freeform lens design for led collimating illumination
玻璃产品创意拍摄方案

玻璃产品创意拍摄方案1. "Reflective Elegance" - Showcase the beauty and versatility of glass products through reflective shots. Capture the stunning interplay of light and glass surfaces to highlight their aesthetic appeal.2. "Vibrant Vessels" - Create a series of photos featuring glass vases filled with colorful flowers. Explore the contrast between the transparency of the glass and the vibrancy of the flowers to evoke a sense of natural beauty.3. "Frozen Motion" - Freeze glass products in mid-air to capture the sense of dynamic movement. Use high-speed photography techniques to capture the intricate details of glass shattering or liquid swirling inside glass objects.4. "Submerged Serenity" - Dive into an underwater setting to capture glass products gracefully floating in turquoise waters. Show how glass can interact with the natural environment, reflecting and refracting light to create a tranquil ambiance.5. "Enchanting Shadows" - Photograph glass pieces against different light sources to create captivating shadow patterns. Play with light angles and textures to capture unique and mesmerizing shadow effects on the surrounding surfaces.6. "Luminous Sculptures" - Illuminate glass sculptures from within to emphasize their intricate designs and textures. Experiment with different colored lights to create a magical and otherworldly feel.7. "Minimalist Sophistication" - Utilize a clean and minimalist setup to showcase the elegance and simplicity of glass products. Focus on the clean lines, transparency, and symmetry of the subject, allowing the beauty of the glass to speak for itself.8. "Industrial Fusion" - Combine glass products with industrial elements, such as metal or concrete, to create a juxtaposition between fragility and strength. Capture the contrast between the delicate nature of glass and the harshness of the industrial surroundings.9. "Playful Reflections" - Use mirrors or other reflective surfaces to create unique reflections of glass products. Experiment with angles and perspectives to capture distorted or abstract reflections, adding a touch of creativity to the images.10. "Whimsical Glass Gardens" - Arrange glass products in a lush and colorful garden setting to create a whimsical tableau. Incorporate elements such as butterflies, flowers, or other natural elements to evoke a sense of enchantment and wonder. (Note: The lack of explicit titles in the text is due to the nature of the request. However, each phrase can still serve as a descriptive guideline for the visual concept.)。
IRIDEX PASCAL LIO激光间接检眼镜操作手册说明书

PASCAL® 激光间接检眼镜 (LIO) (532 nm 或 577 nm)(单光点版本)操作手册European Authorized Representative Iridex Corporation Obelis 1212 Terra Bella Avenue Boulevard Général Wahis 53 Mountain View, CA 94043 1030 Brussels 美国比利时 办事处:+1.650.940.4700 电话:+32.2.732.59.54 传真:+1.650.962.0486传真:+32.2.732.60.03 本手册受版权保护,并保留所有权利。
根据版权法,未经 Iridex Corporation 明确书面许可,不得全部或部分复制本手册,亦不得以任何其他媒介转载。
允许使用的副本必须按法律规定载有与原件相同的所有权和版权声明。
复制包括翻译成另一种语言。
请注意,尽管我们已尽力确保本文档中提供的数据准确无误,但本文包含的信息、数字、插图、表格、规格和示意图如有更改,恕不另行通知。
Iridex Corporation®、Iridex Corporation Logo™ 和 PASCAL® 和 PASCAL Synthesis™ 为 Iridex Corporation 的商标或注册商标。
目录目录 (3)简介 (5)设置和使用 LIO (6)调整头带 (7)调整瞳孔间距离 (8)获取融合图像 (9)调整检镜角度 (9)打开照明 (9)设置光圈 (10)选择滤镜 (11)调整照明 (12)调整激光器角度 (12)适配电源 (13)激光治疗 (14)检查眼底 (14)电池充电器 (15)插入/更换电池组 (15)电池组充电 (16)安装无线充电器 (19)更换 LED (20)清洁 (21)规格 (21)产品标签 (22)保养维修 (22)一般安全和法规信息 (23)设备分类 (23)预期用途 (23)警告和注意事项 (23)安全考虑事项 (26)符号 (27)电磁兼容性 (28)担保信息 (37)发货、退货和调整担保 (37)退回设备去污 (38)美国技术服务信息 (38)WEEE 弃置 (38)去污证明 (39)简介请阅读并认真遵守这些说明。
LensDesign-光学设计教程

公认的光学设计宝典结合ZEMAX实例n Joseph M. Geary著n赵存华译特点:²以ZEMAX软件为实例²理论讲解与软件操作相结合²以讲座的形式写作全书²以照相镜头的发展历史贯穿全书²深入浅出有深度易理解²从初学到精通光学设计者皆宜该书是Joseph M. Geary即将退休之作,集其毕生科研实践之精华,Geary是美国Alabama大学著名的光学研究中心的教授,SPIE的Fellow,从事镜头设计四十余年,有着丰富的镜头设计经验,阅读该书就是您与大师对话,亲身聆听教诲的机会。
前言本书来自于Huntsville市Alabama大学应用光学研究中心光学工程专业博士生的学位课。
虽然有很多设计各种镜头方面的专著和论文集,但在教这门课开始的时候,令我十分沮丧和失望的是,我无法找到一本好的镜头设计方面的教材。
还没有人针对学生学习(或教师)思路来编写教材,因此希望本书在镜头设计教学方法上迈出一步。
它就像我最初打算的一样,现代镜头设计教材不可能完全脱离可利用的商业光学设计软件,因此考虑几个原因(如界面友好和高性价比等),作者选择了ZEMAX。
本书不是传统意义上的教科书,它是形式化地体现了我演讲的内容,包括作业和考试。
本教材设计为一学期课时,38讲,每讲55分钟。
所讲的知识为研究生一年级的水平,并尽力为镜头设计最初级教程而写,同时也可作为手册子或工程设计参考。
它基本的要求是:熟练掌握大学所学的几何光学(附录A)知识,数学上的代数、三角、几何和微积分等。
尽管本教材是为镜头设计者所写,但它所提供的光学工程的一般知识可作为一个重要的工具或技巧而应用于其它专业技术中。
虽然本书以演讲的格式而作,并以适合课堂使用为特点,但是其根本上是为自学者而设计。
充分考虑到使用者的三种不同情况。
显然其最大的受益者为能获得ZEMAX(及其随机手册)软件的读者;同时作者也提供(特别在附录C和E 的帮助下)了足够的知识允许读者使用其它光学设计软件(如Code-V,SYNOPSIS 或高级OSLO等)复算实例和做作业;最后对于无法使用流行光学设计软件的读者,可以大量学习或分析,通过公式手算或做薄透镜进入软件设计前的计算工作,有所裨益。
MARL 202系列灯泡替换型LED说明书

202SERIESBULB REPLACEMENT LED2015/863/EURoHS FEATURESBENEFITS•T1Midget Flange SX3s Base •Water clear lens •Flat topped LED•Centre contact Anode as standard •Range of LED colour options •Range of voltage options•Direct replacement for standard bulb fitting •Water clear lens gives clear “off”state•Flat topping gives even illumination of large lens areas •Direct replacement for standard polarity installations •No colour filter required•Manufactured with internal resistor •Outstanding reliability202-301-20-38Red 5-62033640-30to +85-40to +85202-325-20-38Yellow 5-620401590-30to +85-40to +85202-324-20-38Green 5-6201010525-30to +85-40to +85202-934-20-38Blue5-620225471-30to +85-40to +85202-991-20-38Warm White 5-620Call See Below -30to +85-40to +85202-998-20-38Cool White 5-6201194See Below -30to +85-40to +85202-301-21-38Red 122033640-30to +85-40to +85202-325-21-38Yellow 1220401590-30to +85-40to +85202-324-21-38Green 12201010525-30to +85-40to +85202-934-21-38Blue1220225471-30to +85-40to +85202-991-21-38Warm White 1220Call See Below -30to +85-40to +85202-998-21-38Cool White 12201194See Below -30to +85-40to +85202-301-23-38Red 24-281527640-30to +85-40to +85202-325-23-38Yellow 24-2815308590-30to +85-40to +85202-324-23-38Green 24-2815830525-30to +85-40to +85202-934-23-38Blue24-2815175471-30to +85-40to +85202-991-23-38Warm White 24-2815Call See Below -30to +85-40to +85202-998-23-38Cool White 24-2815932See Below -30to +85-40to +85202-301-24-38Red 481218640-30to +85-40to +85202-325-24-38Yellow 4812208590-30to +85-40to +85202-324-24-38Green 4812615525-30to +85-40to +85202-934-24-38Blue4812125471-30to +85-40to +85202-991-24-38Warm White 4812Call See Below -30to +85-40to +85202-998-24-38Cool White4812648See Below -30to +85-40to +85X 0.4330.4330.4400.440Y0.4030.4150.4230.411X 0.2960.2830.3300.330Y0.2760.3050.3600.318NOTESIntensities (lv)and colour shades of white (X-Y co-ordinates)may vary between LEDs within a batch.Additional LED Colours,Voltage Options and Reverse Polarity options available for semi-custom projects.Please contact our Sales Team.All LED components are supplied in anti-static packaging.*Characteristics at Ta =25°C.For operating temperature derating graphs,please refer to sheet 2.TECHNICAL DATATECHNICAL DRAWINGDE-RATING GRAPHSDESIGN CONSIDERATIONSSingle-Chip LEDsAll devices feature water clear high intensity LEDs as standard.In devices where discrete LEDs are used,the single chip LED devices have been modified by the removal of the domed portion of the encapsulation (flat-topped)to provide even illumination of switches and annunciators.Non flat topped versions are also available.Flat-topping does not apply to devices using surface-mounted device (SMD)LEDs.Product EvaluationFilament replacement LEDs have been specifically designed to meet the primary objective of providing improved reliability.As this product range is suitable for both new-build and retro-fit,(sometimes in very old systems),a wide range of illuminated push button switches and lamp holders can be encountered.Due to subjectivity,evaluation of the LED type is recommended,(samples of all standard models are available).Care should be taken to correctlysimulate operating ambient light conditions to ensure that the correct device has been selected to maximise viewing characteristics such as viewing angle,colour compatibility and on/off contrast ratio.Electro-Static Discharge (ESD)Build up of electro-static discharge occurs in many situations involving people moving and handling products.The range of possible situations is very diverse but voltage levels as high as several thousand volts can and do arise in many individual situations.When an operator charged up to these levels handles a static sensitive device,there is a very probable likelihood that the device will be irreversibly damaged.It is essential that precautions are taken at all stages during manufacture and assembly of these products.Although LEDs were never considered to be static sensitive devices,changes in manufacturing technology and materials used to produce higher intensity products over a large range of the wavelength spectrum have changed this.Marl has an approved system of ESD control from goods in,through production and into final packing and despatch.Marl recommend all users of LED based products follow the current BSI guidelines for protection of electronic devices from electrostatic phenomena.Voltage,Current and TemperatureThe forward voltage /current value of an LED is dependent upon the ambient temperature of the environment in which it is operated.Therefore,care must be taken to operate the LED at the correct voltage /current values,depending upon the ambient temperature.Marl should be contacted if the device is to be operated outside the temperature range specified.Marl accept no liability for any product that is operated outside the stated voltage or temperature range.Weight (g):0.3Dimensions in mm (typical).Not to scale.Green dot on base of product signifies centre contact cathode -ve.Colour sleeve on product denotes LED colour.Series Lamp Base StyleMetric Equivalent Max.Power Dissipation202T1Sub Midget Flange SX3s 3360mmmW。
Leica M820 F19 优质眼科手术显微镜 说明书

Leica徕卡产品,由Christophe Apothéloz设计徕卡与众不同明快、清晰!Leica APO OptiChrome TM M820光学系统呈现的高分辨率图像是您观察解剖细节最佳的解决方案。
患者安全,医生轻松!Leica独到的直接照明系统,在低照度安全照明下保证最佳的清晰度、对比度和色彩还原度。
双光束立体照明系统!独特的8-系列双光束照明系统保证医生获得稳定的红光反射和三维图像。
OttoFlex II OttoFlex II任何情况下都能实现完美的人机工效性 徕卡显微系统的全球运作分为四个部门,已进入各地市场领导者行列:• Life Science Division徕卡公司生命科学部门为科研用户提供最先进的显微成像技术,实现显微结构的观察、测量和分析。
理解并满足用户的科研应用是我们在市场中领先的关键。
• Industry Division徕卡公司工业部门的工作核心工作是支持客户寻求高质量的最终结果。
徕卡公司提供了最好、最新颖的成像系统,满足他们在日常工作以及在工业研究应用中的观察、测量和分析微观结构的需要,满足材料科学和质量控制、法医学科学调查和教育应用的需要。
• Biosystems Division徕卡公司病理系统部门为组织病理学实验室和研究人员带来了最全面的高质量病理产品系列。
从病人到病理学家,该范围包括每个组织学步骤所需要的理想的产品,还包括整个实验室所需要的高效工作流程解决方案。
借助以自动化革新和 Novocastra™ 试剂为特色的全套组织学系统,徕卡公司通过迅速、准确的诊断和密切的客户协作,更好地关心病人。
• Surgical Division徕卡公司手术显微镜部门的工作重点是与手术外科合作,以无论是现在还是将来都是最优秀、最新颖的手术显微技术为他们提供支持,照顾他们的病人。
“与用户合作,使用户受益”徕卡显微系统Ernst Leitz 于 1907 年发表了“与用户合作,使用户受益”的声明,描述了徕卡显微系统与最终用户的通力协作以及不断创新的驱动力。
手机LENS知识

LENS设计大全Lens作为手机的一个非常重要的部件,承载非常重要的任务:保护LCD ,透光良好,外观装饰作用等。
(一)Lens通用材料:1) PMMA:目前手机上的LENS都是用PMMA材料透光性好≥91%,表面硬度高,通过表面硬化处理(hard coating)后可达到3H 以上●注塑用的主要有:IH830(LG), VRL-40(三菱),MI-7(法国ATO)其中透光率IH830(93%)=MI-7(93%)>VRL-40(92%)表面硬度三种基本差不多。
抗冲击性能:VRL-40=MI-7>IH830价格:MI-7>VRL-40>IH830综合考虑:通常采用较多的是VRL-40。
●板材有:NR200(三菱)2)PC:因其表面硬度不能达到要求,且透光性差于PMMA 在手机上很少被采用。
Lens常用的工艺有:硬化:通常板材成形后的表面硬度较低,因此需要对镜片的表面进行硬化。
可以单面硬化也可以双面硬化。
硬化原理是通过在树脂表面增加一层较硬的涂层来提高树脂表面的硬度。
镜片的硬化方式主要有:将镜片浸渍(Dipping)在硬化液中和在镜片表面进行喷涂(Spray coating)。
Spray coating方式适合用在大型平板,但缺点是平整度不易控制。
Dipping方式,可以控制到相当高的平整度,适合用于较小的镜片。
通过硬化,镜片的表面硬度可以提高2级以上。
由于硬化液的折/反射率和PMMA、PC不同,因此在强化后镜片表面容易出现彩虹的现象。
PC上出现彩虹的现象更为显著,而且很难避免。
镜片上孔及凹凸的区域,容易在硬化时造成硬化液堆积,因此在设计结构时需要注意。
强化工序需要LENS 上有一特殊的手柄,在制做塑胶模具时要注意。
强化不同的塑料,使用不同的药水。
强化后的LENS,表面印刷也要使用特殊工艺才能保证附着力。
镀膜:出于镜片装饰需要,镜片上会有一些镀膜。
常见的镀膜方式有溅射镀膜和蒸发镀膜。
蒸发镀膜的生产周期更短。
Everlight 电子光源芯片 LED 与直角镜头说明书

Technical Data SheetChip LED with Right Angle Lens12-21SYGC/S530-XX/TR8Features˙Package in 8mm tape on 7〞diameter reel.˙Compatible with automatic placement equipment. ˙Compatible with infrared and vapor phase reflowsolder process. ˙Mono-color type.Descriptions˙The 12-21 SMD Taping is much smaller than lead frame type components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.˙Besides, lightweight makes them ideal for miniature applications. etc.Applications˙Automotive: backlighting in dashboard and switch. ˙Telecommunication: indicator and backlighting in telephone and fax.˙Flat backlight for LCD, switch and symbol. ˙General use.Device Selection GuideChipMaterial Emitted Color Lens ColorAlGaInPSuper Yellow GreenWater Clear12-21SYGC/S530-XX/TR8Notes: Tolerances Unless Dimension ±0.1mm , Angle±0.5°,Unit = mmAbsolute Maximum Ratings (Ta=25℃)Parameter SymbolRatingUnitReverse Voltage V R 5 VForward Current I F 25 mAOperating Temperature Topr -40 ~ +85 ℃Storage Temperature Tstg -40~ +90 ℃Soldering Temperature Tsol 260 (for 5 second)℃Electrostatic Discharge ESD 2000 VPower Dissipation Pd 60 mWPeak Forward Current(Duty 1/10 @1KHz)I F 160 mA12-21SYGC/S530-XX/TR8Electro-Optical Characteristics (Ta=25℃)ParameterSymbol*Chip RankMin. Typ. Max. UnitConditionE1 13 19 -----E2 19 26 -----E3 26 35 ----- Luminous IntensityIv E4 35 41 -----mcd I F =20 mAViewing Angle 2θ1/2 ----- ----- 120 ----- deg I F=20mA Peak Wavelengthλp ----- ----- 575 -----nm I F=20mA Dominant Wavelengthλd----- ----- 573 ----- nm I F =20mA Spectrum RadiationBandwidth △λ ----- ----- 20 -----nm I F =20mA Forward VoltageV F----- ----- 2.0 2.4 VI F =20mA Reverse CurrentI R ----- ----- ----- 10μA V R =5V*12-21SYGC/S530-XX/TR8Chip RankReel & Carrier Tape Dimensions Loaded quantity per reel 2000 PCS/reel12-21SYGC/S530-XX/TR8 Typical Electro-Optical Characteristics Curves12-21SYGC/S530-XX/TR8Reliability Test Items And ConditionsThe reliability of products shall be satisfied with items listed below. Confidence level : 90 % LTPD : 10 %No. Items Test Condition Test Hours/Cycles SampleSizeAc/Rc1 Reflow Temp. : 240℃±5℃Min. 5 sec. 6 min. 22 Pcs. 0/12 Temperature Cycle H : +85℃ 30min.∫ 5 min.L : -55℃ 30min. 50 Cycles 22 Pcs. 0/1 3 Thermal Shock H : +100℃ 5min.∫ 10 sec.L : -10℃ 5min.50 Cycles 22 Pcs. 0/1 4High TemperatureStorage Temp. : 100℃ 1000 Hrs. 22 Pcs. 0/1 5Low TemperatureStorage Temp. : -55℃ 1000 Hrs. 22 Pcs. 0/1 6 DC Operating Life I F = 20 mA 1000 Hrs. 22 Pcs. 0/1 7 High Temperature/ High Humidity85℃/R.H85%1000 Hrs.22 Pcs.0/112-21SYGC/S530-XX/TR8Precautions For Use1. Over-current-proofCustomer must apply resistors for protection , otherwise slight voltage shiftwill cause big current change ( Burn out will happen ).2. Storage time2.1 The operation of Temperature and RH are : 5℃~35℃, RH60%.2.2 Once the package is opened, the products should be used within a week.Otherwise, they should be kept in a damp proof box with descanting agent.Considering the tape life , we suggest our customers to use our productswithin a year(from production date).2.3 If opened more than one week in an atmosphere 5℃~35℃, RH 60%,they should be treated at 60℃±5℃for 15hrs.2.4 When you discover that the desiccant in the package has a pink color(Normal = blue) , you should treat them in the same conditions as 2.3.Soldering heat Reflow Temp / TimeSoldering IronBasic spec is ≦5 sec when 260℃.If temperature is higher, time should be shorter (+10℃→-1sec). Power dissipation of Iron should be smaller than 15 W , and temperature should becontrollable. Surface temperature of the device should be under 230 ℃.12-21SYGC/S530-XX/TR8 Rework1. Customer must finish rework within 5 sec under 245℃.2. The head of iron can not touch copper foil.。
阿莱照明手册ARRI Lighting Handbook - Chinese version中文版

照明理论和照明技术:几十年来,关于访谈、现场采访、影视剧及其他各种节目的“标准”照明布光书籍不下几十种。
本手册旨在帮助读者最有效地使用新颖阿莱照明套灯(Arri Lighting Kit),尽可能创造出最佳画面,并旨在帮助读者使用这些照明工具,在外内景拍摄中配置出丰富多姿的照明效果。
光源的选择:阿莱照明套灯包括各种照明器具。
基本灯型有两种:敞开式照明灯和螺纹透镜(Fresnel-lensed)聚光灯。
该两种光源均可调焦,并提供均匀的光束,为拍摄营造丰富多彩的光质和气氛。
ARRILITE 开口灯ARRI Fresnel 螺纹透镜聚光灯光质,是指灯具所产生的暗部的“硬”或“柔”程度。
一灯具产生的光质由光源的物理尺寸(而不是光强度)所决定。
通常,光源范围越大、越散射,光质越柔和。
譬如,在照明灯具前放置一块白霜纸或柔光纱等漫射材料,就可以提高光源的有效(物理)尺寸(照明光透过漫射材料时,被照明的漫射材料就成为有效光源)。
ARRILITE 加柔光纸ARRILITE 加柔光罩太阳光产生的高调、轮廓分明的阴影边缘(硬光),大多是采用小型光源如套灯内的一种灯具制作的。
阴天柔和、轮廓并不明显的阴影边缘(柔光),则大多是采用较大、较散射的光源如加柔光罩(有些阿莱套灯备有该附件)制作的。
硬光 柔光如果手头没有柔光罩,可使用套装内的灯具采用多种其他方法做出柔和光质。
在挡光板上放置白色遮光板可使光质略柔和些。
在光源前面放置一块大型漫射白柔纸(柔光纱)或将光反射到白墙、屋顶或白板上时,可制做出戏剧性的柔和光质。
Arrilite泡沫板由于光源的物理尺寸与产生的光质有直接关系。
因此,最好是在一镜头或场景布光之前就考虑相宜的光质。
譬如,室内(如四周是白墙和屋顶有日光灯照明的办公室)使用硬光就不自然了。
硬光和柔光:一个镜头或场景,何时该用硬光何时该用柔光,并没有严格规定。
其判断标准是,能否创造出一种特定的光质。
硬光和柔光各具特点,在布光之前要不断地权衡每一光质的利弊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OCIS codes: (220.2740) Geometric optical design; (220.4298) Nonimaging optics; (220.2945) Illumination design; (230.3670) Light-emitting diodes.
#164581 - $15.00 USD (C) 2012 OSA
Received 13 Mar 2012; revised 7 Apr 2012; accepted 7 Apr 2012; published 26 Apr 2012 7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10984
RefereΒιβλιοθήκη ces and links1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002). P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004). Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008). L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,” Appl. Opt. 48(29), 5520–5527 (2009). F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010). W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010). G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of sourcetarget mapping,” Appl. Opt. 50(21), 4031–4036 (2011). V. Medvedev and W. A. Parkyn, Jr., “Screen illumination apparatus and method,” US Patent 6166860 (2000). D. Weigert and D. Chin, “Spotlight with an adjustable angle of radiation and with an aspherical front lens,” US Patent 6499862 B1 (2002). A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008). J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010). D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010). J. Chaves, Introduction to Nonimaging Optics (CRC Press, Boca Raton, 2008), Chap. 8. L. Piegl and W. Tiller, The NURBS Book (Springer-Verlag, Berlin, 1997).
1 2
Department of Electrical Engineering, National Changhua University of Education, 2 ShiDa Road, Changhua 50074, Taiwan Department of Electro-Optical and Energy Engineering, Mingdao University, 369 Wen Hwa Road, Peetow, Changhua 52345, Taiwan * jjchen@.tw
1. Introduction In recent years, due to the speedy growth of LED light sources in general illumination applications, such as LED bulbs, spotlights, street lights, vehicle headlamps, and etc., many lamp fabricators and designers have proposed various LED luminaire techniques. LED luminaires are generally and purposely designed to redirect light rays to produce a specific distribution, and many methods aim this goal with employing standard conic or aspherical optical surfaces. However, when high optical performance or compact volume is desired, LED luminaires should be designed with irregular or freeform surfaces. Thus, many freeform
Freeform lens design for LED collimating illumination
Jin-Jia Chen,1,* Te-Yuan Wang,1 Kuang-Lung Huang,2 Te-Shu Liu,1 Ming-Da Tsai,1 and Chin-Tang Lin1
surface design methods [1–7] have been proposed in the past decade. Nevertheless, most methods [1, 3–5, 7] convert the design problems into suitable group differential equations through a mapping between the light source and the target, and therefore need to solve solution numerically. Other methods [2, 6], though not using the mapping approach, have complex mathematic derivation and operation, and even need further optimization. As concerns the collimator lens, which has many versatile applications to spotlight, flashlight, vehicle headlamps, and LCD projector light, conventional methods [8–9] adopt multiple conic or aspherical optical elements to realize the lens. However, its volume is large, and light rays cannot be effectively utilized. Also, the composed elements need rigorous alignment to obtain good performance. Since the freeform total internal reflection (TIR) structure can concrete all elements into a single body and achieve high performance with compact volume, therefore, it has attracted many interesting applications [10–12] recently. In this paper, we propose a method, which is derived from a basic and simple geometricoptics analysis and construction approach, to construct freeform surfaces without using complex derivations. Though this method has been used to design a TIR collimator lens [11], the detailed and complete outline of the method is given in this paper, and an application to a novel compact LED collimator lens with ellipsoidal and freeform profile is also given. In addition to the simulation results, a prototype is also made to practically verify the performance of the lens. As compared with the TIR lens in [11], the collimator lens in this paper has better optical efficiency and smaller spot size under same lens dimensions. In addition, the lens in this paper is more easily fabricated than that in [11] due to an acute angle existing in the latter. 2. Proposed methodology The proposed freeform surface design method consists of two processes, the geometric-optics analysis and the freeform-surface construction. The purpose of the geometric-optics analysis is to find the tangential vector, which is used to calculate the associated reflective or refractive point on a freeform optical surface. Once the tangential vector at each reflective or refractive point is calculated, a two-dimensional (2D) contour of the surface can be constructed following the procedure given in Section 2.2. Finally, a three-dimensional (3D) freeform surface is obtained by rotating the 2D contour around the axis. Detailed analysis and construction processes are depicted in the follows. 2.1 Geometric-optics analysis Optical surfaces are normally classified into reflective and refractive surfaces, and therefore the associated geometric-optics analysis for the reflective and refractive surfaces will be given, respectively. 2.1.1 Analysis for the reflective surface A reflective surface can shift the direction of an incident light ray to a specific direction or a point based on the reflection law. The basic geometric-optics relation for a reflective surface ′ is depicted in Fig. shifting a light ray emitted from a light source to a specific direction θ P 1(a), where P is an arbitrary point on the surface and the angle θ P stands for the direction of the incident light ray to the x axis. Assume the incident and reflective angles to be θi and θ r , respectively; then, from Fig. 1(a), the intersection angle θT of a tangential vector T at point P can be expressed as