TS36.211中文版
LTE覆盖半径相关参数解释

TD-LTE覆盖半径相关参数总结1.CP配置对覆盖距离的影响OFDM技术能有效克服频域上自身的干扰问题,但是无法克服由于多径时延造成的符号间干扰(ISI)和子载波正交性破坏问题。
多径时延表现为信号经过无线信道后发生的较大时延及幅度衰减。
对此,在TD-LTE系统中,在每个OFDM符号之前加入循环前缀CP。
只要各径的多径时延与定时误差之和不超过CP长度,就能保证接收机积分区间内包含的各子载波在各径下的整数波形,从而消除多径带来的符号间干扰和子载波间的干扰(ICI)。
正常CP:正常CP有7个OFDM符号,第1个OFDM符号的CP长度是5.21μs,第2到第7个OFDM符号的CP长度是4.69μs。
正常CP可以在1.4km的时延扩展范围内提供抗多径保护能力,适合于市区、郊区、农村以及小区半径小于5km的山区环境。
扩展CP:扩展CP有6个OFDM符号,每个OFDM符号的CP长度均是16.67μs。
扩展CP可以在10km的时延扩展范围内提供抗多径保护能力,适合于覆盖距离大于5km的山区环境以及需要超远距离覆盖的海面和沙漠等环境。
2. GP配置对覆盖距离的影响TD-LTE系统利用时间上的间隔完成双工转换,但为避免干扰,需预留一定的保护间隔(GP)。
GP的大小与系统覆盖距离有关,GP越大,覆盖距离也越大。
GP主要由传输时延和设备收发转换时延构成,即:GP=2×传输时延+T(1)Rx-Tx,Ue最大覆盖距离=传输时延*c (2)为UE从下行接收到上行发送的转换时间,该值与输出功率的精其中c是光速。
TRx-Tx,Ue确度有关,典型值是10μs~40μs,在本文中假定为20μs。
TD-LTE覆盖距离见表7。
DwPTS用于传输下行链路控制信令和下行数据,因此GP越大,则DwPTS越小,系统容量下降。
在系统设计中,常规CP的特殊子帧配置7即10:2:2是典型配置,该配置下理论覆盖距离达到18.4km,既能保证足够的覆盖距离,同时下行容量损失又有限。
LTE物理层协议分析001_同步过程

L TE 物理层协议分析——同步过程本文主要分析物理层的同步过程,其主要源于协议TS36.213。
一、概述同步过程用于保证UE 与ENB 之间的上行链路的时间和频率的同步。
同步过程主要分为两类场景:一是入网场景下的同步,此时UE 通过PSS 和SSS 完成下行链路的同步,通过PRACH 和TA 命令(RAR 中)完成上行链路链路的同步;二是在网场景下的同步,此时UE 通过PSS 和SSS 信号维护下行链路的同步,通过PRACH 、DMRS/SRS 和TA 命令(RAR 或其他PDSCH 数据中)维护上行链路的同步。
需要特别注意的是,在网场景下若无上行数据传输,允许ENB 和UE 之间的上行链路不同步——即上行同步只在有上行数据传输时才被需要。
二、上行链路同步过程TA (Time Advanced )命令指示了上行所有信道和信号的发送时间提前量,用于支持所有UE 发送的上行信号能够同时到达eNodeB ,以便eNodeB 正确接收上行信号。
eNodeB 通过MAC 层的MCE 或RAR 数据单元将TA 信息以TA Command 的形式发送给UE ,TA Command 表示发送时间提前量的基本单位为16Ts 。
物理层不提供相关控制字段接口。
因此,严格意义来讲,TA 并非无线传输资源,但却决定了UE 发送的上行信号是否能够正确接收。
TA 基于上行参考信号(DMRS 、SRS 和PRACH )测量得到,如下图1-1所示, UEENB DMRS(PUSCH)/SRS/PRACHObtain the transmissiondelay by measuring SRSand DMRS MCE_TA/RARPUSCHDetermine the timeadvanced of transmittingPUSCH by MCE_TA图1-1 TA 分配示意图其中RAR 下发的TA Command 为绝对TA 命令,即UE 发送上行信号的绝对提前时间,长度11bit ;MCE_TA 下发的TA Command 为相对TA 命令,即UE 发送上行信号相对于上一次发送时刻的提前时间,此时绝对提前时间为N TA,new = N TA ,old + (TA −31)×16。
LTE覆盖半径相关参数解释

LTE覆盖半径相关参数解释TD-LTE覆盖半径相关参数总结1.CP配置对覆盖距离的影响OFDM技术能有效克服频域上自身的干扰问题,但是无法克服由于多径时延造成的符号间干扰(ISI)和子载波正交性破坏问题。
多径时延表现为信号经过无线信道后发生的较大时延及幅度衰减。
对此,在TD-LTE系统中,在每个OFDM符号之前加入循环前缀CP。
只要各径的多径时延与定时误差之和不超过CP长度,就能保证接收机积分区间内包含的各子载波在各径下的整数波形,从而消除多径带来的符号间干扰和子载波间的干扰(ICI)。
正常CP:正常CP有7个OFDM符号,第1个OFDM符号的CP长度是5.21μs,第2到第7个OFDM符号的CP长度是4.69μs。
正常CP可以在1.4km的时延扩展范围内提供抗多径保护能力,适合于市区、郊区、农村以及小区半径小于5km的山区环境。
扩展CP:扩展CP有6个OFDM符号,每个OFDM符号的CP长度均是16.67μs。
扩展CP可以在10km的时延扩展范围内提供抗多径保护能力,适合于覆盖距离大于5km的山区环境以及需要超远距离覆盖的海面和沙漠等环境。
2. GP配置对覆盖距离的影响TD-LTE系统利用时间上的间隔完成双工转换,但为避免干扰,需预留一定的保护间隔(GP)。
GP的大小与系统覆盖距离有关,GP越大,覆盖距离也越大。
GP主要由传输时延和设备收发转换时延构成,即:GP=2×传输时延+TRx-Tx,Ue (1)最大覆盖距离=传输时延*c (2)其中c是光速。
TRx-Tx,Ue为UE从下行接收到上行发送的转换时间,该值与输出功率的精确度有关,典型值是10μs~40μs,在本文中假定为20μs。
TD-LTE覆盖距离见表7。
DwPTS用于传输下行链路控制信令和下行数据,因此GP越大,则DwPTS越小,系统容量下降。
在系统设计中,常规CP的特殊子帧配置7即10:2:2是典型配置,该配置下理论覆盖距离达到18.4km,既能保证足够的覆盖距离,同时下行容量损失又有限。
LTE物理层协议分析005_随机接入过程

2个TTI
图1-4 RAR 接收窗口示意图 k2 与 RAR 中的 UL delay 字段相关,其若为 0,k2 需要保证不小于 6ms;否者,k2 取值 需要保证 MSG3 在 RAR 之后的第一个 U 帧上传输。 如果收到的 RAR 中不包含本 UE 的响应信息或有收到的 RAR,UE 需要重发 preamble, 记重发 MSG 1(preamble)的时间间隔记为 k3。 对于第一种情况,k3 表示收到 RAR 到重发 MSG 1(preamble)的时间间隔,需要小于 5ms;对于第二种情况,k3 表示 RAR 窗超时到重发 MSG 1(preamble)的时间间隔,需要 小于 4ms。 注: 除入网过程外, ENB 还可通过 PDCCH order 指示 UE 主动发起随机接入, PDCCH order 承载在 PDCCH 上,使用 CRNTI 加扰,固定使用 DCI 1A 格式。
TPC 命令对应功控中的 δ msg 2 ,含义如下表 1-2, 表1-2 RAR 中的 TPC 命令 TPC Command 0 1 2 3 4 5 6 7 Value (in dB) -6 -4 -2 0 2 4 6 8
(本文完) 本系列文档针对 LTE 物理层相关协议进行分析,力求使用图表示例等方式更好地分析协议 内容, 追溯协议背后的设计思想。 主要涉及的协议为 3GPP, TS36.201、 TS36.211、 TS36.212、 TS36.213 和 TS36.300,参考协议版本为 R13。 本文档纯属自我学习总结,只做学习交流用途! Pilot lb19861022@
*1
三、RRC Signal 的发送和接收
ENB 可以通过下发 RRC Signal 指示 UE 在目标小区主动发起随机接入。其承载在 PDSCH 上,物理层不识别。
MIMO资料整理-2014

个平坦的窄带子信道,每个子信道上的信号带宽小于信道的相关带宽, 所以每个子信道上的频率选择性衰落可以看作是平坦性衰落。
• 而MIMO多天线技术能在不增加带宽的情况下,在每一个窄带平坦子信
道上获得更大的信道容量,可以成倍地提高通信系统的容量和频谱效率, 是一种利用空间资源换取频谱资源的技术。
Taking LTE MIMO from Standards to Starbucks Moray Rumney 30th April 2009
通过声音来理解预编码(Precoding)
• 为了使接收机侧的不同流更加隔离,
可以采用预编码码技术。
• 声音的例子中,Precoding可以看成对
立体声进行”balance”
MIMO+OFDM系统,通过在OFDM传输系统中采用天线阵列来实现空 间分集,以提高信号质量,是MIMO与OFDM相结合而产生的一种新 技术。它采用了时间、频率结合空间三种分集方法,使无线系统 对噪声、干扰、多径的容限大大增加。
LTE发送端信号流程
(0) (0) a0 , a1 ,..., a(0) A1
LTE 下行MIMO简介
2014-10
常见问题
1. 什么是MIMO? 2. LTE中为什么使用MIMO? 3. MIMO的如何理解和解释?
4. MIMO如何作用?
5. MIMO模式如何区分? 6. MIMO中的基本概念和作用过程? 7. MIMO各模式的特点如何? 8. MIMO对性能的影响如何?
Taking LTE MIMO from Standards to Starbucks Moray Rumney 30th April 2009
36系列各版本协议说明

规范撤销
TR 36.800 TR 36.801 TR 36.803 TR 36.804 TR 36.805 TR 36.806 TR 36.807 TR 36.808 TR 36.809 TR 36.810 TR 36.811
规范撤销 规范撤销 规范撤销
LTE 中的射频(RF)模式匹配定位方法
UTRA 和 E-UTRA,欧洲的在 800 MHz 下的 UMTS/ LTE E-UTRA, 为移动卫星服务 (MSS) 的辅助地面组件 (ATC) 添加 2 GHz 频段 LTE 频分复用(FDD)(Band 23) E-UTRA,美国工作项目技术报告中的 LTE TDD 2600MHz E-UTRA,LTE L 波段技术报告 E-UTRA,对于 E-UTRA 物理层方面的进一步进展 E-UTRA,RAN WG4 下 LTE-Advanced 的可行性研究 E-UTRA,对设备共存信令和程序干扰避免的研究 E-UTRA,上行链路多天线传输;基站(BS)无线电发射和接收 扩展 1900MHz
E-UTRA,位于频带 38 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 39 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 41 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 42 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 2 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 3 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 4 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 7 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 23 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 25 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,对于 2 个上行链路(2UL)的 LTE-Advanced 带间非连续 载波聚合(CA) ;架构 E-UTRA,对于 2 个上行链路(2UL)的位于频带 4 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 40 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 41 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 41 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 4 个下行链路 (4DL) 的位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 4 个下行链路 (4DL) 的位于频带 41 的 LTE-Advanced 带间非连续载波聚合(CA) 位于频带 3 的 LTE-Advanced 带间连续载波聚合(CA) 位于频带 1 的带间连续载波聚合(CA) E-UTRA,移动中继的研究
TS 36.211-910中文

3GPP TS 36.211 V9.1.01概述LTE 采用了与3G 不同的空中接口技术,采用基于OFDM 技术的空中接口设计。
在系统中采用了基于分组交换的设计思想,即使用共享信道,物理层不再提供专用信道。
系统支持FDD和TDD两种双工方式。
2多址方式LTE 采用OFDMA 作为下行多址方式;采用SC-FDMA作为上行多址方式。
在LTE 中,之所以选择SC-FDMA(单载波)作为上行多址方式,是因为与OFDM 相比,SC-FDMA具有单载波的特性,因而其发送信号峰均比较低,在上行功放要求相同的情况下,可以提到上行的功率效率。
3无线帧结构LTE 在空中接口上支持两种帧结构:Type1和Type2,分别对应两种双工方式,其中Type1用于FDD;Type2用于TDD,无线帧长度为10ms。
3.1Type1 FDD 帧结构(FS1)在FDD中,10ms的无线帧分为10个长度为1ms的子帧(subframe),每个子帧由两个长度为0.5ms的时隙(slot)组成。
其结构如下:特别地,在半双工FDD(H-FDD)中,基站仍采用全双工FDD方式,终端的发送信号和接收信号,虽然分别在不同的频带上传输,采用成对频谱,但其接收信号和发送信号不能同时进行,即:终端的发送信号和接收信号的方式同TDD 相似。
也就是说:在同一时间,终端对同一用户不能同时接收和发送信号,但对不同用户可以。
3.2Type2 TDD 帧结构(FS2)在TDD中,10ms的无线帧由两个长度为5ms的半帧(half Frame)组成,每个半帧由5个长度为1ms的子帧组成,其中有4个常规子帧和1个特殊子帧。
普通子帧由两个0.5ms的时隙组成,特殊子帧由3个特殊时隙:上行导频时隙(UpPTS)、保护间隔(GP)和下行导频时隙(DwPTS)组成。
其结构如下:GP S DwPTSGP SDwPTS DwPTS 的长度可配置为3~12 个OFDM 符号,其中,主同步信号位于第三个符号,相应的,在这个特殊子帧中PDCCH 的最大长度为两个符号。
36.214-中文版本

中国通信标准化协会目次目次 (II)前言.............................................................................................................................................................. I VLTE FDD数字蜂窝移动通信网 Uu接口技术要求第4部分:物理层测量 (6)1 范围62 规范性引用文件 (6)3定义,符号与缩略语 (6)3.1定义 (6)3.2符号 (6)3.3缩略语 (6)4UE/E-UTRAN测量控制 (7)5E-UTRA的测量能力 (7)5.1UE 测量能力 (7)5.1.1参考信号接收功率 (RSRP) (8)5.1.2Void (8)5.1.3参考信号接收质量 (RSRQ) (8)5.1.4公共导頻信道接收信号码功率(UTRA FDD CPICH RSCP) (8)5.1.5UTRA FDD 载波接收信号强度指示(UTRA FDD carrier RSSI) (9)5.1.6UTRA FDD 公共导頻信道每码片信噪比(UTRA FDD CPICH Ec/No) (9)5.1.7GSM 载波接收信号强度指示(GSM carrier RSSI) (9)5.1.10CDMA2000 1x 无线传输技术导頻强度(CDMA2000 1x RTT Pilot Strength) (9)5.1.11CDMA2000 高速分组数据导頻强度(CDMA2000 HRPD Pilot Strength) (9)5.1.12参考信号时间差(RSTD) (10)5.1.13UE 定位的小区帧UE GNSS定时 (10)5.1.14UE GNSS码测量 (10)5.1.15UE 收发时间差 (10)5.2E-UTRAN 测量能力 (10)5.2.1下行参考信号发射功率(DL RS TX power ) (11)5.2.2接收的干扰功率 (11)5.2.3 热噪声 115.2.4定时提前(T ADV) (11)5.2.5eNB 收发时间差 (11)5.2.6UE 定位的小区帧UE GNSS定时 (12)5.2.7到达角(AoA) (13)前言YDB XXXX-XXXX 《LTE FDD数字蜂窝移动通信网 Uu接口技术要求》分为九个部分:─ 第1部分:物理层概述;─ 第2部分:物理信道和调制─ 第3部分:物理层复用和信道编码─ 第4部分:物理层过程─ 第5部分:物理层测量─ 第6部分:MAC协议─ 第7部分:RLC协议─ 第8部分:PDCP协议─ 第9部分:RRC协议本部分是第4部分。