迈克耳孙干涉仪实验报告 (2)

合集下载

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告
1、实验简介
“迈克尔逊干涉仪”(Michaelson Interferometer)是一种便携式、利用干涉测量法测量平面镜和实物形状及尺寸的精密仪器。

它是一种无源距离测量方法,它通过分析干涉图像返回的距离信息来获得目标曲面和表面的精度参数,可以方便的测量玻璃、金属、涂层等表面的特性参数。

本实验拟采用迈克尔逊干涉仪,研究多次反射平面波的干涉斑图,用以了解平面镜形状和尺寸的变化对反射波的影响。

2、实验仪器设备
实验所用仪器设备主要包括迈克尔逊干涉仪、两只不同直径0.8NM 和 1.4NM 钨丝、测量单元、以及一个可调节电压的电源等。

3、实验原理
迈克尔逊干涉仪运用了光干涉原理,它弥补了简单显微镜无法获得距离的缺陷。

它的原理首先用照相机对光斑进行测量,然后根据各种参数来计算出测量结果,拟采用迈克尔逊干涉仪测量多次反射的平面波的位置、距离等数据,根据测量结果分析干涉斑图形状及尺寸变化,从而获知平面镜形状和尺寸的变化情况。

4、实验步骤与程序
(1)将0.8NM 和 1.4NM钨丝分别装入迈克尔逊干涉仪,连接测量单元,使电源与仪器相连;
(2)微调光源、参考物表面和探测物体等参数,使光束垂直射入参考物表面;
(3)拍摄干涉图,用记录仪将数据采样储储;
(4)改变参考物表面的粗糙度及尺寸,重复步骤2和3;
(5)通过分析干涉斑图形状及尺寸变化,研究多次反射平面波的干涉斑图。

5、实验结果及分析
实验结果表明:不同参考物表面粗糙度和尺寸会导致干涉斑图形状及尺寸变化,反射波数量及位置也有相应变化,从而揭示了平面镜形状和尺寸的变化对反射波的影响。

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告
实验目的,通过使用迈克尔逊干涉仪,了解干涉现象的产生原理,掌握干涉仪的使用方法,以及通过实验观察和测量,验证干涉
理论。

实验原理,迈克尔逊干涉仪是一种利用干涉现象测量光波波长、折射率等物理量的仪器。

它由半透明镜、全反射镜和光源等部件组成。

当光波通过半透明镜分为两束光线,分别经过不同路径反射后
再次汇聚在半透明镜上时,会产生干涉现象。

通过观察干涉条纹的
变化,可以得到有关光波性质的信息。

实验步骤:
1. 调整迈克尔逊干涉仪,使得两束光线在半透明镜上产生明显
的干涉条纹。

2. 观察干涉条纹的变化,记录下不同条件下的干涉图样。

3. 通过调节干涉仪的各个部件,测量干涉条纹的间距、角度等
参数。

4. 根据测量数据,计算出光波的波长、折射率等物理量。

实验结果,通过观察和测量,得到了不同条件下的干涉条纹图样,并且测量了干涉条纹的间距、角度等参数。

根据计算得到的数据,验证了干涉理论,并且得到了光波的波长、折射率等物理量的结果。

实验总结,通过这次实验,我们深入了解了迈克尔逊干涉仪的使用方法,掌握了干涉现象的产生原理,并且通过实验观察和测量验证了干涉理论。

这次实验对我们加深了对光学原理的理解,提高了实验操作能力,是一次很有意义的实验。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的:
通过迈克尔逊干涉仪实验,验证干涉现象,并测量出光的波长。

实验原理:
迈克尔逊干涉仪是一种利用干涉现象来测量光波长的仪器。


由半透镜、分束镜、反射镜等部件组成。

当光线通过分束镜后被分
成两束光线,分别经过反射镜反射后再次汇聚在半透镜上,产生干
涉现象。

通过移动一个反射镜,观察干涉条纹的移动,可以测量出
光的波长。

实验步骤:
1. 调整迈克尔逊干涉仪,使得两束光线在半透镜上产生干涉现象。

2. 通过微调反射镜的位置,观察干涉条纹的变化。

3. 记录不同位置下的干涉条纹的位置。

4. 根据干涉条纹的移动情况,计算出光的波长。

实验结果:
经过实验测量,我们得到了光的波长为XXX纳米。

实验结论:
通过迈克尔逊干涉仪实验,我们验证了光的干涉现象,并成功测量出了光的波长。

实验结果与理论值相符,实验达到了预期的目的。

自查报告:
在实验过程中,我们注意到了一些问题。

首先,在调整干涉仪时,需要保证光线的稳定,避免外界干扰。

其次,在测量干涉条纹位置时,需要精确记录数据,以减小误差。

在今后的实验中,我们将更加注意这些细节,以提高实验的准确性和可靠性。

6- 迈克尔逊干涉仪实验报告

6- 迈克尔逊干涉仪实验报告

6- 迈克尔逊干涉仪实验报告引言:干涉是光学实验中的一种重要现象。

其中迈克尔逊干涉仪是一种利用分束器将光分为两路走不同路程,再合成的干涉仪。

本实验目的是通过迈克尔逊干涉仪对光的相位干涉进行实验研究,探究其在科学研究和实际应用中的作用。

实验仪器与实验原理:迈克尔逊干涉仪的主要组成部分为分束器、反射镜、透镜和检波器。

分束器将光分成两路光,在反射后分别经过不同的光程后,再合成在一个光学环境中,形成干涉条纹,进而研究光的相位差。

本实验选用的迈克尔逊干涉仪光路如下:(1)准直光:由汞灯发出,经过凸透镜后成为平行光线。

(2)平板玻璃片:用于将平行光分成两束相互垂直地经过反射镜反向传播。

(3)待测物:常用的待测物为透明薄板。

(4)反射镜:反射光线使其改变方向。

(5)合成反射光:在两路光线进入存在相位差干涉的区域后,在反射镜上反射成为一路光线,进而在检测屏幕上产生干涉条纹。

实验步骤与实验结果:1. 线性度检查:使反射镜沿着检测屏幕方向移动,即保证反射镜像中心移动时干涉条纹线性分布。

结果:移动100次反射镜,干涉条纹线性,线间距与波长λ比例大小相等。

2. 确定干涉璀璨:注入汞灯光源,调整两个反射镜,使其距离相等,透射光线相遇前的光程相等,令条纹体现出明暗相间的亮度。

结果:明暗干涉线段发生变化的能量必须尽可能小。

3. 确定空气中两路光线的光程差:沿反射镜上下调节反射镜距离微调干涉条带展宽,经过微调后能够看到一阶条纹明暗相间的情况,再微一点可见的一级条带左端和右端的加亮区域刚开始相接收阻塞,当这一加亮区第一次完全保持不变,即表示第一阶的加亮区“连接”在一起,这时记下此时反射镜之间距离。

据相邻条带间差一现象可知,一阶干涉级别条纹宽度为λ /2 。

结果:空气中两路光线光程差为λ/2。

4. 确定疏水中两条光线的光程差:采用疏水薄板作为干涉片。

一级干涉条纹宽度为λ /2 ,得出空气中两路光线光程差λ/2,薄板厚度(光程差)d,直接得到疏水的折射率n(n ≌ 1.33):n = d / λ 。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。

2、掌握迈克尔逊干涉仪的调节方法。

3、观察等倾干涉、等厚干涉条纹,并测量激光的波长。

二、实验原理迈克尔逊干涉仪是一种利用分振幅法产生双光束干涉的精密光学仪器。

其原理基于光的干涉现象。

从光源 S 发出的一束光,经分光板 G1 分成两束光,反射光 1 射向平面镜 M1,透射光 2 射向平面镜 M2。

M1 和 M2 反射回来的光在分光板 G1 的半透膜处相遇,发生干涉。

若 M1 和 M2 严格垂直,则形成等倾干涉条纹。

此时,干涉条纹是一组同心圆环,圆心处条纹级次最高。

干涉条纹的光程差为:$\Delta = 2d\cos\theta$其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 法线的夹角。

当 M1 和 M2 有一定夹角时,形成等厚干涉条纹。

此时,干涉条纹是平行于 M1 和 M2 交线的直条纹。

通过测量干涉条纹的变化,可以计算出光的波长。

三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。

四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平。

点亮 HeNe 激光器,使激光束大致垂直于干涉仪的入射窗口。

放置扩束镜和毛玻璃屏,在屏上观察激光光斑,调节 M1 和 M2 背后的螺丝,使光斑重合。

观察干涉条纹,若没有出现条纹,微调 M1 或 M2 的位置,直到出现清晰的干涉条纹。

2、测量激光波长转动微调鼓轮,使条纹中心“冒出”或“缩进”,记录条纹变化的条数N 和对应的微调鼓轮的读数变化Δd。

重复测量多次,计算平均值,根据公式$\lambda =\frac{2\Delta d}{N}$计算激光的波长。

3、观察等倾干涉和等厚干涉条纹缓慢调节 M1 的位置,观察等倾干涉条纹的变化。

调节 M1 和 M2 之间的夹角,观察等厚干涉条纹。

五、实验数据及处理|测量次数|条纹变化条数 N |微调鼓轮读数变化Δd (mm) |||||| 1 | 50 | 0295 || 2 | 50 | 0298 || 3 | 50 | 0302 |平均值:$\Delta d =\frac{0295 + 0298 + 0302}{3} =0298$ (mm)激光波长:$\lambda =\frac{2\Delta d}{N} =\frac{2\times0298\times10^{-3}}{50} = 1192\times10^{-6}$(m)六、误差分析1、仪器本身的精度限制,如微调鼓轮的最小刻度。

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告
实验目的,通过迈克尔逊干涉仪的使用,观察干涉现象,了解
干涉仪的原理和工作方式。

实验仪器,迈克尔逊干涉仪、激光光源、准直器、反射镜、半
反射镜、平面镜、调节螺丝等。

实验原理,迈克尔逊干涉仪是一种利用干涉现象来测量光波长、长度和折射率的仪器。

它由一束激光光源通过准直器发出的平行光束,分别经过半反射镜和平面镜后,再次汇聚在半反射镜上,形成
干涉条纹。

通过调节半反射镜和平面镜的位置,可以改变干涉条纹
的位置和间距,从而得到所需的干涉效果。

实验步骤:
1. 将激光光源通过准直器发出的平行光束照射到半反射镜上。

2. 调节半反射镜和平面镜的位置,使得两束光线再次汇聚在半
反射镜上,观察干涉条纹的形成和变化。

3. 通过调节螺丝等工具,改变半反射镜和平面镜的位置,观察
干涉条纹的位置和间距的变化。

4. 记录实验过程中的观察现象和数据。

实验结果,通过实验观察,我们成功地观察到了干涉条纹的形
成和变化,根据调节半反射镜和平面镜的位置,我们得到了不同的
干涉效果和干涉条纹的位置和间距。

实验结果与理论预期基本一致。

实验分析,通过本次实验,我们深入了解了迈克尔逊干涉仪的
原理和工作方式,掌握了干涉现象的观察方法和调节技巧。

同时,
我们也发现了一些实验中可能出现的误差和不确定性,为今后的实
验工作提供了一定的参考和改进方向。

实验结论,本次实验通过迈克尔逊干涉仪的使用,成功观察到
了干涉条纹的形成和变化,加深了对干涉现象的理解,为今后的光
学实验和研究工作打下了良好的基础。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告实验目的:通过迈克尔逊干涉仪的实验,验证光的干涉现象,探究干涉条纹的形成原理。

实验仪器:迈克尔逊干涉仪、激光器、准直器、反射镜、分束镜、平面镜等。

实验原理:迈克尔逊干涉仪利用激光器发出的单色光,经过分束镜分为两束光线,分别经过两个不同的光路后再次交汇,产生干涉现象。

当两束光线相遇时,如果它们的相位差恰好是整数倍的波长,就会形成明暗条纹,从而观察到干涉现象。

实验步骤:1. 将激光器调整好,使其发出的光线垂直照射到分束镜上。

2. 调整分束镜和反射镜的位置,使得两束光线分别经过不同的光路后再次交汇。

3. 观察干涉条纹的形成,并记录下实验现象。

实验结果:在实验中,我们观察到了明暗条纹的形成,证实了光的干涉现象。

通过调整反射镜的位置,我们还发现了干涉条纹的密度和位置会随着反射镜的移动而发生变化。

实验分析:根据实验结果,我们可以得出结论,迈克尔逊干涉仪可以有效地观察到光的干涉现象,通过调整干涉条纹的位置和密度,可以进一步了解光的波动性质。

实验总结:通过本次实验,我们深入了解了光的干涉现象,并掌握了迈克尔逊干涉仪的使用方法。

同时,我们也发现了实验中一些需要注意的细节和技巧,这将对我们今后的实验工作有所帮助。

自查报告:在实验过程中,我们注意到了一些细节问题,比如光路的调整和干涉条纹的观察方法等,这些都需要我们在今后的实验中加以注意和改进。

另外,我们也需要更深入地了解光的干涉现象的理论知识,以便更好地进行实验操作和数据分析。

在今后的学习和实验中,我们将继续努力,不断提高实验技能和理论水平。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的:
通过迈克尔逊干涉仪实验,掌握干涉条纹的观察方法,熟悉干涉仪的基本原理,加深对光的波动性质的理解。

实验仪器:
迈克尔逊干涉仪、白光源、准直器、透镜、反射镜等。

实验原理:
迈克尔逊干涉仪是一种利用分束镜将光分为两束,分别经过不同光程后再合并,观察干涉现象的仪器。

当两束光相遇时,如果它们的相位差为整数倍的波长,就会出现明显的干涉条纹。

实验步骤:
1. 将白光源通过准直器调节成平行光,照射到分束镜上。

2. 调节分束镜和反射镜的角度,使得两束光分别经过不同光程后再合并。

3. 观察干涉条纹,调节反射镜的位置,使得条纹清晰。

4. 测量干涉条纹的间距,计算出波长。

实验结果:
通过实验观察,成功在干涉仪上观察到清晰的干涉条纹,并且测量出了条纹的间距。

根据测量结果计算出了光的波长,与理论值基本吻合。

实验总结:
通过本次实验,我对迈克尔逊干涉仪的原理和操作有了更深入的了解,加深了对光的波动性质的理解。

同时,实验中也遇到了一些问题,比如调节干涉条纹的清晰度需要一定的技巧,需要进一步提高实验操作的熟练度。

自查报告:
在实验过程中,我发现自己在调节干涉条纹的过程中有些困难,需要更加熟练地掌握调节的技巧。

另外,在实验结果的测量和计算
过程中,也需要更加细致地进行操作,以减小误差。

下次在进行类
似实验时,我会更加注意这些方面,以提高实验的准确性和可靠性。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的:
通过迈克尔逊干涉仪实验,掌握干涉仪的基本原理,了解干涉条纹的形成规律,掌握干涉仪的使用方法。

实验仪器:
迈克尔逊干涉仪、激光器、准直器、半反射镜、全反射镜、平面镜、光学台等。

实验原理:
迈克尔逊干涉仪是一种利用干涉现象来测量光波波长、光学元件表面形貌等的仪器。

其基本原理是利用光的干涉现象来观察光的波动性质。

实验步骤:
1. 将激光器放置在一端,使光线尽可能垂直射入干涉仪。

2. 调整全反射镜和半反射镜的位置,使光线分别经过两条光路。

3. 观察干涉条纹的形成,调整半反射镜的位置,使干涉条纹清
晰可见。

4. 测量干涉条纹的间距,计算出光的波长。

实验结果:
通过实验观察和测量,成功观察到了干涉条纹的形成,并且测
量出了干涉条纹的间距。

根据计算,得到了光的波长。

实验结论:
通过迈克尔逊干涉仪实验,我们掌握了干涉仪的基本原理和使
用方法,成功观察到了干涉条纹的形成,并且通过测量得到了光的
波长。

实验取得了成功。

存在问题及改进方案:
在实验过程中,我们发现调整干涉仪的光路比较困难,需要更
加熟练的操作才能够准确观察到干涉条纹。

在以后的实验中,需要加强对仪器的操作训练,以提高实验的准确性和可靠性。

自查人,XXX 日期,XXXX年XX月XX日。

大学物理下-迈克尔逊干涉仪实验报告【全文】

精选全文完整版可编辑修改大学物理实验报告3. 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出,测试公式需要写明)(1)迈克耳孙干涉仪的结构与光路如图5.3. 1所示为迈克耳孙干涉仪的侧视图图与俯视图,导轨7固定在一只稳定的底座上,底座由三颗调平螺丝9及其锁紧螺丝10来调平。

丝杠6螺距为1mm,转动粗调手轮2,经一对齿轮带动丝杠转动,进而带动移动镜M在导轨上滑动。

移动距离可在毫米刻度尺5上读到1 mm,在窗口3中的刻度盘上读到0.01 mm。

转动微调手轮1,经1:100的蜗轮传动,可实现微动。

微动手轮上的最小刻度为0.0001 mm,可估读到0.00001 mm 。

分光板G1和补偿板G2固定在基座上,不得强扳,且不能用手接触其光学表面。

固定参考镜(定镜)13和移动镜(动镜)11后各有三颗螺丝,用于粗调两者相互垂直,不能拧得太紧或太松,以免使其变形或松动。

固定参考镜13的一侧和下部各有一颗微调螺丝 14和15,可用来微调13的左右偏转和俯视,微调螺丝也不能拧得太松或太紧。

丝杠的顶进力由丝杠顶进螺帽8来调整。

迈克尔逊干涉仪的实验原理如图5.3.2所示。

由光源S发出一束光,射到分光板G1的半透半反膜L上,L使反射光和反射的光强基本相同,所以称G1为分光板。

透过膜层L的光束(1)经G2到达参考镜M1后,被反射回来;被反射的光束(2) 到达移动镜M2后,也被反射回来。

由于(1)、(2)两束光满足光的相干条件,各自反射回来在膜层L所在表面相遇后,就发生干涉,在E处即可观察到干涉条纹。

G2是补偿板,它使光束(1)和(2)经过玻璃的次数相同,当使用白光作为光源时,G2还可以补偿G1的色散。

M1’是在G1中看到的M1的虚像。

(2) 单色点光源等倾干涉条纹的观察及波长的测量如图5.3.3所示,由He-Ne激光器发出的细束平行激光经过以钠光入射,它有两条谱线,对应空气中波长分别为λ 1和λ 2(设λ 1>λ 2),彼此十分接近,就会出现这样一种情况: 当d 为某一定值d1时,对同一入射角θi,有2d1cos θi=k λ2,且2d1cos θi=(k+1/2) λ 1,此时λ 2的k 级明条纹与λ1的k 级暗条纹重叠,视场中干涉条纹的可见度最低,如图5.3.5所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迈克耳孙干涉仪实验报告
5-吴利杰
PB05210415
1观察非定域干涉条纹
由公式Δ=2hcosδ(1+h/Zsin2δ)可以看出在δ=0,即干涉环的中心处光程差有极大值,即中心处干涉级次最高。

如果中心处是亮的,则Δ1=2h1=mλ。

若改变光程差,使中心处仍是亮的,则Δ2=2h2=(m+n)λ,我们得到
Δh=h2-h1=1/2nλ
即M1和M2之间的距离没改变半个波长,其中心就“生出”或“消失”一个圆环。

两平面反射镜之间的距离增大时,中心就“吐出”一个个圆环。

反之距离减小时中心就“吞进”一个个圆环,同时条纹之间的间隔(条纹的稀疏)也发生变化。

2测量He-Ne激光的波长(要求用最小二乘法处理数据)
以下计算均在概率p=0.68下
ΔH=0.01591±0.00006(p=0.68)
λ=ΔH1/n=0.000318±0.000001 (单位?给出的结果为半波长)
逆时针时ΔH:
平均值ΔH=0.01594 标准差σ=0.00020mm μA=0.000064mm t=1.06
ΔH=0.01594±0.00007(p=0.68)
λ=ΔH1/n=0.000319±0.000001(单位?给出的结果为半波长)。

相关文档
最新文档