2017年广州市二测答案(文科数学)

合集下载

2017年广州一模试题及标准答案(文科数学)

2017年广州一模试题及标准答案(文科数学)

2017年广州一模试题及标准答案(文科数学)2017年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。

(1)复数21i+的虚部是 (A )2- (B )1- (C )1(D )2(2)已知集合}{}{2001x x ax ,+==,则实数a 的值为 (A ) 1- (B )0 (C )1(D )2(3)已知tan 2θ=,且θ∈0,2π⎛⎫ ⎪⎝⎭,则cos2θ= (A) 45 (B) 35 35-(D) 45-(4)阅读如图的程序框图. 若输入5n =的值为(A )2 (B )3 4(D )5(5)已知函数()122,0,1log ,0,+⎧≤=⎨->⎩x x f x x x 则()(3f f (A) 43 (B) 23 (C) 43- (D)3-(6)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左, 右焦点, 点P 在双曲线C 上, 且12=PF, 则2PF 等于(A )4 (B )6 (C )8(D )10(7)四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的12( 图可以是(A ) (B ) (C ) (D ) (9)设函数()32f x xax =+,若曲线()=y f x 在点()(),P x f x处的切线方程为+=x y ,则点P 的坐标为(A) ()0,0 (B) ()1,1- (C) ()1,1-(D) ()1,1-或()1,1- (10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四 个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑, PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O的球面上, 则球O 的表面积为(A )8π (B )12π (C )20π(D )24π(11)已知函数()()()()sin cos 0,0=+++><<ωϕωϕωϕπf x x x 是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则 (A )()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 (B )()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递减(C )()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 (D )()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递增 (12)已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为(A )2016 (B )1008 (C )504(D )0第Ⅱ卷本卷包括必考题和选考题两部分。

2017年广州市高三一模文科数学试卷及答案

2017年广州市高三一模文科数学试卷及答案

2017年广州市普通高中毕业班文科数学综合测试(一)第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数21i+的虚部是( )A .2- B .1- C .1 D .22.已知集合}{}{2001x x ax ,+==,则实数a 的值为( )A .1-B .0C .1D .2 3.已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则c o s 2θ=( ) A .45 B .35 C .35- D .45-4.阅读如图的程序框图. 若输入5n =,则输出k 的值为( )A .2B .3C .4D .55.已知函数()122,0,1l o g,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f ( )A .43 B .23 C .43-D .3- 6.已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上, 且12=PF , 则2PF 等于( )A .4B .6C .8D .10 7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A .14 B .716C .12 D .9168.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )9.设函数()32f x x ax =+,若曲线()=y f x 在点()()00,P x f x 处的切线方程为0+=x y ,则点P 的坐标为( )A .()0,0B .()1,1-C .()1,1-D .()1,1-或()1,1-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面 积为( )A .8πB .12πC .20πD .24π11.已知函数()()()()s in co =+++ωϕωϕfx x x是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( )A .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减B .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增12.已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫ ⎪⎝⎭∑的值为( ) A .2016 B .1008 C .504 D .0 第Ⅱ卷二、填空题:本小题共4题,每小题5分 13.已知向量a ()1,2=,b (),1=-x ,若a //()a b -,则a b ⋅= 14.若一个圆的圆心是抛物线24=x y 的焦点,圆的标准方_____15.满足不等式组⎩⎨⎧≤≤≥-++-a x y x y x 00)3)(1(的点(),x y 组成的图形的面积是5,则实数a 的值是_____ 16.在ABC ∆中,160,1,2ACB BC AC AB ︒∠=>=+,当ABC ∆的周长最短时,BC 的长是 三、解答题:解答应写出文字说明、证明过程或演算步骤 17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*N n ∈)(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}n S 的前n 项和n T18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件? (Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++(其中=+++n a b cd 为样本容量) 19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体 (Ⅰ)求证:AB ⊥平面ADC ; (Ⅱ)若1=AD ,AC 与其在平面ABD 内的正投影所成角的正切值为6,求点B 到平面ADE 的距离 20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,且过点)1,2(A (Ⅰ)求椭圆C 的方程;(Ⅱ)若Q P ,是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由 21.(本小题满分12分) 已知函数)0(ln )(>+=a xax x f (Ⅰ)若函数)(x f 有零点,求实数a 的取值范围;(Ⅱ)证明:当e a 2≥时,xex f ->)(请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为B3,(1,=-⎧⎨=+⎩x t t y t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中, 曲线:2c o s .4⎛⎫=- ⎪⎝⎭πρθC(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值 23.(本小题满分10分)选修4-5:不等式选讲已知函数()12=+-+-f x x a x a .(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若1,≥∈a x R ,求证:()2≥f x .2017年广州市普通高中毕业班文科数学综合测试(一)答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分. 一、选择题(1)B (2)A (3)C (4)B (5)A (6)C(7)B (8)D (9)D (10)C (11)D (12)B 二、填空题(13)52- (14)()2212x y +-= (15)3 (16)12+三、解答题 (17) 解:(Ⅰ)当1n =时,1122S a =-,即1122a a =-, (1)分 解得12a =. ………………………………………………………2分当2n ≥时,11(22)n n n n a S S a --=-=-, ………………3分即12n n a a -=, ………………………………………………………4分所以数列{}n a 是首项为2,公比为2的等比数列.……………………………………5分所以122n nn a -=⨯=(n ∈N *). ………………………………………………6分 (Ⅱ) 因为12222n n n S a +=-=-, ………………………………………………8分所以12n n T S S S =++⋅⋅⋅+ ………………………………………………9分2312222n n +=++⋅⋅⋅+- ………………………………………………10分()412212n n ⨯-=-- ………………………………………………11分2242n n +=--. ………………………………………………12分 (18) 解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()(0.480.0120.0320.05250.50.0=++⨯<<+,………………………………………1分 则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-= ……………………………3分 解得390019x =. ………………………………………4分 (Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 ………………………5分乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, ………6分 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. …………………………8分(Ⅲ)列联表:…………………………10分 则()2210035060041.3505075253K ⨯-==≈⨯⨯⨯, ……………………………………………11分 因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线 的选择有关”. ……………………………………………………12分 (19) 解:(Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD . …………………………………1分因为AB ⊂平面ABD ,所以DC ⊥AB .......................................2分 又因为折叠前后均有AD ⊥AB ,DC ∩AD D =, (3)分所以AB ⊥平面A D. …………………………………4分(Ⅱ) 由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD ,即∠CAD 为AC 与其在平面ABD 内的正投影所成角. ……………………………5分 依题意6tan ==∠AD CDCAD , 因为1A D ,=所以6=CD . …………………………6分设()0AB x x =>,则12+=x BD ,因为△ABD ~△BDC ,所以BDDCAD AB =, ………………………………7分即1612+=x x ,=,故3. …………………,AB ⊥AC , E 为BC 由平面几何知识得AE 322BC ==, 同理DE 322==BC ,所以22=∆ADS .…………………………9分因为DC ⊥平面ABD ,所以3331=⋅=-AB DBC D A S CD V . ………………………10分设点B 到平面ADE 的距离为d , 则632131====⋅---BCD A BDE A ADE B ADE V V V S d ,…………………………11分 所以26=d ,即点B 到平面ADE 的距离为26. …………………………12分 (20) 解:(Ⅰ) 因为椭圆C, 且过点()2,1A ,所以22411a b +=,2c a =. ………………………………………………2分因为222a b c =+, 解得28a =, 22b =, ………………………………………………3分 所以椭圆C 的方程为22182x y +=. ……………………………………………4分(Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 设直线PA 的斜率为k , 则直线AQ 的斜率为k -. ………………………………5分所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--.设点(),P P P x y , (),Q Q Q x y ,由()2212,1,82y k x x y -=-⎧⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=. ①因为点()2,1A 在椭圆C 上, 所以2x =是方程①的一个根, 则2216164214P k k x k --=+,……………………………………………6分所以2288214P k k x k --=+. ……………………………………………7分同理2288214Q k k x k +-=+. ……………………………………………8分所以21614P Q kx x k-=-+. ……………………………………………9分又()28414P Q P Q ky y k x x k -=+-=-+. ……………………………………………10分所以直线PQ 的斜率为12P Q PQ P Qy y k x x -==-. …………………………………………11分所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 法2:设点()()1122,,,P x y Q x y , 则直线PA 的斜率1112PA y k x -=-, 直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P A Q k k=-, 即1112y x --22102y x -+=-,① ………………………………………5分 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,② 2222182x y +=. ③ 由②得()()22114410x y -+-=, 得()111112241y x x y -+=--+, ④ ………………………6分 同理由③得()222212241y x x y -+=--+,⑤ (7)分由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=, ⑥ ……………………………8分 由①得()()12211212240x y x y x x y y +-+-++=, ⑦ ……………………………9分⑥-⑦得()12122x x y y +=-+. …………………………………………10分 ②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+. …………………11分所以直线PQ 的斜率为121212PQy y k x x -==-为定值. …………………………………12分法3:设直线PQ 的方程为y k x b=+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+, 直线PA 的斜率1112PAy k x -=-, 直线QA 的斜率2212QAy k x -=-. ………………………5分 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P Ak k =-, 即1112y x --2212y x -=--, ……………………………………………6分 化简得()()12211212240x y x y x x y y +-+-++=.把1122,y kx b y kx b =+=+代入上式, 并化简得 ()()1212212440k x x bk x x b +--+-+=.(*) …………………………………7分由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=, (**)则2121222848,4141kb b x x x x k k -+=-=++, ……………………………………………8分代入(*)得()()2222488124404141k b kb b k b k k -----+=++, ……………………………9分整理得()()21210k b k -+-=, 所以12k =或12b k =-. ……………………………………………10分若12b k =-, 可得方程(**)的一个根为2,不合题意. ………………………………11分 若12k =时, 合题意. 所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 (21) 解:(Ⅰ)法1: 函数()ln af x x x =+的定义域为()0,+∞. 由()ln af x x x=+, 得()221a x af x x x x-'=-=. ……………………………………1分因为0a >,则()0,x a ∈时,()0f x '<;(),x a ∈+∞时, ()0f x '>.所以函数()f x 在()0,a 上单调递减, 在(),a +∞上单调递增. ………………………2分当x a =时,()minln 1f x a =+⎡⎤⎣⎦. …………………………………………………3分当ln 10a +≤, 即0a <≤1e时, 又()1ln10=+=>f a a , 则函数()f x 有零点. …4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. ……………………………………………………5分法2:函数()ln af x x x =+的定义域为()0,+∞. 由()ln 0af x x x=+=, 得ln a x x =-. …………………………………………………1分令()ln g x x x =-,则()()ln 1g x x '=-+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()0g x '>; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0g x '<.所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减. ……………………2分 故1x e=时, 函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭. …………………………3分因而函数()ln af x x x=+有零点, 则10a e<≤. ………………………………………4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. …………………………………………………5分(Ⅱ) 要证明当2a e≥时, ()->x f x e , 即证明当0,x >2a e ≥时, ln x ax e x-+>, 即ln x x x a xe -+>.………………………6分 令()ln h x x x a =+, 则()ln 1h x x '=+.当10x e <<时, ()0f x '<;当1x e >时,()0f x '>.所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e=时,()min1h x a e=-+⎡⎤⎣⎦. ……………………………………………………7分于是,当2a e≥时, ()11.h x a e e ≥-+≥ ① ……………………………………8分 令()xx xe ϕ-=, 则()()1x x x x e xe e x ϕ---'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以函数()x ϕ在()0,1上单调递增, 在()1,+∞上单调递减.当1x =时,()max1x eϕ=⎡⎤⎣⎦. ……………………………………………………9分于是,当0x >时,()1.x e ϕ≤② ……………………………………………………10分显然, 不等式①、②中的等号不能同时成立. …………………………………11分 故当2a e≥时,()->x f x e . ……………………………………………………12分 (22)解: (Ⅰ)由3,1,=-⎧⎨=+⎩x t y t消去t 得40+-=x y , ………………………………………1分所以直线l 的普通方程为40+-=x y . ………………………………………2分由4⎛⎫=-⎪⎝⎭πρθcos cos sin sin 2cos 2sin 44⎫=+=+⎪⎭ππθθθθ,……3分得22cos 2sin =+ρρθρθ. ………………………………………4分将222,cos ,sin =+==ρρθρθx y x y 代入上式,得曲线C 的直角坐标方程为2222+=+x y x y , 即()()22112-+-=x y . ………5分(Ⅱ)法1:设曲线C上的点为()1c o ,12s i nααP , ………………………………6分 则点P 到直线l的距离为2s i n 4-=d …………………………7分=………………………………………8分当sin 14⎛⎫+=- ⎪⎝⎭πα时, max =d , ………………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分法2: 设与直线l 平行的直线为:0l x y b '++=, ………………………………………6分当直线l '与圆C 相切时,得=, ………………………………………7分解得0b =或4b =-(舍去), 所以直线l '的方程为0x y +=. ………………………………………8分所以直线l 与直线l '的距离为d ==. …………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分(23)解: (Ⅰ)因为()13<f ,所以123+-<a a . ………………………………………1分① 当0≤a 时,得()123-+-<a a ,解得23>-a ,所以203-<≤a ; ……………2分② 当102<<a 时,得()123+-<a a ,解得2>-a ,所以102<<a ; ……………3分③ 当12a ≥时,得()123--<a a ,解得43<a ,所以1423a ≤<; ……………4分综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ………………………………………5分(Ⅱ) 因为1,≥∈a x R , 所以()()()121=+-fxx……………………………7分31=-a ……………………………………………………………………8分31=-a ……………………………………………………………………9分2≥. ……………………………………………………………………10分。

2017届广州市普通高中毕业班模拟考试(文数)试题及参考答案

2017届广州市普通高中毕业班模拟考试(文数)试题及参考答案

2017届广州市普通高中毕业班模拟考试文科数学2016.12 本试卷共4页,23小题, 满分150分。

考试用时120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。

2.作答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

写在本试卷上无效。

3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题,每小题5分, 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设全集{0,1,2,3,4}U =,集合{0,1,3}A =,集合{2,3}B =,则()U A B ð= (A) {}4 (B) {}0,1,2,3 (C) {}3 (D) {}0,1,2,4 (2)设(1i)(i)x y ++2=,其中,x y 是实数,则2i x y +=(A )1 (B (C (D (3)已知双曲线:C 22221x y a b-=(0,0>>b a )的渐近线方程为2y x =±, 则双曲线C 的离心率为 (A)25(B) 5 (C)26(D) 6(4)袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球. 若摸到红球得2分,摸到黑球得1分,则3次摸球所得总分为5分的概率是(A)31 (B)83 (C)21 (D)85 (5)已知角θ的顶点与原点重合, 始边与x 轴正半轴重合, 终边过点()12P ,-, 则tan 2=θ (A )43 (B )45 (C )45- (D )43- (6)已知菱形ABCD 的边长为2,60ABC ∠=, 则BD CD ⋅=(A) 6- (B) 3- (C) 3 (D) 6OyOxO(7)已知函数2,0,()1,0,x x f x x x⎧≥⎪=⎨<⎪⎩ ()()g x f x =--,则函数()g x 的图象是(A) (B) (C) (D)(8)曲线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为(A) 2 (B)23(C) 1 (D) 1- (9)阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为(A) 7 (10)若将函数()f x =则ϕ的最小正值是(A)8π (11)如图, (A) π25 (C) π29(12) 若函数()e x f x=(A) (]1,∞-753686943859467830975457032417332649858765432甲城市乙城市 第Ⅱ卷本卷包括必考题和选考题两部分。

广东省广州市2017-2018学年高考数学二模试卷(文科) Word版含解析

广东省广州市2017-2018学年高考数学二模试卷(文科) Word版含解析

广东省广州市2017-2018学年高考数学二模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin240°的值为()A.B.C.﹣D.﹣2.(5分)已知函数f(x)=3x(x∈R)的反函数为g(x),则g()=()A.﹣log32 B.l og32 C.﹣log23 D.log233.(5分)已知双曲线C:﹣=1经过点(4,3),则双曲线C的离心率为()A.B.C.D.4.(5分)执行如图所示的程序框图,则输出的z的值是()A.21 B.32 C.34 D.645.(5分)已知p:∀x∈R,x2>0,q:∃α,β∈R,使tan(α+β)=tanα+tanβ,则下列为真的是()A.p∧q B.p∨(¬q)C.(¬p)∧q D.p∧(¬q)6.(5分)设集合A={x|a﹣2<x<a+2},B={x|x2﹣4x﹣5<0},若A⊆B,则实数a的取值范围为()A.[1,3]B.(1,3)C.[﹣3,﹣1]D.(﹣3,﹣1)7.(5分)已知数列{a n}满足a1=3,且a n+1=4a n+3(n∈N*),则数列{a n}的通项公式为()A.22n﹣1+1 B.22n﹣1﹣1 C.22n+1 D.22n﹣18.(5分)已知函数f(x)=﹣x2+2x+3,若在区间[﹣4,4]上任取一个实数x0,则使f(x0)≥0成立的概率为()A.B.C.D.19.(5分)如图,圆锥的底面直径AB=2,母线长V A=3,点C在母线长VB上,且VC=1,有一只蚂蚁沿圆锥的侧面从点A到点C,则这只蚂蚁爬行的最短距离是()A.B.C.D.10.(5分)设函数f(x)=x3+3ax2+3bx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2],则点(a,b)在aOb平面上所构成区域的面积为()A.B.C.D.1二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)已知i为虚数单位,复数z=,则|z|=.12.(5分)已知向量=(x,1),=(2,y),若+=(1,﹣1),则x+y=.13.(5分)某种型号的汽车紧急刹车后滑行的距离y(km)与刹车时的速度x(km/h)的关系可以用y=ax2来描述,已知这种型号的汽车在速度为60km/h时,紧急刹车后滑行的距离为b(km).一辆这种型号的汽车紧急刹车后滑行的距离为3b(km),则这辆车的行驶速度为km/h.(二)选做题(14~15题,考生只能从中选做一题)(几何证明选讲选做题)14.(5分)如图,在平行四边形ABCD中,AB=4,点E为边DC的中点,AE与BC的延长线交于点F,且AE平分∠BAD,作DG⊥AE,垂足为G,若DG=1,则AF的长为.(坐标系与参数方程选做题)15.在平面直角坐标系中,已知曲线C1和C2的方程分别为(t为参数)和(t为参数),则曲线C1和C2的交点有个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知△ABC的三边a,b,c所对的角分别为A,B,C,且a:b:c=7:5:3.(1)求cosA的值;(2)若△ABC外接圆的半径为14,求△ABC的面积.17.(12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如图表所示.年龄分组抽取份数答对全卷的人数答对全卷的人数占本组的概率[20,30)40 28 0.7[30,40)n27 0.9[40,50)10 4 b[50,60]20 a 0.1(1)分别求出n,a,b,c的值;(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.18.(14分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.19.(14分)已知点P n(a n,b n)(n∈N*)在直线l:y=3x+1上,P1是直线l与y轴的交点,数列{a n}是公差为1的等差数列.(1)求数列{a n},{b n}的通项公式;(2)若f(n)=是否存在k∈N*,使f(k+3)=4f(k)成立?若存在,求出所有符合条件的k值;若不存在,请说明理由.20.(14分)已知函数f(x)=lnx+ax2+x(a∈R).(1)若函数f(x)在x=1处的切线平行于x轴,求实数a的值,并求此时函数f(x)的极值;(2)求函数f(x)的单调区间.21.(14分)已知圆心在x轴上的圆C过点(0,0)和(﹣1,1),圆D的方程为(x﹣4)2+y2=4 (1)求圆C的方程;(2)由圆D上的动点P向圆C作两条切线分别交y轴于A,B两点,求|AB|的取值范围.广东省广州市2015届高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin240°的值为()A.B.C.﹣D.﹣考点:运用诱导公式化简求值.专题:三角函数的求值.分析:原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.解答:解:sin240°=sin(180°+60°)=﹣sin60°=﹣,故选:D.点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.2.(5分)已知函数f(x)=3x(x∈R)的反函数为g(x),则g()=()A.﹣log32 B.l og32 C.﹣log23 D.log23考点:反函数.专题:函数的性质及应用.分析:直接利用反函数的定义,求解即可.解答:解:函数f(x)=3x(x∈R)的反函数为g(x),可知,=3x,解得x=﹣log32.故选:A.点评:本题考查反函数与原函数的关系,考查计算能力.3.(5分)已知双曲线C:﹣=1经过点(4,3),则双曲线C的离心率为()A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的方程,然后求解离心率.解答:解:双曲线C:﹣=1经过点(4,3),可得,解得b2=3,双曲线C:﹣=1,可得a=2,c=,e=.故选:C.点评:本题考查双曲线方程的求法,离心率的求法,考查计算能力.4.(5分)执行如图所示的程序框图,则输出的z的值是()A.21 B.32 C.34 D.64考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y,z的值,当z=32时,不满足条件z<20,退出循环,输出z的值为32.解答:解:模拟执行程序框图,可得x=1,y=2,z=2满足条件z<20,x=2,y=2,z=4满足条件z<20,x=2,y=4,z=8满足条件z<20,x=4,y=8,z=32不满足条件z<20,退出循环,输出z的值为32.故选:B.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的x,y,z的值是解题的关键,属于基础题.5.(5分)已知p:∀x∈R,x2>0,q:∃α,β∈R,使tan(α+β)=tanα+tanβ,则下列为真的是()A.p∧q B.p∨(¬q)C.(¬p)∧q D.p∧(¬q)考点:复合的真假.专题:简易逻辑.分析:分别判断p,q的真假,然后利用复合与简单真假之间的关系进行判断.解答:解:p:∀x∈R,x2>0,为假,故¬p为真;q:∃α,β∈R,使tan(α+β)=tanα+tanβ,当α=﹣β成立,所以q为真,¬q为假,则p∧q为假,p∨(¬q)为假,¬p∧q为真,p∧¬q为假,故选:C.点评:本题主要考查复合的真假判断,要求熟练掌握复合与简单真假之间的关系6.(5分)设集合A={x|a﹣2<x<a+2},B={x|x2﹣4x﹣5<0},若A⊆B,则实数a的取值范围为()A.[1,3]B.(1,3)C.[﹣3,﹣1]D.(﹣3,﹣1)考点:集合的包含关系判断及应用.专题:集合.分析:先解出集合B={x|﹣1<x<5},而集合A显然不是空集,从而由A⊆B便得到,解该不等式组即得实数a的取值范围.解答:解:B={x|﹣1<x<5},A={x|a﹣2<x<a+2};若A⊆B,则:;∴1≤a≤3;∴实数a的取值范围为[1,3].故选A.点评:考查一元二次不等式的解法,描述法表示集合,空集的概念,以及子集的概念,也可借助数轴.7.(5分)已知数列{a n}满足a1=3,且a n+1=4a n+3(n∈N*),则数列{a n}的通项公式为()A.22n﹣1+1 B.22n﹣1﹣1 C.22n+1 D.22n﹣1考点:数列递推式.专题:等差数列与等比数列.分析:由数列递推式构造等比数列{a n+1},求其通项公式后可得数列{a n}的通项公式.解答:解:由a n+1=4a n+3(n∈N*),得a n+1+1=4(a n+1),∵a1=3,∴a1+1=3+1=4≠0,则数列{a n+1}是以4为首项,以4为公比的等比数列,∴,则.故选:D.点评:本题考查了数列递推式,考查了构造等比数列求数列的通项公式,是中档题.8.(5分)已知函数f(x)=﹣x2+2x+3,若在区间[﹣4,4]上任取一个实数x0,则使f(x0)≥0成立的概率为()A.B.C.D.1考点:几何概型.专题:计算题;概率与统计.分析:由题意,本题符合几何概型的特点,只要求出区间长度,由公式解答.解答:解:已知区间[﹣4,4]长度为8,满足f(x0)≥0,f(x)=﹣x02+2x0+3≥0,解得﹣1≤x0≤3,对应区间长度为4,由几何概型公式可得,使f(x0)≥0成立的概率是=.故选:B.点评:本题考查了几何概型的运用;根据是明确几何测度,是利用区域的长度、面积函数体积表示,然后利用公式解答.9.(5分)如图,圆锥的底面直径AB=2,母线长V A=3,点C在母线长VB上,且VC=1,有一只蚂蚁沿圆锥的侧面从点A到点C,则这只蚂蚁爬行的最短距离是()A.B.C.D.考点:多面体和旋转体表面上的最短距离问题.专题:综合题;空间位置关系与距离.分析:要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:由题意知,底面圆的直径为2,故底面周长等于2π,设圆锥的侧面展开后的扇形圆心角为α,根据底面周长等于展开后扇形的弧长得,2π=3α,解得:α=,∴∠AOA′=,则∠1=,过C作CF⊥OA,∵C为OB的三等分点,BO=3,∴OC=1,∵∠1=60°,∴∠OCF=30°,∴FO=,∴CF2=CO2﹣OF2=,∵AO=3,FO=,∴AF=,在Rt△AFC中,利用勾股定理得:AC2=AF2+FC2=7,则AC=.故选:B.点评:考查了平面展开﹣最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.10.(5分)设函数f(x)=x3+3ax2+3bx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2],则点(a,b)在aOb平面上所构成区域的面积为()A.B.C.D.1考点:利用导数研究函数的极值;简单线性规划.专题:导数的综合应用;不等式的解法及应用.分析:根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域,求解面积即可;解答:解:函数f(x)=x3+3ax2+3bx,可得f′(x)=3x2+6ax+3b,依题意知,方程f′(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f′(﹣1)≥0,f′(0)≤0,f′(1)≤0,f′(2)≥0.由此得b,c满足的约束条件为,满足这些条件的点(a,b)的区域为图中阴影部分.阴影部分的面积为:=1.故选:D.点评:本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域,是中档题.二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)已知i为虚数单位,复数z=,则|z|=.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的求模运算法则,求解即可.解答:解:i为虚数单位,复数z=,则|z|===.故答案为:.点评:本题考查复数的模的求法,基本知识的考查.12.(5分)已知向量=(x,1),=(2,y),若+=(1,﹣1),则x+y=﹣3.考点:平面向量的坐标运算.专题:平面向量及应用.分析:利用向量的坐标运算及其相等即可得出.解答:解:∵+=(x,1)+(2,y)=(x+2,1+y)=(1,﹣1),∴x+2=1,1+y=﹣1,∴x=﹣1,y=﹣2.∴x+y=﹣3.故答案为:﹣3.点评:本题考查了向量的坐标运算及其相等,属于基础题.13.(5分)某种型号的汽车紧急刹车后滑行的距离y(km)与刹车时的速度x(km/h)的关系可以用y=ax2来描述,已知这种型号的汽车在速度为60km/h时,紧急刹车后滑行的距离为b(km).一辆这种型号的汽车紧急刹车后滑行的距离为3b(km),则这辆车的行驶速度为60km/h.考点:根据实际问题选择函数类型.专题:应用题;函数的性质及应用.分析:由题意,b=3600a,利用一辆这种型号的汽车紧急刹车后滑行的距离为3b(km),可得3b=ax2,代入即可得出结论.解答:解:由题意,b=3600a,∵一辆这种型号的汽车紧急刹车后滑行的距离为3b(km),∴3b=ax2,∴3×3600a=ax2,∴x=60.故答案为:60.点评:本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(二)选做题(14~15题,考生只能从中选做一题)(几何证明选讲选做题)14.(5分)如图,在平行四边形ABCD中,AB=4,点E为边DC的中点,AE与BC的延长线交于点F,且AE平分∠BAD,作DG⊥AE,垂足为G,若DG=1,则AF的长为4.考点:三角形中的几何计算.专题:证明题.分析:由AE为角平分线,得到一对角相等,再由四边形ABCD为平行四边形,得到AD∥BF,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DE,由F为DC中点,AB=CD,求出AD与DF的长,得出△ADE为等腰三角形,根据“三线合一”得到G 为AE中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AE的长,再由△ADE≌△FCE得出AE=FE,即可求出AF的长.解答:解:∵AE为∠DAB的平分线,∴∠DAF=∠BAF,∵DC∥AB,∴∠BAF=∠DEA,∴∠DAF=∠DEA,∴AD=ED,又E为DC的中点,∴DE=CE,∴AD=DE=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AE=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴AE=FE,则AF=2AE=4.故答案是:4.点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.(坐标系与参数方程选做题)15.在平面直角坐标系中,已知曲线C1和C2的方程分别为(t为参数)和(t为参数),则曲线C1和C2的交点有1个.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:首先把参数方程转化为直角坐标方程,进一步建立方程组转化成一元二次方程,最后利用判别式求出曲线的交点的个数.解答:1解:已知曲线C1方程(t为参数)转化为直角坐标方程为:x﹣y﹣2=0.曲线C2的方程(t为参数),转化为直角坐标方程为:x2=8y所以:,整理得:x2﹣8x+16=0所以:△=64﹣64=0则:曲线C1和C2的交点有1个.故答案为:1点评:本题考查的知识要点:参数方程与直角坐标方程的互化,方程组的应用,利用一元二次方程的判别式求方程的根的个数.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知△ABC的三边a,b,c所对的角分别为A,B,C,且a:b:c=7:5:3.(1)求cosA的值;(2)若△ABC外接圆的半径为14,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)设a=7t,b=5t,c=3t,由余弦定理即可求cosA的值.(2)由(1)可得sinA的值,利用已知及正弦定理求出sinA与sinB及sinC的值,再由正弦定理可求a,b的值,利用三角形面积公式即可求出△ABC的面积.解答:解:(1)由题意可设:a=7t,b=5t,c=3t,则由余弦定理可得:cosA===﹣.(2)由(1)可得:sinA==,由正弦定理可得:a:b:c=sinA:sinB:sinC=7:5:3.从而可得:sinB==,sinC==,由正弦定理=2R,以及R=14,得a=2RsinA=14,b=2RsinB=10,∴S△ABC=absinC==45.点评:本题2015届中考查了正弦定理,三角形面积公式,余弦定理等知识的综合应用,属于基本知识的考查.17.(12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如图表所示.年龄分组抽取份数答对全卷的人数答对全卷的人数占本组的概率[20,30)40 28 0.7[30,40)n27 0.9[40,50)10 4 b[50,60]20 a 0.1(1)分别求出n,a,b,c的值;(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(1)根据频率直方分布图,通过概率的和为1,求求出n,a,b,c的值,(2)年龄在[40,50)中答对全卷的4人记为A,B,C,D,年龄在[50,60]中答对全卷的2人记为a,b,分别列举出所有的基本事件,根据概率公式计算即可.解答:解:(1)因为抽取总问卷为100份,所以n=100﹣(40+10+20)=30.年龄在[40,50)中,抽取份数为10份,答对全卷人数为4人,所以b=4÷10=0.4.年龄在[50,60]中,抽取份数为20份,答对全卷的人数占本组的概率为0.1,所以a÷20=0.1,解得a=2.根据频率直方分布图,得(0.04+0.03+c+0.01)×10=1,解得c=0.02.(2)因为年龄在[40,50)与[50,60]中答对全卷的人数分别为4人与2人.年龄在[40,50)中答对全卷的4人记为A,B,C,D,年龄在[50,60]中答对全卷的2人记为a,b,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:AB,AC,AD,Aa,Ab,BC,BD,Ba,Bb,CD,Ca,Cb,Da,Db,ab共15种.其中所抽取年龄在[50,60)的人中至少有1人被授予“环保之星”的情况是:Aa,Ab,Ba,Bb,Ca,Cb,Da,Db,ab共9种.故所求的概率为=.点评:本题考查频率分布直方图,古典概型得概率问题,关键是不重不漏得列举基本事件,属于基础题.18.(14分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.考点:棱柱、棱锥、棱台的体积;平面的基本性质及推论.专题:空间位置关系与距离.分析:(1)连接A1B,由正方体可得四边形A1BCD1是平行四边形.得到A1B∥D1C.在△ABA1中,AM=AN=1,AA1=AB=3,可得MN∥A1B.MN∥D1C.即可证明.(2)由平面MNCD1四点共面;将正方体分成两部分的下部分体积为V1,上部分体积为V2,AMN﹣DCD1为三棱台.利用体积计算公式即可得出.解答:(1)证明:连接A1B,在四边形A 1BCD1中,,∴四边形A1BCD1是平行四边形.∴A1B∥D1C.在△ABA1中,AM=AN=1,AA1=AB=3,∴,∴MN∥A1B.∴MN∥D1C.∴M,N,C,D1四点共面;(2)由平面MNCD1四点共面;将正方体分成两部分的下部分体积为V1,上部分体积为V2,AMN﹣DCD1为三棱台.∵S△AMN====S1,===S2.∴V1===,﹣V1==.∴=.点评:本题考查了线面平行的判定定理、正方体的性质、三棱台的体积计算公式,考查了推理能力与体积计算公式,属于中档题.19.(14分)已知点P n(a n,b n)(n∈N*)在直线l:y=3x+1上,P1是直线l与y轴的交点,数列{a n}是公差为1的等差数列.(1)求数列{a n},{b n}的通项公式;(2)若f(n)=是否存在k∈N*,使f(k+3)=4f(k)成立?若存在,求出所有符合条件的k值;若不存在,请说明理由.考点:数列与函数的综合.专题:等差数列与等比数列.分析:(1)利用已知条件求出a1=0,b1=1,然后求出a n,通过点P n(a n,b n)在直线l:y=3x+1上,求出b n.(2)化简f(x)=,假设存在k∈N*,使f(k+3)=4f(k)成立,通过①当k为奇数时,②当k为偶数分别求解k即可.解答:(本小题满分14分)解:(1)因为P1(a1,b1)是直线l:y=3x+1与y轴的交点(0,1),所以a1=0,b1=1.…(2分)因为数列{a n}是公差为1的等差数列,所以a n=n﹣1.…(4分)因为点P n(a n,b n)(n∈N*)在直线l:y=3x+1上,所以b n=3a n+1=3n﹣2.所以数列{a n},{b n}的通项公式分别为a n=n﹣1,b n=3n﹣2k∈N*.…(6分)(2)因为f(x)=假设存在k∈N*,使f(k+3)=4f(k)成立.…(7分)①当k为奇数时,k+3为偶数,则有3(k+3)﹣2=4(k﹣1),解得k=11,符合题意.…(10分)②当k为偶数时,k+3为奇数,则有(k+3)﹣1=4(3k﹣2),解得k=,不合题意.…(13分)综上可知,存在k=11符合条件.…(14分)点评:本题考查数列与函数相结合,数列的通项公式的求法,分类讨论思想的应用,考查计算能力.20.(14分)已知函数f(x)=lnx+ax2+x(a∈R).(1)若函数f(x)在x=1处的切线平行于x轴,求实数a的值,并求此时函数f(x)的极值;(2)求函数f(x)的单调区间.考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:函数的性质及应用.分析:(1)由条件求得f′(x),再根据有f′(1)=0,求得a的值.(2)由条件求得f′(x),分类讨论、利用导数的符号求粗函数的单调区间.解答:解:(1)函数f(x)=lnx+ax2+x的定义域为(0,+∞),f′(x)=+2ax+1,依题意有f′(1)=1+2a+1=0,解得a=﹣1.此时,f′(x)=,∴当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,∴函数f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,∴当x=1时,函数f(x)取得极大值,极大值为0.(2)因为f′(x)=,(ⅰ)当a≥0时,因为x∈(0,+∞),所以f′(x)=>0,此时函数f(x)在(0+∞)是增函数.(ⅱ)当a<0时,令f′(x)=0,则2ax2+x=1=0.因为△=1﹣8a>0,此时,f′(x)==,其中,x1=﹣,x2=﹣.因为a<0,所以x2>0,又因为x1•x2=<0,所以x1<0.∴当0<x1<x2时,f′(x)>0,当x1>x2时,f′(x)<0,∴函数f(x)在(0,x2)上是增函数,在(x2,+∞)上是减函数.综上可知,当a≥0时,函数f(x)的单调递增区间是(0,+∞);当a<0时,函数f(x)的单调递增区间是(0,﹣),单调递减区间是(﹣,+∞).点评:本题主要考查求函数的导数,利用导数研究函数的单调性,体现了转化、分类讨论的数学思想,属于中档题.21.(14分)已知圆心在x轴上的圆C过点(0,0)和(﹣1,1),圆D的方程为(x﹣4)2+y2=4 (1)求圆C的方程;(2)由圆D上的动点P向圆C作两条切线分别交y轴于A,B两点,求|AB|的取值范围.考点:圆的切线方程.专题:直线与圆.分析:(1)求出A(0,0)和B(﹣1,1)的垂直平分线方程,得到其与x轴的交点坐标,即圆C的圆心坐标,进一步求得半径,代入圆的标准方程得答案;(2)设出P点坐标,然后求出切线方程,得到切线在y轴上的截距,利用换元法和配方法求得|AB|的取值范围.解答:解:(1)过两点A(0,0)和B(﹣1,1)的直线的斜率为﹣1,则线段AB的中垂线方程为:,整理得:y=x+1.取y=0,得x=﹣1.∴圆C的圆心坐标为(﹣1,0),半径为1,∴圆C的方程为:(x+1)2+y2=1;(2)设P(x0,y0),A(0,a),B(0,b),则直线PA方程为,整理得:(y0﹣a)x﹣x0y+ax0=0.∵直线PA与圆C相切,可得,化简得;同理可得PB方程,因而a,b为的两根,∴丨AB丨=|a﹣b|=,令t=x0+2∈[4,8],则,配方可求得.故答案为:[].点评:本题考查了圆的切线方程,考查了点到直线的距离公式的应用,考查了数学转化、化归等思想方法,是中档题.。

2017年广州一模试题及标准答案(文科数学)

2017年广州一模试题及标准答案(文科数学)

2017年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。

答卷前,考生务必将自 己的姓名和考生号、 试室号、座位号填写在答题卡上, 并用铅笔在答题卡上的相应位置填涂 考生号。

2•回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第n 卷时,将答案写在答题卡上。

写在本试卷上无效。

4•考试结束后,将本试卷和答题卡一并交回。

12题,每小题5分,在每小题给出的四个选项中,只有一项是符合2(1)复数的虚部是1 i(7)四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的、选择题:本小题共 题目要求的。

(A) 2(B) (C ) 1(D)(2 )已知集合(A)ax 0 0,1则实数a 的值为(B)(C )(D)(3)已知tan2,且0 2 ,则 cos243“、3 (A )(B )-(C )-55 5(4)阅读如图的程序框图.若输入 n 5,则输出k 的值为(A ) 2(B ) 3(C ) 42x 1,x 0, (5 )已知函数fx'则 f f 31 log 2x,x 0,42“、4 (A )-(B )-(C )-33 322(6)已知双曲线cA1的一条渐近线方程为 2xa43y是双曲线C 的左,右焦点,点P 在双曲线C 上,且PF 1(A) 4(B ) 6 (C ) 82,硬币.若硬币正面朝上,则这个人站起来 有相邻的两个人站起来的概率为x y 0 ,则点P 的坐标为(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马y 2与函数f x 的图象的两个相邻交点的横坐标之差的绝对值为三,则(A )f x 在4上单调递减 (B )f x 在3 ■上单调递减8 8 (C )f x 在0- 上单调递增 (D )f x 在3 上单调递增481 8x12016k(12 )已知函数fxcos x 则f的值为2x 12 ,k 12017(A )2016(B ) 1008(C )504( D ) 0PA AB 2,AC 4,三棱锥P ABC 的四个顶点都在球 O 的球面上,则球0的表面积为(A ) 8 (B ) 12(C ) 20(D ) 24(11)已知函数fx sin xcos x 0,0是奇函数,直线个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC 为鳖臑,PA 丄平面;若硬币正面朝下 ,则这个人继续坐着•那么,没7(B)——161 (C )2 (D)—(8)如图,网格纸上小正方形的边长为某几何体的正视图(等腰直角三角形)和侧视图 ,8 ,则该几何体的俯视图可以是3且该几1,粗线画出的是(A )(B )(9)设函数f xx 32ax ,若曲线yf x 在点P X o ,(A )0,0 (B ) 1, 1(c )1,(D )1, 1 或1,1 ;将ABC ,(C )X 。

2017年广州市二测答案(理科数学)

2017年广州市二测答案(理科数学)

数学答案(理科)试题B 第 1 页 共 11 页绝密 ★ 启用前2017年广州市普通高中毕业班综合测试(二)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题(1)A (2)B (3)A (4)B (5)A (6)C (7)D (8)C(9)B(10)C(11)B(12)D二.填空题 (13)32(14)23 (15)2590- (16)27三.解答题(17)解:(Ⅰ)因为数列{}n a 是等比数列,所以2132a a a =.因为1238a a a =,所以32=8a ,解得22=a .…………………………………………………………1分 因为()1253123-++++=n n a a a a S ,所以123a S =,即1213a a a =+.………………………………………………………………………2分 因为22=a ,所以11=a .………………………………………………………………………………3分 因为等比数列{}n a 的公比为212a q a ==, 所以数列{}n a 的通项公式为12-=n n a .…………………………………………………………………4分数学答案(理科)试题B 第 2 页 共 11 页(Ⅱ)因为等比数列{}n a 的首项为11=a ,公比2q =,所以()122121111-=--=--=n nn n q q a S .…………………………………………………………………6分因为n n b nS =,所以()212n nn b n n n =-=⋅-.………………………………………………………7分所以n n n b b b b b T +++++=-1321()()231222322123nn n =⨯+⨯+⨯++⨯-++++ .…………………………………8分设231222322n n P n =⨯+⨯+⨯++⨯ , 则234+121222322n n P n =⨯+⨯+⨯++⨯ . 所以()+1234222222n nn P n =⨯-+++++ ()1=122n n +-+.…………………………………10分因为()11232n n n +++++= , ……………………………………………………………………11分所以()()111222n n n n T n ++=-+-. 所以数列{}n b 的前n 项和()()111222n n n n T n ++=-+-.…………………………………………12分(18)(Ⅰ)证明:连接BD ,因为ABCD 是菱形,所以BD AC ⊥.……………………1分因为⊥FD 平面ABCD ,⊂AC 平面ABCD ,所以FD AC ⊥.………………………………………………2分因为D FD BD = ,所以⊥AC 平面BDF .……………3分 因为⊥EB 平面ABCD ,⊥FD 平面ABCD ,所以//EB FD .所以B ,D ,F ,E 四点共面.………………………………………………………………………4分 因为⊂EF 平面BDFE ,所以AC EF ⊥.……………………………………………………………5分FEDCB数学答案(理科)试题B 第 3 页 共 11 页(Ⅱ)解法1:如图,以D 为坐标原点,分别以DC ,DF 的方向 为y 轴,z 轴的正方向,建立空间直角坐标系xyz D -.……6分可以求得⎪⎪⎭⎫⎝⎛-0,21,23a a A ,⎪⎪⎭⎫ ⎝⎛0,21,23a a B ,⎪⎪⎭⎫⎝⎛a F 23,0,0, ()0,,0a C ,⎪⎪⎭⎫⎝⎛a a a E 3,21,23.………………………………7分 所以()0,,0a AB =,⎪⎪⎭⎫ ⎝⎛-=a a a 23,21,23.……………………………………………………8分设平面ABF 的法向量为()z y x ,,=n ,则⎪⎩⎪⎨⎧=∙=∙,0,0n n即0,10,2ay ay =⎧⎪⎨+=⎪⎩ 不妨取1x =,则平面ABF 的一个法向量为()1,0,1=n .……………………………………………10分因为⎪⎪⎭⎫⎝⎛-=a a a 3,21,23,所以cos ,8CE CE CE∙==n n n . 所以直线CE 与平面ABF.…………………………………………………12分 解法2:如图,设AC BD O = ,以O 为坐标原点,分别以OA ,OB的方向为x 轴,y 轴的正方向,建立空间直角坐标系O xyz -.…………………………………………6分可以求得,0,02A a ⎛⎫⎪ ⎪⎝⎭,10,,02B a ⎛⎫ ⎪⎝⎭,,0,02C a ⎛⎫- ⎪ ⎪⎝⎭,10,2E a ⎛⎫ ⎪⎝⎭,10,2F a ⎛⎫- ⎪ ⎪⎝⎭.………………7分数学答案(理科)试题B 第 4 页 共 11 页所以1,,02AB a ⎛⎫= ⎪ ⎪⎝⎭,1,2AF a ⎛⎫=- ⎪ ⎪⎝⎭.………………………………………8分设平面ABF 的法向量为()z y x ,,=n ,则⎪⎩⎪⎨⎧=∙=∙,0,0AB n n即10,210,2ay ay ⎧+=⎪⎪⎨⎪-+=⎪⎩不妨取1x =,则平面ABF的一个法向量为()=n .………………………………………10分因为1,2CE a ⎫=⎪⎪⎝⎭,所以cos ,CE CE CE∙==n n n . 所以直线CE 与平面ABF所成角的正弦值为8.…………………………………………………12分 (说明:若本题第(Ⅰ)问采用向量法证明正确,第(Ⅰ)问给6分,仍将建系、写点的坐标与向量的坐标等分值给到第(Ⅱ)问)(19)解:(Ⅰ)依题意,1ξ的所有取值为68.1,92.1,1.2,4.2,…………………………………1分 因为()30.05.06.068.11=⨯==ξP ,()30.05.06.092.11=⨯==ξP ,()20.05.04.01.21=⨯==ξP ,()20.05.04.04.21=⨯==ξP .………………………………3分 所以1ξ的分布列为依题意,2ξ的所有取值为68.1,8.1,24.2,4.2,…………………………………………………5分 因为()42.06.07.068.12=⨯==ξP ,()18.06.03.08.12=⨯==ξP ,()28.04.07.024.22=⨯==ξP ,()12.04.03.04.22=⨯==ξP ,……………………………7分……………4分数学答案(理科)试题B 第 5 页 共 11 页所以2ξ的分布列为(Ⅱ)令i Q 表示方案i 所带来的利润,则所以1150.30+200.50+250.20=19.5EQ =⨯⨯⨯, 2150.42+200.46+250.12=18.5EQ =⨯⨯⨯. 因为12EQ EQ >,所以实施方案1,第二个月的利润更大.………………………………………………………………12分(20)解:(Ⅰ)双曲线2215xy -=的焦点坐标为(),离心率为51分因为双曲线2215x y -=的焦点是椭圆C :22221x y a b+=()0a b >>的顶点,且椭圆与双曲线的离心率 互为倒数,所以a ==,解得1b =. 故椭圆C 的方程为1622=+y x .…………………………………………………………………………3分 (Ⅱ)因为2334>=MN ,所以直线MN的斜率存在.………………………………………………4分 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为m kx y +=.……………8分…………………………10分……………………………9分数学答案(理科)试题B 第 6 页 共 11 页代入椭圆方程1622=+y x 得0)1(612)61(222=-+++m kmx x k .…………………………………5分 因为()0)61(24)1)(61(241222222>-+=-+-=∆m k m k km ,所以2261k m +<.………………………………………………………………………………………6分 设),(11y x M ,),(22y x N ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k-=+.……………………………………7分 则()212212212411x x x x kx x k MN -++=-+== 因为334=MN.………………………………8分 整理得()22421973918kk k m +++-=.………………………………………………………………………9分 令112≥=+t k ,则12-=t k .所以2218755015075230575189993t t m t t t -+-⎡⎤-⨯⎛⎫==-+≤= ⎪⎢⎥⎝⎭⎣⎦.…………………………10分等号成立的条件是35=t ,此时322=k ,253m =满足2261k m +<,符合题意.………………11分故m 的最大值为315.…………………………………………………………………………………12分(21)解:(Ⅰ)函数()f x 的定义域为()()0,11,+∞ .因为()f x ln x ax b x =-+,所以()f x '2ln 1ln x a x-=-.…………………………………………1分 所以函数()f x 在点()()e,e f 处的切线方程为()()e e e y a b a x --+=--,即e y ax b =-++.………………………………………………2分已知函数()f x 在点()()e,e f 处的切线方程为2e y ax =-+,比较求得e b =.所以实数b 的值为e .……………………………………………………………………………………3分数学答案(理科)试题B 第 7 页 共 11 页(Ⅱ)解法1:由()f x 1e 4?,即1e e ln 4x ax x -+?.……………………………………………4分 所以问题转化为11ln 4a x x ≥-在2e,e 轾犏臌上有解.………………………………………………………5分 令()11ln 4h x x x =-()2e,e x 轾Î犏臌, 则()h x '22114ln x x x =-222ln 44ln x xx x-=(22ln ln 4ln x x x x +-=.………………………………7分 令()ln p x x =-,所以当2e,e x 轾Î犏臌时,有()110p x xx'==<.……………………………………………8分 所以函数()p x 在区间2e,e 轾犏臌上单调递减.……………………………………………………………9分 所以()()e ln e 0p x p <=-<. ………………………………………………………………10分所以()0h x '<,即()h x 在区间2e,e 轾犏臌上单调递减. ………………………………………………11分 所以()()22221111eln e4e 24e h x h ≥=-=-. 所以实数a 的取值范围为211,24e轹÷ê-+?÷÷êøë.…………………………………………………………12分 解法2:命题“存在x Î2e,e 轾犏臌,满足()f x 1e 4?”等价于“当x Î2e,e 轾犏臌时,有()min f x ⎡⎤⎣⎦1e 4?”.………………………………………4分由(Ⅰ)知,()f x '2ln 1ln x a x -=-=2111ln 24a x 骣÷ç--+-÷ç÷ç桫. (1)当14a ³时,()0f x '≤,即函数()f x 在区间2e,e 轾犏臌上为减函数,…………………………5分 所以()minf x =⎡⎤⎣⎦()2e f 22e e e 2a =-+.由()min f x ⎡⎤⎣⎦1e 4?,得22e 1e e e 24a -+?,解得21124e a ?. 所以21124e a ?.………………………………………………………………………………………6分数学答案(理科)试题B 第 8 页 共 11 页(2)当14a <时,注意到函数()f x '=2111ln 24a x 骣÷ç--+-÷ç÷ç桫在区间2e,e 轾犏臌上的值域为1,4a a 轾犏--犏臌. ……………………………………7分①0a £,()0f x '≥在区间2e,e 轾犏臌上恒成立,即函数()f x 在区间2e,e 轾犏臌上为增函数. 所以()()min e f x f =⎡⎤⎣⎦e e e =2e e a a =-+-.由于()min f x ≤⎡⎤⎣⎦1e 4+,所以2e e a -?1e 4+,解得1104e a ≥->,这与0a ≤矛盾.………8分 ②若104a <<,由函数()f x '的单调性(单调递增)和值域知,存在唯一的()20e,e x ∈,使()00f x '=,且满足当x Î()0e,x 时,()00f x '<,即()f x 为减函数;当x Î()0,e x 时,()00f x '>,即()f x 为增函数.所以()()0min f x f x =⎡⎤⎣⎦000e ln x ax x =-+.…………………………………………………………9分 由()min f x ≤⎡⎤⎣⎦1e 4+,得000e ln x ax x -+?1e 4+,即0001ln 4x ax x -?. 因为()00f x '=,即020ln 10ln x a x --=,所以020ln 1ln x a x -=. 将020ln 1ln x a x -=代入0001ln 4x ax x -?,得0201ln 4x x £,其中()20e,e x ∈.………………………10分 令()h x 2ln x x =,则()h x '3ln 2ln x x-=, 当x Î2e,e 轾犏臌时,()0h x '≤,即()h x 在区间2e,e 轾犏臌上为减函数.所以()()2eh x h ≥()2222e e 1>44ln e ==,与0201ln 4x x £矛盾, 所以不存在10,4a ⎛⎫∈ ⎪⎝⎭,使()minf x ≤⎡⎤⎣⎦1e 4+成立.………………………………………………11分 综上可知,实数a 的取值范围为211,24e 轹÷ê-+?÷÷êøë.…………………………………………………12分 (说明:当104a <<时,也可转化为200ln 4x x ≥,其中()20e,e x ∈,从而构造函数()2ln x p x x =解数学答案(理科)试题B 第 9 页 共 11 页答;还可转化为0011ln 4a x x ?,从而构造函数()11ln 4q x x x =-解答;还有其他解法均参照给分!)(22)(Ⅰ)解:曲线C 的普通方程为141222=+y x .……………………………………………………1分 将直线02=--y x 代入141222=+y x 中消去y 得,032=-x x .…………………………………2分 解得0=x 或3=x .………………………………………………………………………………………3分 所以点()2,0-A ,()1,3B ,………………………………………………………………………………4分 所以()()23210322=++-=AB .………………………………………………………………5分(Ⅱ)解法1:在曲线C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大.设过点P 且与直线l 平行的直线方程为b x y +=.……………………………………………………6分将b x y +=代入141222=+y x 整理得,()0436422=-++b bx x . 令()()22644340b b ∆=-⨯⨯-=,解得4±=b .…………………………………………………7分将4±=b 代入方程()0436422=-++b bx x ,解得3±=x .易知当点P 的坐标为()1,3-时,△PAB 的面积最大.………………………………………………8分 且点P ()1,3-到直线l 的距离为231121322=+---=d .……………………………………………9分△PAB 的最大面积为=⨯⨯=d AB S 219.…………………………………………………………10分 解法2:在曲线C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大.设曲线C 上点()θθsin 2,cos 32P ,其中[)π2,0∈θ,………………………………………………6分则点P 到直线l 的距离为22112sin 2cos 32+--=θθd 226πcos 4-⎪⎭⎫ ⎝⎛+=θ.………………………8分 因为[)π2,0∈θ,则6π136π6π<+≤θ, 所以当π6π=+θ,即65π=θ时,23max =d .………………………………………………………9分此时点P 的坐标为()1,3-,△PAB 的最大面积为=⨯⨯=d AB S 219.…………………………10分数学答案(理科)试题B 第 10 页 共 11 页(23)(Ⅰ)证明1:因为1=++c b a ,所以()()()222111+++++c b a ()32222++++++=c b a c b a 5222+++=c b a .所以要证明()()()316111222≥+++++c b a , 即证明31222≥++c b a .…………………………………………………………………………………1分 因为()()ca bc ab c b a c b a ++-++=++22222 ……………………………………………………2分 ()()22222c b a c b a ++-++≥,……………………………………………………3分所以()()22223c b a c b a ++≥++.……………………………………………………………………4分因为1=++c b a ,所以31222≥++c b a . 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 证明2:因为1=++c b a ,所以()()()222111+++++c b a ()32222++++++=c b a c b a 5222+++=c b a .所以要证明()()()316111222≥+++++c b a , 即证明31222≥++c b a .…………………………………………………………………………………1分 因为21293a a +≥,21293b b +≥,21293c c +≥,……………………………………………………3分 所以()2221233a b c a b c +++≥++.…………………………………………………………………4分因为1=++c b a ,所以31222≥++c b a . 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 证明3:因为()()21681193a a ++≥+,()()21681193b b ++≥+,()()21681193c c ++≥+, ……………………………3分所以()()()()()()22216811111133a b c a b c ++++++≥+++++⎡⎤⎣⎦.……………………………4分 因为1=++c b a ,数学答案(理科)试题B 第 11 页 共 11 页 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 (Ⅱ)解:设()12-+-=x a x x f ,则“对任意实数x ,不等式+212x a x --≥恒成立”等价于“()min 2f x ≥⎡⎤⎣⎦”.…………6分 当21<a 时,()⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤-+-<++-=.21,13,21,1,,13x a x x a a x a x a x x f 此时()min 11=22f x f a ⎛⎫=-⎡⎤ ⎪⎣⎦⎝⎭, 要使+212x a x --≥恒成立,必须221≥-a ,解得23-≤a .……………………………………7分 当21=a 时,3221≥-x 不可能恒成立.………………………………………………………………8分 当21>a 时,()⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤-+<++-=.,13,21,1,21,13a x a x a x a x x a x x f 此时()min 11=22f x f a ⎛⎫=-⎡⎤ ⎪⎣⎦⎝⎭, 要使+212x a x --≥恒成立,必须221≥-a ,解得25≥a .……………………………………9分 综上可知,实数a 的取值范围为⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤⎝⎛-∞-,2523, .……………………………………………10分。

2017-2018学年广东省广州市海珠区高二第二学期期末联考文科数学答案

2017-2018学年广东省广州市海珠区高二第二学期期末联考文科数学答案

1海珠区2017学年第二学期期末联考高二文科数学试题参考答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题:本大题共12小题,每小题5分.二.填空题: 本大题共4小题,每小题5分.13.52 14. 515.1e16.32 三.解答题(17)(本小题满分10分)解:(1)曲线1C 的方程为()222+=4x y -,即22+4=0x y x -----------2分将222+=,=cos x y x ρρθ代入上式,得:24cos=0ρρθ-,即=4cos ρθ,此即为曲线1C 的极坐标方程。

----------4分(2)设点A B 、对应的极径分别为A ρ、B ρ,易知2B ρ=, -------------6分 将()04πθρ=>代入=4cos ρθ,得:A ρ=----------------------8分2A B AB ρρ∴=-=。

----------------------------------10分(18)(本小题满分12分) (1)在ABC D中,由sin sin a bA B=,可得sin sin a B b A =--------------------1分 又由sin 2sin a B A 得2sin cos sin a B B A --------------2分 2sin cos sin sin a B B A B ----------------------------------4分 cos B 得6B p= ---------------------------------------------------6分2ONCMAB D S(2)由1cos 3A =得sin A ----------------------------------------------------------8分则()sin sin sin()C A B A B p 轾=-+=+臌 -------------------------------------------9分所以1sin sin()cos 62C A A A p =++= ----------------------------------12分(19)(本小题满分12分) (1)分(2)计算()2212422204042=12.9>10.82864606262K ⨯-⨯=⨯⨯⨯,因此有99.9%的把握认为科类的选修与性别有关. --------------------------------------------------12分 (20)(本小题满分12分)证明:(1)连结AC 交BD 于O ,由于CB CD =,--------------------------1分AB AD =,知AC BD ⊥,------------------------------------------2分∵SC BD ⊥,SC CA C ⋂=, --------------------------------------3分 ∴BD SAC ⊥平面 -----------------------------------------------4分 又SA SAC ⊂平面,SA BD ∴⊥. -----------------------------------------------------5分(2)取AB 的中点N ,连结,MN DN ,--------------------------------6分 ∵M 是SA 中点,∴//MN BS ,∴MN //平面SBC ,----------------------------------------------7分 ∵ABD ∆是正三角形,∴ND AB ⊥,-----------------------------8分 ∵1203090BCD CBD ABC BC AB ∠=∠=∴∠=⊥得,,即,-----9分3∴//,//ND BC ND SBC ∴∴平面,-------------------------------10分 ∵MN ND N ⋂=,∴平面//MND SBC 平面, ------------------------------------11分 又DM MND ⊂平面,∴//DM 平面SBC.. ----------------------------------------------12分 (21)(本小题满分12分)(1)当l 与x 轴垂直时,l 的方程为x =1,可得B 的坐标为(1,2)或(1,–2)--2分所以直线BM 的方程为1y x =+或=1y x -- -----------------------4分 (2)当l 与x 轴垂直时,MF 为AB 的垂直平分线,所以∠BMF =∠AMF .------5分 当l 与x 轴不垂直时,设l 的方程为(1)(0)y k x k =-? -------------------6分 A (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0.由2(1)4y k x y xì=-ïí=ïî得ky 2–4y –4k =0,可知124y y k +=,y 1y 2=–4. -----------------------8分 直线AM ,BM 的斜率之和为 122112121212()11(1)(1)AM BM y y x y x y y y k k x x x x ++++=+=++++- -------------①--------------9分 将111y x k =+,221yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 1221121212288()2()0y y x y x y y y y y k k-++++=++==. ------------------11分 所以0AM BM k k +=,可知AM ,BM 的倾斜角互补,所以∠BMF =∠AMF . 综上所述:∠BMF =∠AMF . ---------------------------------------12分 (22)(本小题满分12分)(1)由(1)知:()'10f x a x x=->, -----------------------------------------1分 当0a ≤时,()'10fx a x=->,此时()f x 的单调递增区间是()0+∞,;-----2分 当>0a 时,()'111==a x ax a f x a x x x⎛⎫-- ⎪-⎝⎭=- ---------------------------------------4分 若10<<x a,则()'>0f x ; ---------------------------------------5分 若1>x a,则()'<0f x -----------------------------------------------------------------6分4此时,()f x 的单调递增区间是10,a ⎛⎫ ⎪⎝⎭,单调递减区间是1,+a ⎛⎫∞ ⎪⎝⎭------------7分 综上所述:当0a ≤时,的单调递增区间是()0+∞,; 当>0a 时,()f x 的单调递增区间是10,a ⎛⎫ ⎪⎝⎭,单调递减区间是1,+a ⎛⎫∞ ⎪⎝⎭。

2017年广州市普通高中毕业班综合测试广州二测广州市二测答案(理科数学)

2017年广州市普通高中毕业班综合测试广州二测广州市二测答案(理科数学)

数学答案(理科)试题B 第 1 页 共 11 页绝密 ★ 启用前2017年广州市普通高中毕业班综合测试(二)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.一.选择题(1)A (2)B (3)A (4)B (5)A (6)C (7)D (8)C(9)B(10)C(11)B(12)D二.填空题 (13)32(14)23 (15)2590- (16)27三.解答题(17)解:(Ⅰ)因为数列{}n a 是等比数列,所以2132a a a =.因为1238a a a =,所以32=8a ,解得22=a .…………………………………………………………1分 因为()1253123-++++=n n a a a a S ,所以123a S =,即1213a a a =+.………………………………………………………………………2分 因为22=a ,所以11=a .………………………………………………………………………………3分 因为等比数列{}n a 的公比为212a q a ==, 所以数列{}n a 的通项公式为12-=n n a .…………………………………………………………………4分数学答案(理科)试题B 第 2 页 共 11 页(Ⅱ)因为等比数列{}n a 的首项为11=a ,公比2q =,所以()122121111-=--=--=n nn n q q a S .…………………………………………………………………6分因为n n b nS =,所以()212n nn b n n n =-=⋅-.………………………………………………………7分所以n n n b b b b b T +++++=-1321()()231222322123n n n =⨯+⨯+⨯++⨯-++++.…………………………………8分设231222322n n P n =⨯+⨯+⨯++⨯, 则234+121222322n n P n =⨯+⨯+⨯++⨯.所以()+1234222222n n n P n =⨯-+++++()1=122n n +-+.…………………………………10分因为()11232n n n +++++=, ……………………………………………………………………11分所以()()111222n n n n T n ++=-+-. 所以数列{}n b 的前n 项和()()111222n n n n T n ++=-+-.…………………………………………12分(18)(Ⅰ)证明:连接BD ,因为ABCD 是菱形,所以BD AC ⊥.……………………1分因为⊥FD 平面ABCD ,⊂AC 平面ABCD ,所以FD AC ⊥.………………………………………………2分因为D FD BD = ,所以⊥AC 平面BDF .……………3分 因为⊥EB 平面ABCD ,⊥FD 平面ABCD ,所以//EB FD .所以B ,D ,F ,E 四点共面.………………………………………………………………………4分 因为⊂EF 平面BDFE ,所以AC EF ⊥.……………………………………………………………5分FEDCB数学答案(理科)试题B 第 3 页 共 11 页(Ⅱ)解法1:如图,以D 为坐标原点,分别以DC ,DF 的方向 为y 轴,z 轴的正方向,建立空间直角坐标系xyz D -.……6分可以求得⎪⎪⎭⎫⎝⎛-0,21,23a a A ,⎪⎪⎭⎫ ⎝⎛0,21,23a a B ,⎪⎪⎭⎫⎝⎛a F 23,0,0, ()0,,0a C ,⎪⎪⎭⎫⎝⎛a a a E 3,21,23.………………………………7分 所以()0,,0a AB =,⎪⎪⎭⎫ ⎝⎛-=a a a 23,21,23.……………………………………………………8分设平面ABF 的法向量为()z y x ,,=n ,则⎪⎩⎪⎨⎧=∙=∙,0,0n n即0,10,2ay ay =⎧⎪⎨+=⎪⎩ 不妨取1x =,则平面ABF 的一个法向量为()1,0,1=n .……………………………………………10分 因为⎪⎪⎭⎫⎝⎛-=a a a 3,21,23, 所以36cos ,8CE CE CE∙==n n n . 所以直线CE 与平面ABF .…………………………………………………12分 解法2:如图,设ACBD O =,以O 为坐标原点,分别以OA ,OB 的方向为x 轴,y轴的正方向,建立空间直角 坐标系O xyz -.…………………………………………6分可以求得,0,02A a ⎛⎫⎪ ⎪⎝⎭,10,,02B a ⎛⎫ ⎪⎝⎭,,0,02C a ⎛⎫- ⎪ ⎪⎝⎭, 10,2E a ⎛⎫ ⎪⎝⎭,10,2F a ⎛⎫- ⎪ ⎪⎝⎭ (7)分数学答案(理科)试题B 第 4 页 共 11 页所以1,,02AB a ⎛⎫=- ⎪ ⎪⎝⎭,1,2AF a ⎛⎫=-- ⎪ ⎪⎝⎭.………………………………………8分设平面ABF 的法向量为()z y x ,,=n ,则⎪⎩⎪⎨⎧=∙=∙,0,0ABn n即10,210,2ay ay ⎧+=⎪⎪⎨⎪-+=⎪⎩不妨取1x=,则平面ABF 的一个法向量为()=n .………………………………………10分因为31,2CE a ⎛⎫= ⎪⎪⎝⎭,所以36cos ,CE CE CE∙==n n n .所以直线CE 与平面ABF 所成角的正弦值为8.…………………………………………………12分 (说明:若本题第(Ⅰ)问采用向量法证明正确,第(Ⅰ)问给6分,仍将建系、写点的坐标与向量的坐标等分值给到第(Ⅱ)问)(19)解:(Ⅰ)依题意,1ξ的所有取值为68.1,92.1,1.2,4.2,…………………………………1分 因为()30.05.06.068.11=⨯==ξP ,()30.05.06.092.11=⨯==ξP ,()20.05.04.01.21=⨯==ξP ,()20.05.04.04.21=⨯==ξP .………………………………3分 所以1ξ的分布列为依题意,2ξ的所有取值为68.1,8.1,24.2,4.2,…………………………………………………5分 因为()42.06.07.068.12=⨯==ξP ,()18.06.03.08.12=⨯==ξP ,()28.04.07.024.22=⨯==ξP ,()12.04.03.04.22=⨯==ξP ,……………………………7分……………4分数学答案(理科)试题B 第 5 页 共 11 页所以2ξ的分布列为(Ⅱ)令i Q 表示方案i 所带来的利润,则所以1150.30+200.50+250.20=19.5EQ =⨯⨯⨯, 2150.42+200.46+250.12=18.5EQ =⨯⨯⨯. 因为12EQ EQ >,所以实施方案1,第二个月的利润更大.………………………………………………………………12分(20)解:(Ⅰ)双曲线2215x y -=的焦点坐标为(),离心率为5.………………………1分因为双曲线2215x y -=的焦点是椭圆C :22221x y a b+=()0a b >>的顶点,且椭圆与双曲线的离心率 互为倒数,所以a ==,解得1b =. 故椭圆C 的方程为1622=+y x .…………………………………………………………………………3分 (Ⅱ)因为2334>=MN ,所以直线MN 的斜率存在.………………………………………………4分 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为m kx y +=.……………8分…………………………10分……………………………9分数学答案(理科)试题B 第 6 页 共 11 页代入椭圆方程1622=+y x 得0)1(612)61(222=-+++m kmx x k .…………………………………5分 因为()0)61(24)1)(61(241222222>-+=-+-=∆m k m k km ,所以2261k m +<.………………………………………………………………………………………6分 设),(11y x M ,),(22y x N ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k-=+.……………………………………7分 则()212212212411x x x x kx x k MN -++=-+== 因为334=MN ,.………………………………8分 整理得()22421973918kk k m +++-=.………………………………………………………………………9分 令112≥=+t k ,则12-=t k .所以2218755015075230575189993t t m t t t -+-⎡⎤-⨯⎛⎫==-+≤= ⎪⎢⎥⎝⎭⎣⎦.…………………………10分等号成立的条件是35=t ,此时322=k ,253m =满足2261k m +<,符合题意.………………11分故m 的最大值为315.…………………………………………………………………………………12分(21)解:(Ⅰ)函数()f x 的定义域为()()0,11,+∞.因为()f x ln x ax b x =-+,所以()f x '2ln 1ln x a x-=-.…………………………………………1分 所以函数()f x 在点()()e,e f 处的切线方程为()()e e e y a b a x --+=--,即e y ax b =-++.………………………………………………2分已知函数()f x 在点()()e,e f 处的切线方程为2e y ax =-+,比较求得e b =.所以实数b 的值为e .……………………………………………………………………………………3分数学答案(理科)试题B 第 7 页 共 11 页(Ⅱ)解法1:由()f x 1e 4?,即1e e ln 4x ax x -+?.……………………………………………4分 所以问题转化为11ln 4a x x ≥-在2e,e 轾犏臌上有解.………………………………………………………5分 令()11ln 4h x x x=-()2e,e x 轾Î犏臌, 则()h x '22114ln x x x =-222ln 44ln x x x x-=(22ln ln 4ln x x x x +-=.………………………………7分 令()ln p x x =-,所以当2e,e x 轾Î犏臌时,有()110p x xx'==<.……………………………………………8分 所以函数()p x 在区间2e,e 轾犏臌上单调递减.……………………………………………………………9分 所以()()e ln e 0p x p <=-<. ………………………………………………………………10分所以()0h x '<,即()h x 在区间2e,e 轾犏臌上单调递减. ………………………………………………11分 所以()()22221111eln e4e 24e h x h ≥=-=-. 所以实数a 的取值范围为211,24e轹÷ê-+?÷÷êøë.…………………………………………………………12分 解法2:命题“存在x Î2e,e 轾犏臌,满足()f x 1e 4?”等价于“当x Î2e,e 轾犏臌时,有()min f x ⎡⎤⎣⎦1e 4?”.………………………………………4分由(Ⅰ)知,()f x '2ln 1ln x a x -=-=2111ln 24a x 骣÷ç--+-÷ç÷ç桫. (1)当14a ³时,()0f x '≤,即函数()f x 在区间2e,e 轾犏臌上为减函数,…………………………5分 所以()minf x =⎡⎤⎣⎦()2e f 22e e e 2a =-+.由()min f x ⎡⎤⎣⎦1e 4?,得22e 1e e e 24a -+?,解得21124e a ?. 所以21124e a ?.………………………………………………………………………………………6分数学答案(理科)试题B 第 8 页 共 11 页(2)当14a <时,注意到函数()f x '=2111ln 24a x 骣÷ç--+-÷ç÷ç桫在区间2e,e 轾犏臌上的值域为1,4a a 轾犏--犏臌. ……………………………………7分①0a £,()0f x '≥在区间2e,e 轾犏臌上恒成立,即函数()f x 在区间2e,e 轾犏臌上为增函数. 所以()()min e f x f =⎡⎤⎣⎦e e e =2e e a a =-+-.由于()min f x ≤⎡⎤⎣⎦1e 4+,所以2e e a -?1e 4+,解得1104e a ≥->,这与0a ≤矛盾.………8分 ②若104a <<,由函数()f x '的单调性(单调递增)和值域知,存在唯一的()20e,e x ∈,使()00f x '=,且满足当x Î()0e,x 时,()00f x '<,即()f x 为减函数;当x Î()0,e x 时,()00f x '>,即()f x 为增函数.所以()()0min f x f x =⎡⎤⎣⎦000e ln x ax x =-+.…………………………………………………………9分 由()min f x ≤⎡⎤⎣⎦1e 4+,得000e ln x ax x -+?1e 4+,即0001ln 4x ax x -?. 因为()00f x '=,即020ln 10ln x a x --=,所以02ln 1ln x a x -=. 将02ln 1ln x a x -=代入0001ln 4x ax x -?,得0201ln 4x x £,其中()20e,e x ∈.………………………10分 令()h x 2ln x x =,则()h x '3ln 2ln x x-=, 当x Î2e,e 轾犏臌时,()0h x '≤,即()h x 在区间2e,e 轾犏臌上为减函数.所以()()2eh x h ≥()2222e e 1>44ln e ==,与0201ln 4x x £矛盾, 所以不存在10,4a ⎛⎫∈ ⎪⎝⎭,使()min f x ≤⎡⎤⎣⎦1e 4+成立.………………………………………………11分综上可知,实数a 的取值范围为211,24e轹÷ê-+?÷÷êøë.…………………………………………………12分 (说明:当104a <<时,也可转化为200ln 4x x ≥,其中()20e,e x ∈,从而构造函数()2ln x p x x =解答;还可数学答案(理科)试题B 第 9 页 共 11 页转化为0011ln 4a x x ?,从而构造函数()11ln 4q x x x =-解答;还有其他解法均参照给分!)(22)(Ⅰ)解:曲线C 的普通方程为141222=+y x .……………………………………………………1分 将直线02=--y x 代入141222=+y x 中消去y 得,032=-x x .…………………………………2分 解得0=x 或3=x .………………………………………………………………………………………3分 所以点()2,0-A ,()1,3B ,………………………………………………………………………………4分 所以()()23210322=++-=AB .………………………………………………………………5分(Ⅱ)解法1:在曲线C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大.设过点P 且与直线l 平行的直线方程为b x y +=.……………………………………………………6分将b x y +=代入141222=+y x 整理得,()0436422=-++b bx x . 令()()22644340b b ∆=-⨯⨯-=,解得4±=b .…………………………………………………7分将4±=b 代入方程()0436422=-++b bx x ,解得3±=x .易知当点P 的坐标为()1,3-时,△PAB 的面积最大.………………………………………………8分 且点P ()1,3-到直线l 的距离为231121322=+---=d .……………………………………………9分△PAB 的最大面积为=⨯⨯=d AB S 219.…………………………………………………………10分 解法2:在曲线C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大.设曲线C 上点()θθsin 2,cos 32P ,其中[)π2,0∈θ,………………………………………………6分则点P 到直线l 的距离为22112sin 2cos 32+--=θθd 226πcos 4-⎪⎭⎫ ⎝⎛+=θ.………………………8分 因为[)π2,0∈θ,则6π136π6π<+≤θ, 所以当π6π=+θ,即65π=θ时,23max =d .………………………………………………………9分此时点P 的坐标为()1,3-,△PAB 的最大面积为=⨯⨯=d AB S 219.…………………………10分数学答案(理科)试题B 第 10 页 共 11 页(23)(Ⅰ)证明1:因为1=++c b a ,所以()()()222111+++++c b a ()32222++++++=c b a c b a 5222+++=c b a .所以要证明()()()316111222≥+++++c b a , 即证明31222≥++c b a .…………………………………………………………………………………1分 因为()()ca bc ab c b a c b a ++-++=++22222 ……………………………………………………2分 ()()22222c b a c b a ++-++≥,……………………………………………………3分所以()()22223c b a c b a ++≥++.……………………………………………………………………4分因为1=++c b a ,所以31222≥++c b a . 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 证明2:因为1=++c b a ,所以()()()222111+++++c b a ()32222++++++=c b a c b a 5222+++=c b a .所以要证明()()()316111222≥+++++c b a , 即证明31222≥++c b a .…………………………………………………………………………………1分 因为21293a a +≥,21293b b +≥,21293c c +≥,……………………………………………………3分 所以()2221233a b c a b c +++≥++.…………………………………………………………………4分因为1=++c b a ,所以31222≥++c b a . 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 证明3:因为()()21681193a a ++≥+,()()21681193b b ++≥+,()()21681193c c ++≥+, ……………………………3分所以()()()()()()22216811111133a b c a b c ++++++≥+++++⎡⎤⎣⎦.……………………………4分数学答案(理科)试题B 第 11 页 共 11 页 因为1=++c b a ,所以()()()316111222≥+++++c b a .…………………………………………………………………5分 (Ⅱ)解:设()12-+-=x a x x f ,则“对任意实数x ,不等式+212x a x --≥恒成立”等价于“()min 2f x ≥⎡⎤⎣⎦”.…………6分 当21<a 时,()⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤-+-<++-=.21,13,21,1,,13x a x x a a x a x a x x f 此时()min 11=22f x f a ⎛⎫=-⎡⎤ ⎪⎣⎦⎝⎭, 要使+212x a x --≥恒成立,必须221≥-a ,解得23-≤a .……………………………………7分 当21=a 时,3221≥-x 不可能恒成立.………………………………………………………………8分 当21>a 时,()⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤-+<++-=.,13,21,1,21,13a x a x a x a x x a x x f 此时()min 11=22f x f a ⎛⎫=-⎡⎤ ⎪⎣⎦⎝⎭, 要使+212x a x --≥恒成立,必须221≥-a ,解得25≥a .……………………………………9分 综上可知,实数a 的取值范围为⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤⎝⎛-∞-,2523, .……………………………………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学答案(文科)试题B 第 1 页共 17 页数学答案(文科)试题B 第 2 页共 17 页数学答案(文科)试题B 第 3 页共 17 页数学答案(文科)试题B 第 4 页共 17 页数学答案(文科)试题B 第 5 页 共 17 页绝密 ★ 启用前2017年广州市普通高中毕业班综合测试(二)文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)C (2)D (3)B (4)A (5)A (6)C (7)D (8)D(9)C(10)B(11)C(12)B二.填空题(13)3(14)122n + (15)23 (16)⎥⎦⎤ ⎝⎛∞-51, [)∞+,1三、解答题(17)(Ⅰ)解:因为a C b C b =+sin cos , 由正弦定理CcB b A a sin sin sin ==得, AC B C B sin sin sin cos sin =+.…………………………………………………………………………1分 因为π=++C B A ,所以)sin sin sin cos sin C B C B C B +=+(.…………………………………………………………2分 即C B C B C B C B sin cos cos sin sin sin cos sin +=+.……………………………………………3分 因为0sin ≠C ,所以B B cos sin =.………………………………………………………………………………………4分 因为0cos ≠B ,所以1tan =B .因为()π0,∈B ,所以4π=B .…………………………………………………………………………5分数学答案(文科)试题B 第 6 页 共 17 页(Ⅱ)解法1:设BC 边上的高线为AD ,则14AD a =.………………………………………………6分 因为4π=B ,则14B D A D a ==,34CD a =.…………………………………………………………8分所以AC ==,AB =.…………………………………………………10分 由余弦定理得A cos 2222AB AC BC AB AC +-=g = 所以cos A的值为5-12分 解法2:设BC 边上的高线为AD ,则14AD a =.…………………………………………………6分 因为4π=B ,则14B D A D a ==,34CD a =.…………………………………………………………8分所以AC ==,AB =.…………………………………………………10分 由正弦定理sin sin BC ACA B=,得sinsin sin a BC B A AC π===11分 在△ABC 中,由AB AC < ,得4π=<B C ,所以A 为钝角.所以55sin 1cos 2-=--=A A . 所以cos A的值为12分 解法3:设BC 边上的高线为AD ,则14AD a =.…………………………………………………6分 因为4π=B ,则14BD AD a ==,34CD a =.…………………………………………………………8分设DAC θ∠=,则tan 3CDADθ==.…………………………………………………………………9分 所以tan tan 24A θπ⎛⎫=+=-⎪⎝⎭,所以A 为钝角.……………………………………………………10分数学答案(文科)试题B 第 7 页 共 17 页所以2211cos 1tan 5A A ==+,…………………………………………………………………………11分因为A为钝角.所以cos A =.…………………………………………………………………12分 (18)(Ⅰ)解:这50名学生身高的频率分布直方图如下图所示.(Ⅱ)解:由题意可估计这50名学生的平均身高为15081602017016180616450x ⨯+⨯+⨯+⨯==.……………………………6分所以估计这50名学生身高的方差为2s ()()()()222281501642016016416170164618016450-+-+-+-=…………………………7分 80=.所以估计这50名学生身高的方差为80.………………………………………………………………8分 (Ⅲ)解法1:记身高在[]175,185的4名男生为a ,b ,c ,d ,2名女生为A ,B .……………………9分从这6名学生中随机抽取3名学生的情况有:{a ,b ,c },{a ,b ,d },{a ,c ,d },{b ,c ,d }, {a ,b ,A },{a ,b ,B },{a ,c ,A },{a ,c ,B },{a ,d ,A },{a ,d ,B },{b ,c ,A },{b ,c ,B }, {b ,d ,A },{b ,d ,B },{c ,d ,A },{c ,d ,B },{a ,A ,B },{b ,A ,B },{c ,A ,B },{d ,A ,B }共20个基本事件.……………………………………………………………………………………………………10分其中至少抽到1名女生的情况有:{a ,b ,A },{a ,b ,B },{a ,c ,A },{a ,c ,B },{a ,d ,A }, {a ,d ,B },{b ,c ,A },{b ,c ,B },{b ,d ,A },{b ,d ,B },{c ,d ,A },{c ,d ,B },{a ,A ,B }, {b ,A ,B },{c ,A ,B },{d ,A ,B }共16个基本事件.…………………………………………………11分所以至少抽到1名女生的概率为164=205.……………………………………………………………12分 ……………………………………4分数学答案(文科)试题B 第 8 页 共 17 页解法2:记身高在[]175,185的4名男生为a ,b ,c ,d ,2名女生为A ,B .………………………9分 从这6名学生中随机抽取3名学生的情况有:{a ,b ,c },{a ,b ,d },{a ,c ,d },{b ,c ,d }, {a ,b ,A },{a ,b ,B },{a ,c ,A },{a ,c ,B },{a ,d ,A },{a ,d ,B },{b ,c ,A },{b ,c ,B }, {b ,d ,A },{b ,d ,B },{c ,d ,A },{c ,d ,B },{a ,A ,B },{b ,A ,B },{c ,A ,B },{d ,A ,B }共20个基本事件.……………………………………………………………………………………………………10分其中全部抽到男生的情况有:{a ,b ,c },{a ,b ,d },{a ,c ,d },{b ,c ,d }共4个基本事件.…………………………………………………………11分所以至少抽到1名女生的概率为441205-=.…………………………………………………………12分(19)(Ⅰ)证明:连接BD ,因为ABCD 是正方形,所以BD AC ⊥.………………………………………………………………1分 因为⊥FD 平面ABCD ,⊂AC 平面ABCD ,所以FD AC ⊥.…………………………………………………………………………………………2分因为D FD BD = ,所以⊥AC 平面BDF .…………………………………………………………3分 因为⊥EB 平面ABCD ,⊥FD 平面ABCD ,所以//EB FD .所以B ,D ,F ,E 四点共面.………………………………………………………………………4分 因为⊂EF 平面BDFE ,所以AC EF ⊥.……………………………………………………………5分 (Ⅱ)解法1:设O BD AC = ,连接EO ,FO , 由(Ⅰ)知,⊥AC 平面BDFE ,所以⊥AC 平面FEO .…………………………………………6分因为平面FEO 将三棱锥FAC E -分为两个三棱锥FEO A -和FEO C -,所以FEO C FEO A FAC E V V V ---+=.…………………………………7分以下给出两种求△F O E 面积的方法:方法1:因为正方形ABCD 的边长为a ,a FD EB 22==, 所以a OD FD FO =+=22,a OB EB EO 21022=+=.……………………………………8分 OFEDCBG数学答案(文科)试题B 第 9 页 共 17 页取BE 的中点G ,连接DG ,则a BG DB DG FE 21022=+==.……………………………9分 所以等腰三角形FEO的面积为21324FEOS a ∆==.………………………10分 方法2:因为正方形ABCD 的边长为a ,a FD EB 22==,所以FOE FDO EBO FDBE S S S S ∆∆∆=--梯形…………………………………………………………………8分111222⎫=--⎪⎪⎭………………………9分 234a =.……………………………………………………………………………………10分 所以FEO C FEO A FACE V V V ---+=CO S AO S FEO FEO ⨯+⨯=∆∆3131 ……………………………………11分23113334FEO S AC a D =?创=. 所以三棱锥FAC E -的体积为342a .………………………………………………………………12分 解法2:设O BD AC = ,连接EO ,FO , 由(Ⅰ)知,⊥AC 平面BDFE ,所以⊥AC 平面FEO .…………………………………………6分 过点E 作EH FO ⊥,垂足为H , 因为EH ⊂平面FEO ,所以EH AC ⊥.则EH ⊥平面FAC .……………………………………………7分 因为正方形ABCD 的边长为a ,a FD EB 22==,所以a OD FD FO =+=22,a OB EB EO 21022=+=.……………………………………8分 取BE 的中点G ,连接DG,则EF DG ==.…………………………9分 因为EO EF =,所以32EH a ==.……………………………………………10分H OFEDCBG数学答案(文科)试题B 第 10 页 共 17 页而2122FAC S AC FO ∆=⨯⨯=.……………………………………………………………………11分 所以E FAC V-2311333224FAC S EH a a ∆=⨯=⨯⨯=. 所以三棱锥FAC E -的体积为342a .………………………………………………………………12分(20)(Ⅰ)解法1:设点M 到直线l 的距离为d ,依题意MF d =.…………………………………1分设(,)M x y1y =+.……………………………………………………………2分 化简得24x y =.所以点M 的轨迹C 的方程为24x y =.…………………………………………………………………3分 解法2:设点M 到直线l 的距离为d ,依题意MF d =.……………………………………………1分 根据抛物线的定义可知,点M 的轨迹为抛物线,焦点为()0,1F ,准线为1y =-.………………2分 所以点M 的轨迹C 的方程为24x y =.…………………………………………………………………3分 (Ⅱ)解法1:设:1AB l y kx =+,……………………………………………………………………………4分 代入24x y =中,得2440x kx --=.…………………………………………………………………5分设()()1122,,,A x y B x y ,则12124,4x x k x x +=⋅=-.……………………………………………………………………………6分所以()21241AB x x k =-=+.……………………………………………………………7分因为2:4C x y =,即24x y =,所以2x y '=.…………………………………………………………8分所以直线1l 的斜率为112x k =,直线2l 的斜率为222xk =.……………………………………………9分因为121214x x k k ==-,…………………………………………………………………………………10分 所以PA PB ⊥,即PAB ∆为直角三角形.数学答案(文科)试题B 第 11 页 共 17 页所以PAB ∆的外接圆的圆心为线段AB 的中点,线段AB 是直径.…………………………………11分因为()241AB k =+,所以当0=k 时,线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.…………12分 解法2:设:1AB l y kx =+,………………………………………………………………………………4分 代入24x y =中,得2440x kx --=.…………………………………………………………………5分设()()1122,,,A x y B x y ,则12124,4x x k x x +=⋅=-.……………………………………………………………………………6分所以()21241AB x x k =-=+.……………………………………………………………7分因为2:4C x y =,即24x y =,所以2xy '=.…………………………………………………………8分所以直线1l 的方程为()1112x y y x x -=-,即21124x x y x =-. …………①同理,直线2l 的方程为22224x x y x =-.……………………………………② 联立①②解得1212,2.4x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,即()2,1P k -.…………………………………………………………9分因为()()11222,12,1PA PB x k y x k y ⋅=-+⋅-+()()142212122121++++++-=y y y y k x x k x x 0=,………………………………10分 所以PA PB ⊥,即PAB ∆为直角三角形.所以PAB ∆的外接圆的圆心为线段AB 的中点,线段AB 是直径.…………………………………11分因为()241AB k =+,所以当0=k 时,线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.…………12分 解法3:设:1AB l y kx =+,………………………………………………………………………………4分 代入24x y =中,得2440x kx --=.…………………………………………………………………5分数学答案(文科)试题B 第 12 页 共 17 页解得()2221A k k --,()2221B k k ++. ………6分所以()241AB k =+.……………………………………………………………………………………7分因为2:4C x y =,即24x y =,所以2x y '=. …………………………………………………………8分所以直线1l 的方程为()1112x y y x x -=-,即21124x x y x =-. …………①同理,直线2l 的方程为22224x x y x =-.……………………………………② 联立①②解得1212,2.4x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,即()2,1P k -.…………………………………………………………9分因为AB 的中点M 的坐标为()12,22+k k ,所以AB 的中垂线方程为()()k x kk y 21122--=+-, 因为PA 的中垂线方程为()()()(12112222+--++=+--k k x k k k k k y , 联立上述两个方程,解得其交点坐标为N ()12,22+k k .因为点M ,N 的坐标相同,所以AB 的中点M 即为PAB ∆的外接圆的圆心.…………………10分 所以△PAB 是直角三角形,且PA PB ⊥.所以线段AB 是PAB ∆外接圆的直径.………………………………………………………………11分因为()241AB k =+,所以当0=k 时,线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.…………12分数学答案(文科)试题B 第 13 页 共 17 页(21)解:(Ⅰ)因为函数()21ln 2f x a x x =-,所以其定义域为()∞+,0.当0≤a 时,()0<'x f ,函数()f x 在区间()∞+,0上单调递减.……………………………………2分综上可知,当0≤a 时,函数()f x 的单调递减区间为()∞+,0;当0>a 时,函数()f x 的单调递增(Ⅱ)因为()()4g x fx =+数学答案(文科)试题B 第 14 页共 17 页数学答案(文科)试题B 第 15 页 共 17 页(22)(Ⅰ)解:曲线C 的普通方程为141222=+y x .……………………………………………………1分将直线02=--y x 代入141222=+y x 中消去y 得,032=-x x .…………………………………2分 解得0=x 或3=x .………………………………………………………………………………………3分 所以点()2,0-A ,()1,3B ,………………………………………………………………………………4分 所以()()23210322=++-=AB .………………………………………………………………5分(Ⅱ)解法1:在曲线C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大.设过点P 且与直线l 平行的直线方程为b x y +=.……………………………………………………6分将b x y +=代入141222=+y x 整理得,()0436422=-++b bx x . 令()()22644340b b ∆=-⨯⨯-=,解得4±=b .…………………………………………………7分将4±=b 代入方程()0436422=-++b bx x ,解得3±=x .易知当点P 的坐标为()1,3-时,△PAB 的面积最大.………………………………………………8分 且点P ()1,3-到直线l 的距离为231121322=+---=d .……………………………………………9分△PAB 的最大面积为=⨯⨯=d AB S 219.…………………………………………………………10分 解法2:在曲线C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大.设曲线C 上点()θθsin 2,cos 32P ,其中[)π2,0∈θ,………………………………………………6分则点P 到直线l 的距离为22112sin 2cos 32+--=θθd 226πcos 4-⎪⎭⎫ ⎝⎛+=θ.………………………8分 因为[)π2,0∈θ,则6π136π6π<+≤θ, 所以当π6π=+θ,即65π=θ时,23max =d .………………………………………………………9分此时点P 的坐标为()1,3-,△PAB 的最大面积为=⨯⨯=d AB S 219.…………………………10分数学答案(文科)试题B 第 16 页 共 17 页(23)(Ⅰ)证明1:因为1=++c b a ,所以()()()222111+++++c b a ()32222++++++=c b a c b a 5222+++=c b a .所以要证明()()()316111222≥+++++c b a , 即证明31222≥++c b a .…………………………………………………………………………………1分 因为()()ca bc ab c b a c b a ++-++=++22222 ……………………………………………………2分 ()()22222c b a c b a ++-++≥,……………………………………………………3分所以()()22223c b a c b a ++≥++.……………………………………………………………………4分因为1=++c b a ,所以31222≥++c b a . 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 证明2:因为1=++c b a ,所以()()()222111+++++c b a ()32222++++++=c b a c b a 5222+++=c b a .所以要证明()()()316111222≥+++++c b a , 即证明31222≥++c b a .…………………………………………………………………………………1分 因为21293a a +≥,21293b b +≥,21293c c +≥,……………………………………………………3分所以()2221233a b c a b c +++≥++.…………………………………………………………………4分因为1=++c b a ,所以31222≥++c b a . 所以()()()316111222≥+++++c b a .…………………………………………………………………5分 证明3:因为()()21681193a a ++≥+,()()21681193b b ++≥+,()()21681193c c ++≥+, ……………………………3分所以()()()()()()22216811111133a b c a b c ++++++≥+++++⎡⎤⎣⎦.……………………………4分 因为1=++c b a ,数学答案(文科)试题B 第 17 页 共 17 页所以()()()316111222≥+++++c b a .…………………………………………………………………5分 (Ⅱ)解:设()12-+-=x a x x f ,则“对任意实数x ,不等式+212x a x --≥恒成立”等价于“()min 2f x ≥⎡⎤⎣⎦”.…………6分当21<a 时,()⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤-+-<++-=.21,13,21,1,,13x a x x a a x a x a x x f此时()min 11=22f x f a ⎛⎫=-⎡⎤ ⎪⎣⎦⎝⎭, 要使+212x a x --≥恒成立,必须221≥-a ,解得23-≤a .……………………………………7分 当21=a 时,3221≥-x 不可能恒成立.………………………………………………………………8分 当21>a 时,()⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤-+<++-=.,13,21,1,21,13a x a x a x a x x a x x f 此时()min 11=22f x f a ⎛⎫=-⎡⎤ ⎪⎣⎦⎝⎭,要使+212x a x --≥恒成立,必须221≥-a ,解得25≥a .……………………………………9分 综上可知,实数a 的取值范围为⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤⎝⎛-∞-,2523, .……………………………………………10分。

相关文档
最新文档