迈克耳孙干涉仪的调节和使用实验报告
迈克尔逊干涉仪的调节与使用的实验报告

d M2’
光源S
1
G1
G2
2
2
1
M2
半透膜
补偿板
E
1.等倾干涉图样
当M1和M2两个平面镜严格垂直,即当M1和M
‘ 严格 2
平行时,所得干涉为等倾干涉,干涉条纹厚干涉图样
在入射光为平行光的条件下,当M1和M2两平面镜不 完全垂直时,等厚干涉条纹的图样是等距离的明暗相间的 直条纹。
迈克尔逊干涉仪是一种利用分割光波振幅的方法 实现干涉现象的仪器,它由一套精密的机械传动系统 和四个高质量的光学镜片构成的。
迈克尔逊干涉仪原理图:自光源发出的光线,被分光板G1后表面的半透 膜分成光强近似相等的两束:反射光(1)和透射光(2)。由于G1与平 面镜M1、M2均成450角,所以,反射光(1)在近于垂直地入射到平面反 光镜M1后,经反射又沿原路返回,透过G1到达E处。透射光(2)在透过 补偿板G2后,近于垂直地入射到平面镜M2上,经反射又沿原路返回,在 分光板后表面反射后向E处传播,与光线(1)相遇后在E处可形成干涉。
(1)实验过程中,不允许触摸仪器中
所有的光学面。
(2)平面反光镜M 1、M 2背后的三个
螺钉以及两个微动拉簧螺丝要十分
爱护,只能轻微旋动,切勿用力旋转螺
钉,以免拧滑丝扣或把反射镜压坏。
11、空程消除。
五、读数和测量应注意以下几个问题:
1、读数前:
(1)调整零点:将鼓轮沿某一方向旋转到零刻度线,然后, 以相同方向转动手轮,使它与某一刻度对齐。 (2)读数前,还必须消除空程。当零点调整完毕后,将鼓轮 沿原方向转动,直到观察到干涉条纹移动为止,之后,记录 第一个数据d0 , d0…d8。 计算出D=di-d0。。
2、读数方法: 三部分:主尺、窗口、鼓轮
迈克尔逊干涉仪的调节与使用—报告模版

干涉条纹变化数N1
0
50
100
位置读数
干涉条纹变化数N2
150
200
250
位置读数
环数差ΔN=N2-N1
150
150
150
Δdi=|d2-d1|
2.根据公式计算钠光波长λ。
3.将测量值与已知的钠光标准.用钠光调节干涉条纹时,如已确定使得叉丝的双影重合,但条纹并未出现,可能是什么原因?你怎么办?
2.把折射率n=1.40的薄膜放入迈克尔逊干涉仪(钠光波长589.3nm)的一臂时,如果产生了7.0条条纹移动,求膜厚。
指导教师批阅意见:
成绩评定:
预习
(20分)
操作及记录
(40分)
数据处理
25分
结果与讨论
5分
思考题
10分
总分
1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
1.迈克尔逊干涉仪的调节与观察等倾干涉。
2.测定钠光波长。
五、数据记录:
姓名、组号:
1.记录钠光灯钠光波长(取钠双线波长平均值):
钠光的标准波长λ标准=
2.测量中心条纹每‘涌出’或‘陷入’50级时平面镜位置:
干涉条纹变化数N1
0
50
100
位置读数
干涉条纹变化数N2
150
200
250
位置读数
六、数据处理:
得分
教师签名
批改日期
深 圳大 学 实 验 报 告
课程名称:大学物理实验(2)
实验名称:迈克尔逊干涉仪的调节与使用
学院:
组号:指导教师:
报告人:学号:
实验地点
迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告实验目的,通过使用迈克尔逊干涉仪,观察和分析干涉现象,了解干涉仪的原理和使用方法。
实验设备,迈克尔逊干涉仪、激光光源、反射镜、半透明镜、平行玻璃板等。
实验原理,迈克尔逊干涉仪是一种利用干涉现象来测量光波的相位差的仪器。
其基本原理是利用激光光源发出的单色光经过半透明镜分成两束光,分别经过不同的光程后再次汇聚在一起,形成干涉条纹。
通过观察干涉条纹的变化,可以推断出光波的相位差和光程差。
实验步骤:1. 将迈克尔逊干涉仪放置在水平台上,调整使其水平。
2. 打开激光光源,调整使其垂直照射到半透明镜上。
3. 观察干涉条纹的形成和变化,可以通过微调反射镜和平行玻璃板来改变光程差,观察干涉条纹的变化。
4. 记录观察到的干涉条纹的情况,包括条纹的间距、亮暗交替等。
实验结果,通过实验观察和记录,我们发现随着光程差的改变,干涉条纹的间距和亮暗交替都会发生变化。
当光程差为整数倍波长时,会出现明显的亮条纹,而当光程差为半波长时,会出现暗条纹。
实验结论,通过本次实验,我们深入了解了迈克尔逊干涉仪的原理和使用方法,通过观察和分析干涉条纹的变化,我们可以推断出光波的相位差和光程差。
这对于我们进一步研究光学现象和进行相关实验具有重要的意义。
存在的问题,在实验过程中,我们发现调整反射镜和平行玻璃板的位置时需要非常小心,以免影响实验结果。
在以后的实验中,需要更加细致地调整实验仪器,以获得更加准确的实验结果。
改进方案,在以后的实验中,我们可以加强对仪器调整的细节和技巧的培训,以提高实验操作的准确性和效率。
同时,也可以加强对光学原理的理论学习,以更好地理解实验现象和结果。
实验报告迈克尔孙干涉仪的调节和使用

实验报告迈克尔孙干涉仪的调节和使用摘要:本实验使用迈克尔孙干涉仪进行调节和使用的实验。
通过调节迈克尔孙干涉仪的各个参数,观察干涉条纹的变化,并利用干涉条纹的变化来测量试样的折射率。
实验结果表明,迈克尔孙干涉仪可以用于精确测量试样的折射率。
1.引言迈克尔孙干涉仪是一种常用的实验仪器,常用于测量试样的折射率。
其原理是利用干涉现象测量光的相位差,从而得到试样的折射率。
本实验的目的是通过调节迈克尔孙干涉仪的各个参数,观察干涉条纹的变化,并利用干涉条纹的变化来测量试样的折射率。
2.实验装置本实验使用的实验装置如下:-迈克尔孙干涉仪-光源-干涉条纹观察装置-试样3.实验步骤3.1调节光源位置首先,调节光源的位置,使得光线尽可能的聚焦。
将光源放置在干涉仪的一端,调节位置直到光线尽可能聚焦在另一端的反射镜上。
3.2调节反射镜位置接下来,调节干涉仪中的两个反射镜的位置,使得光线在两个反射镜上反射后能够相互叠加干涉。
调节两个反射镜的位置,使得光线在回程时能够与出发时的光线叠加干涉。
3.3调节反射镜角度在保持反射镜位置不变的情况下,调节反射镜的角度,使得光线在反射时达到最大干涉效果。
观察干涉条纹的亮度变化,调整反射镜角度直到达到最亮的干涉条纹。
3.4放置试样将试样放置在干涉仪的一端,观察干涉条纹的变化。
根据干涉条纹的变化,可以得到试样的折射率。
4.结果与分析实验结果表明,通过调节迈克尔孙干涉仪的各个参数,可以观察到干涉条纹的变化。
实验中观察到的干涉条纹的亮度变化可以用来测量试样的折射率。
根据干涉条纹的位置变化,可以计算出试样的相对折射率,进而得到试样的绝对折射率。
5.总结本实验通过调节迈克尔孙干涉仪的各个参数,观察干涉条纹的变化,并利用干涉条纹的变化来测量试样的折射率。
实验结果表明,迈克尔孙干涉仪可以用于精确测量试样的折射率。
这对于光学相关领域的研究具有重要的意义。
迈克尔逊干涉仪的调整与使用(实验报告)

迈克尔逊干涉仪的调整与使用姓名:赵云专业:班级:学号:实验日期:2007-9-1下午实验教室:5204 指导教师:【实验名称】迈克尔逊干涉仪的调整与使用【实验目的】1.了解迈克尔逊干涉仪的干涉原理和迈克尔逊干涉仪的结构,学习其调节方法;2.调节非定域干涉、等倾干涉、等厚干涉条纹,了解非定域干涉、等倾干涉、等厚干涉的形成条件及条纹特点;3.利用白光干涉条纹测定薄膜厚度。
【实验仪器】迈克尔逊干涉仪(20040151),He-Ne激光器(20001162),扩束物镜【实验原理】1.迈克尔逊干涉仪图1是迈克尔逊干涉仪的光路示意图G 1和G2是两块平行放置的平行平面玻璃板,它们的折射率和厚度都完全相同。
G1的背面镀有半反射膜,称作分光板。
G2称作补偿板。
M1和M2是两块平面反射镜,它们装在与G1成45º角的彼此互相垂直的两臂上。
M2固定不动,M1可沿臂轴方向前后平移。
由扩展光源S发出的光束,经分光板分成两部分,它们分别近于垂直地入射在平面反射镜M1和M2上。
经M1反射的光回到分光板后一部分透过分光板沿E的方向传播,而经M2反射的光回到分光板后则是一部分被反射在E方向。
由于两者是相干的,在E处可观察到相干条纹。
光束自M1和M2上的反射相当于自距离为d的M1和M2ˊ上的反射,其中M2ˊ是平面镜M2为分光板所成的虚像。
因此,迈克尔逊干涉仪所产生的干涉与厚度为d、没有多次反射的空气平行平面板所产生的干涉完全一样。
经M1反射的光三次穿过分光板,而经M2反射的光只通过分光板一次,补偿板就是为消除这种不对称性而设置的。
双光束在观察平面处的光程差由下式给定:Δ=2dcosi式中:d是M1和M2ˊ之间的距离,i是光源S在M1上的入射角。
迈克尔逊干涉仪所产生的干涉条纹的特性与光源、照明方式以及M1和M2之间的相对位置有关。
2.等倾干涉如下图所示,当M2与M1严格垂直,即M2ˊ与M1严格平行时,所得干涉为等倾干涉。
干涉条纹为位于无限远或透镜焦平面上明暗的同心圆环。
迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。
2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。
3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。
4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。
二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。
2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。
然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。
3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。
根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。
5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。
如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。
总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。
在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。
迈克尔逊干涉仪的调整和使用实验报告
迈克尔逊干涉仪的调整和使用实验报告迈克尔逊干涉仪的调整和使用实验报告引言:迈克尔逊干涉仪是一种重要的光学仪器,它可以用来测量光的干涉现象。
在本实验中,我们将对迈克尔逊干涉仪进行调整,并使用它来观察干涉条纹的产生和变化。
一、实验目的本实验的主要目的是熟悉迈克尔逊干涉仪的调整方法,了解干涉条纹的产生原理,并通过实验观察干涉条纹的变化。
二、实验器材1. 迈克尔逊干涉仪:包括光源、分束器、反射镜和接收屏等组成部分。
2. 平行光源:用于提供单色光源。
3. 反射镜:用于反射光线。
4. 接收屏:用于观察干涉条纹。
三、实验步骤1. 调整光源:将平行光源放置在适当位置,并调整其亮度,保证光线足够明亮。
2. 调整分束器:将分束器放置在适当位置,使得光线能够均匀地分成两束。
3. 调整反射镜:将反射镜放置在适当位置,使得其中一束光线经过反射后与另一束光线相遇。
4. 调整接收屏:将接收屏放置在适当位置,并调整其位置,使得干涉条纹能够清晰地显示出来。
5. 观察干涉条纹:调整各个部分的位置,观察干涉条纹的产生和变化,并记录下观察结果。
四、实验结果与分析通过实验观察,我们可以看到干涉条纹的产生和变化。
当两束光线相遇时,由于光的波动性,会形成干涉现象。
当两束光线相位差为整数倍的波长时,会产生明纹,而相位差为半整数倍的波长时,会产生暗纹。
通过调整反射镜和接收屏的位置,我们可以改变两束光线的光程差,从而观察到干涉条纹的变化。
在实验过程中,我们还观察到了干涉条纹的间距变化随光源波长的变化而变化。
根据迈克尔逊干涉仪的原理,当光源波长增大时,干涉条纹的间距也会增大;当光源波长减小时,干涉条纹的间距也会减小。
这是因为光的波长与干涉条纹的间距之间存在一个正比关系。
五、实验总结通过本次实验,我们学习了迈克尔逊干涉仪的调整方法,并通过观察干涉条纹的产生和变化,加深了对干涉现象的理解。
我们还发现了干涉条纹的间距与光源波长之间的关系。
这些实验结果对于进一步研究光的干涉现象和应用具有重要意义。
迈克尔逊干涉仪的调节与使用实验报告
《迈克尔逊干涉仪的调节与使用》实验报告一、实验目的1.了解迈克尔逊干涉仪的结构原理并掌握调节方法。
2.观察等厚干涉、等倾干涉以及白光干涉。
3.测量氦氖激光的波长。
二、实验原理1.迈克尔逊干涉仪迈克尔逊干涉仪是一个分振幅法的双光干涉仪,其光路如下图所示,它反射镜M1、M2、分束镜P1和补偿板P2组成。
其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜P1的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。
迈克耳孙干涉仪的结构如图所示。
镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M的下端还附有两个互相垂直的微动拉簧螺丝,用以精确地调整M1的倾斜度。
M2镜所在的导轨拖板由精密丝杠带动,可沿导轨前后移动。
M2镜的位置由三个读数尺所读出的数值的和来确定:主尺、粗调手轮和微调手轮。
在迈克尔逊干涉仪上可以实现等倾和等厚两种干涉。
为了分析方便,可将反射镜M1成像到M2的光路中。
2.He-Ne激光波长的测定如图1所示,当M1’、M2相互平行,即M1和M2相互严格垂直时,在E处可以观察到等倾干涉;在等倾干涉时,如果在迈克尔逊干涉仪上反射镜M1和M2到分束镜的距离差为d时,反射镜和M1’形成一个厚度为d的空气膜,其光程差如图2所示,当光线的入射角为i时,两反射镜反射光线的光程差为:Δ=2d cos i′=2d√n2−sin2i其中,n为两臂中介质的折射率,i和i'分别为光线入射到M2和M1上的入射角,当迈克尔逊干涉仪的两臂中介质相同时,i=i’。
当两臂中介质的折射率一定,且d不变时,光程差只取决于入射角i,在E处观察时,对于相同入射角的光,形成一个以光轴为中心的圆环。
当为波长的整数倍时是亮条纹。
由此,迈克尔逊干涉仪中,等倾干涉条纹级次是中间大外边小。
迈克耳孙干涉仪的调节和使用实验报告
实验十四 迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长λ=643.84696nm )是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。
【实验目的与要求】1.学习迈克耳孙干涉仪的原理和调节方法。
2.观察等倾干涉和等厚干涉图样。
3.用迈克耳孙干涉仪测定He -Ne 激光束的波长和钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He -Ne 激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
从氦氖激光器发出的单色光s ,经扩束镜L 将光束扩束成一个理想的发散光束,该光束射到与光束成45˚倾斜的分光板G 1上,G 1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。
这两束光沿着不同的方向射到两个平面镜M 1和M 2上,经两平面镜反射至G 1后汇合在一起。
仔细调节M 1和M 2,就可以在E 处观察到干S-激光束;L-扩束镜;G 1-分光板;G 2-补偿板;M 1、M 2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图涉条纹。
G2为补偿板,其材料和厚度与G1相同,用以补偿光束(2)的光程,使光束(2)与光束(1)在玻璃中走过的光程大致相等。
迈克尔逊干涉仪的调整和使用实验报告
迈克尔逊干涉仪的调整和使用实验报告迈克尔逊干涉仪的调整和使用实验报告引言:迈克尔逊干涉仪是一种常用的光学仪器,被广泛应用于干涉测量、光学相干等领域。
本文将介绍迈克尔逊干涉仪的调整和使用实验报告,以帮助读者更好地理解和应用该仪器。
一、实验目的本实验的目的是通过调整迈克尔逊干涉仪的各个部件,使其能够正常工作,并实现干涉现象的观察和测量。
二、实验器材1. 迈克尔逊干涉仪主体:包括光源、分束器、反射镜、反射镜支架等。
2. 干涉图样观察装置:包括目镜、测量尺等。
三、实验步骤1. 调整光源:将光源放置在适当位置,并确保其能够发出稳定的光束。
2. 调整分束器:通过调整分束器的位置和角度,使得从分束器出射的两束光能够平行地照射到反射镜上。
3. 调整反射镜:调整反射镜的位置和角度,使得反射的光能够重新汇聚到分束器上,并形成干涉现象。
4. 观察干涉图样:通过目镜观察干涉图样,调整反射镜的位置和角度,使得干涉条纹清晰可见。
5. 测量干涉现象:使用测量尺等测量工具,对干涉条纹进行测量,以得到干涉现象的具体参数。
四、实验结果与分析经过以上调整步骤,我们成功地调整了迈克尔逊干涉仪,并观察到了清晰的干涉图样。
通过测量尺测量干涉条纹的间距,我们可以得到干涉现象的具体参数,如波长、相位差等。
在实验过程中,我们注意到调整分束器的位置和角度对干涉图样的清晰度和稳定性有很大的影响。
如果分束器位置不准确,会导致干涉图样模糊或消失;如果分束器角度不准确,会导致干涉图样的条纹不清晰。
因此,在调整分束器时需要仔细操作,确保其位置和角度的准确性。
另外,调整反射镜的位置和角度也是关键步骤。
反射镜的位置调整不当会导致干涉图样错位或形成不规则的干涉条纹;反射镜的角度调整不当会导致干涉条纹的强度变化或消失。
因此,在调整反射镜时需要注意细微的调整,并通过目镜观察干涉图样的变化,以达到最佳的调整效果。
五、实验总结通过本次实验,我们成功地调整了迈克尔逊干涉仪,并观察到了清晰的干涉图样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十四迈克耳孙干涉仪的调节与使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A、A、Michelson)与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长λ=643、84696nm)就是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
她定义1m=1553164、13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然就是许多现代干涉仪的基础。
【实验目的与要求】1、学习迈克耳孙干涉仪的原理与调节方法。
2、观察等倾干涉与等厚干涉图样。
3、用迈克耳孙干涉仪测定He-Ne激光束的波长与钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He-Ne激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪就是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图从氦氖激光器发出的单色光s,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45˚倾斜的分光板G1上,G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)与(2)。
这两束光沿着不同的方向射到两个平面镜M1与M2上,经两平面镜反射至G1后汇合在一起。
仔细调节M1与M2,就可以在E处观察到干涉条纹。
G2为补偿板,其材料与厚度与G1相同,用以补偿光束(2)的光程,使光束(2)与光束(1)在玻璃中走过的光程大致相等。
迈克耳孙干涉仪的结构图如图7-2所示。
两平面镜M1与M2放置在相互垂直的两臂上。
其中平面镜M2就是固定的,平面镜M1可在精密的导轨上前后移动,以便改变两光束的光程差,移动范围在0~100nm内。
平面镜M1、M2的背后各有三个微调螺丝(图中的3、12),用以改变平面镜M1、M2的角度。
在平面镜M2的下端还附有两个相互垂直的拉簧螺丝10、11,可以细调平面镜M2的倾斜度。
移动平面镜M1有两种方式:一就是旋转粗调手轮7可以较快地移动M1:二就是旋转微调鼓轮9可以微量移动M1(如果迈克耳孙干涉仪有紧固螺丝8,则在转动微调鼓轮前,先要拧紧紧固螺丝8,转动粗调手轮前必须松开紧固螺丝8,否则会损坏精密丝杆。
若没有紧固螺丝,直接旋转微调鼓轮9则可微量移动M1)。
平面镜M1的位置读数由三部分组成:从导轨上读出毫米以上的值;从仪器窗口的刻度盘上读到0.01mm;在微动手轮上最小刻度值为0.0001mm,还可估读到0.0001mm的1/10。
【实验原理】一、等倾干涉条纹等倾干涉条纹就是迈克耳孙干涉仪所能产生的一种重要的干涉图样。
如图7-1与图7-3所示,当M 1与M 2垂直时,像M '2就是M 2对半反射膜的虚象,其位置在M 1附近。
当所用光源为单色扩展光源时,我们在E 处观察到的干涉条纹可以瞧作实反射镜M 1与虚反射镜M '2所反射的光叠加而成的。
设d 为M 1、M '2间的距离,θ为入射光束的入射角,θ'为折射角,由于M 1、M '2间就是空气层,折射率n=1,θ=θ'。
当一束光入射到M 1、M 2镜面而分别反射出(1)、(2)两条光束时,由于(1)、(2)来自同一光束,就是相干的,两光束的光程差δ为θθθθδcos 2sin 2cos 2d tg d dAD BC AC =-=-+= 当d 一定时,光程差δ随着入射角θ的变化而改变,同一倾角的各对应点的两反射光线都具有相同的光程差,这样的干涉,其光强分布由各光束的倾角决定,称为等倾干涉条纹。
当用单色光入射时,我们在毛玻璃屏上观察到的就是一组明暗相间的同心圆条纹,而干涉条纹的级次以圆心为最大(因δ=2dcon θ=m λ,当d 一定时,θ越小,con θ越大,m 的级数也就越大)。
当d 减小(即M 1向M '2靠近)时,若我们跟踪观察某一圈条纹,将瞧到该干涉环变小,向中心收缩(因d 变小,对某一圈条纹2dcon θ保持恒定,此时θ就要变小)。
每当d 减小λ/2,干涉条纹就向中心消失一个。
当M 1与M '2接近时,条纹变粗变疏。
当M 1与M '2完全重合(即d=0)时,视场亮度均匀。
当M 1继续沿原方向前进时,d 逐渐由零增加,将瞧到干涉条纹一个一个地从中心冒出来,每当d 增加λ/2,就从中间冒出一个,随着d 的增加,条纹重叠成模糊一片,图7-4表示d 变化时对于干涉条纹的影响。
二、测量光波的波长在等倾干涉条件下,设M 1移动距离∆d ,相应冒出(或消失)的圆条纹数N ,则λN d 21=∆ (1) 由上式可见,我们从仪器上读出∆d ,同时数出相应冒出(或消失)的圆条纹数N ,就可以计算出光波的波长λ。
*三、等厚干涉条纹若M 1不垂直M 2,即M 1与M '2不平行而有一微小的夹角,且在M 1与M '2相交处附近,两者形成劈形空气膜层。
此时将观察到等厚干涉条纹,凡劈上厚度相同的各点具有相同的光程差,由于劈形空气层的等厚点的轨迹就是平行于劈棱(即M 1与M '2的交线)的直线,所以等厚干涉条纹也就是平行于M 1与M '2的交线的明暗相间的直条纹。
当M 1与M '2相距较远时,甚至瞧不到条纹。
若移动M 1使M 1与M '2的距离变小时,开始出现清晰地条纹,条纹又细又密,且这些条纹不就是直条纹,一般就是弯曲的条纹,弯向厚度大的一侧,即条纹的中央凸向劈棱。
在M 1接近M '2的过程中,条纹背离交线移动,并且逐渐变疏变粗,当M 1与M '2相交时,出现明暗相间粗而疏的条纹。
其中间几条为直条纹,两侧条纹随着离中央条纹变远,而微显弯曲。
随着M 1继续沿着原方向移动时,M 1与M '2之间的距离逐渐增大,条纹由粗疏逐渐变得细密,而且条纹逐渐朝相反方向弯曲。
当M 1与M '2的距离太大时,条纹就模糊不清。
图7-5表示M 1与M '2距离变化引起干涉条纹的变化。
四、测定钠光双线(D 1D 2)的波长差当M 1与M '2相平行时,得到明暗相间的圆形干涉条纹。
如果光源就是绝对单色的,则当M 1镜缓慢地移动时,虽然视场中条纹不断涌出或陷入,但条纹的视见度应当不变。
设亮条纹光强I 1,相邻暗条纹光强为I 2,则视见度V 可表示为2121I I I I V +-=视见度描述的就是条纹清晰的程度。
如果光源中包含有波长λ1与λ2相近的两种光波,而每一列光波均不就是绝对单色,以钠黄光为例,它就是由中心波长λ1=589、0nm 与λ2=589、6nm 的双线组成,波长差为0、6nm 。
每一条谱线又有一定的宽度,如图7-6所示,由于双线波长差∆λ与中心波长相比甚小,故称之为准单色光。
用这种光源照明迈克耳孙干涉仪,它们将各自产生一套干涉图,干涉场中的强度分布则就是两组干涉条纹的非相干叠加,由于λ1与λ2有微小的差异,对应λ1的亮环的位置与对应λ2的亮环的位置,将随d 的变化,而呈周期的重合与错开,因此d 变化时,视场中所见叠加后的干涉条纹交替出现“清晰”与“模糊”甚至消失。
设在d 值为d 1时,λ1与λ2均为亮条纹,视见度最佳,则有211λmd =,222λnd = (m 、n 为整数)如果λ1>λ2,当d 值增加到d 2,若满足()212λK m d +=,()25.022λ++=K n d (K 为整数)此时对λ1就是亮条纹,对λ2则为暗条纹,视见度最差(可能分不清条纹),从视见度最佳到最差,M 1移动的距离为()25.022112λλ+==-=∆K Kd d d由()25.0221λλ+=K K 与2112λK d d =-消去K 可得二次波长差∆λ()()1221212212144d d d d -=-=-=∆λλλλλλ式中12λ为λ1、λ2的平均值。
因为视见度最差时,M 1的位置对称地分布在视见度最佳位置的两侧,所以相邻视见度最差的M 1移动距离∆d 与∆λ的关系为()122122d d -=∆λλ (2)【实验内容】 *必做内容1、调节迈克耳孙干涉仪,观察等倾干涉(1)用He-Ne 激光器作光源,使入射光束大致垂直平面镜M 2。
在激光器前放一孔屏(或直接利用激光束的出射孔),激光器经孔屏射向平面镜M 2,遮住平面镜M 1,用自准直法调节M 2背后的三个微调螺丝(必要时,可调节底角螺丝),使由M 2反射回来的一组光点像中的最亮点返回激光器中,此时入射光大致垂直平面镜M 2。
(2)使平面镜M 1与M 2大致垂直。
遮住平面镜M 2,调节平面镜M 1背后的三个微调螺丝,使由M 1反射回来的一组光点像中的最亮点返回激光器中,此时平面镜M 1与M 2大致相互垂直。
(3)观察由平面镜M 1、M 2反射在观察屏上的两组光点像,再仔细微调M 1、M 2背后的三个调节螺丝,使两组光点像中最亮的两点完全重合。
(4)在光源与分光板G 1之间放一扩束镜,则在观察屏上就会出现干涉条纹。
缓慢、细心地调节平面镜M 2下端的两个相互垂直的拉簧微调螺丝,使同心干涉条纹位于观察屏中心。
2、测量He-Ne 激光束的波长(1)移动M 1改变d ,可以观察到视场中心圆条纹向外一个一个冒出(或向内一个一个消失)。
开始记数时,记录M 1镜的位置读数d 1。
(2)数到圆条纹从中心向外冒出100个时,再记录M 1镜的位置读数d 2。
(3)利用式(1),计算He-Ne 激光束的波长λ。
(4)重复上述步骤三次,计算出波长的平均值λ。
最后与公认值λ0=632、8nm 比较,计算百分误差B 。
【实验数据记录】表【数据处理与分析】1.计算He-Ne 激光的波长的平均值及其不确定度,写出测量结果;与公认值nm 8.6320=λ比较,计算百分误差B 。
则nm 7.631=λ 根据:d U U ∆=501λ ()mm 031580mm;00123.0.Δd d S ==∆由格罗布斯判据()mm 02934.0=∆⋅-∆<∆d S G d d n k ;()mm 03383.0=⋅+>λλλS G n k则剔除坏数据第一组数据 之后计算:()mm 031100mm;00039.0.Δd d S ='='∆则A 类不确定度:mm 00041.0)(95.0='⨯=∆∆d A S nt B 类不确定度:m m 00006.03=∆=∆insB 则不确定度:()mm 00042.022=∆+∆=B AU λ则nm 3.8501==∆d U U λ nm 0.622='λ结论:nm 3.80.622±=±'=λλλU与公认值nm 8.6320=λ比较,计算百分误差B %7.1%10000-=⨯-'=⇒λλλB2.计算钠光双线(D 1D 2)波长差的平均值及其不确定度,写出测量结果;与公认值∆λ=0、6nm 比较,计算百分误差所以:m m 29.0=∆d则()m m 003.0=∆⇒d S 由格罗布斯判据()mm 29.0=∆⋅-∆<∆d S G d d n k ;()mm 30.0=∆⋅+∆>∆d S G d d n k所以无坏数据 则A 类不确定度:mm 003.0)(95.0=⨯=∆∆d A S nt B 类不确定度:mm 006.03=∆=∆insB 则mm 007.022=∆+∆=∆B A U d则nm 15.02112212=∆=∆∆d U dU λλnm 15.059.0±=±∆=∆∆λλλU%6.0%1000-=⨯∆∆-∆=λλλB【注意事项】1、测量He-Ne激光束波长时,微动手轮只能向一个方向转动,以免引起空程误差。