方程。

求函数,已知,阶导数,且具有所确定,其中)(,)1(436)1(25)1(2)()1(),(,2222t t dx y d t t t y t t x ψψψψψ+=='⎩⎨⎧=->=+= 18.一个高为l 的柱体形贮油罐,底面是长轴为2a,短轴为2b 的椭圆。

现将贮油罐平放,当油罐中油面高度为b 23时,计算油的质量。

(长度单位为m ,质量单位为kg ,油的密度为3/m kg ρ)19.20.}.40,sec 0),(D ,2cos 1sin 22πθθθθθθ≤≤≤≤=-=⎰⎰r r drd r r I D{其中计算二重积分21.设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=31,证明:存在.)()(),1,21(),21,0(22ηξηξηξ+='+'∈∈f f 使得22.的通解。

求方程组、)求(个不同的解。

存在已知线性方程组设b Ax a b Ax a b A ==⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-=)2(.12.11,110111λλλλ23.设⎪⎪⎪⎭⎫⎝⎛--=0431410a a A ,正交矩阵Q 使得AQ Q T 为对角矩阵,若Q 的第一列为T )1,2,1(61,求a 、Q. 答案:BACD BDAD9.x C x C e C x sin cos 3221++ 10.y=2x 11.)!1(2-⋅-n n 12.)1(2-πe 13.3cm/s 14. 3 三解答题 15.16.17 .).123)(,0,25)1(.23)(3)().1(3)(,0,6)().3)(1(])1(3[),1(3t 11),().1(3)(t11)()143)1(4)()()1(,)143)1(4)()()1()22()22()(2)()22(,22)(3222322111111113223222->+===++=+=+='=='=++=+⎰+⎰=+=+-''=+='+-''+=+'-''++=+'-''+=++'-''+=∴+'=⎰⎰=+-+t t t t C C t t dt t t t t t t C t uC t t C dt et eu t u u t u t t t t t t t t t dx y d t t t t t t t t t dx y d t t dx dy t dtt dtt (于是知由于是知由有设从而,,(故(由题设ψψψψψψψψψψψψψψψ18解:19解:55105252,22,252.0)4125(5.222222⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧-=-=-=-=-=-==∂∂++∂∂=∂∂=∂∂b a b a b u b b a u y u x u 故,由(ηη20.21. 22. 23.。

相关文档
最新文档