【小初高学习】高中数学北师大版必修2习题:第二章解析几何初步2.1.5.1
新北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)(2)

一、选择题1.已知圆22:1,O x y +=点()00,P x y 在直线20x y --=上,O 为坐标原点.若圆上存在点Q 使得30OPQ ∠=,则0x 的取值范围为( )A .[]1,1-B .[]0,1C .[]0,2D .[]22-,2.已知半径为2的圆经过点()5,12,则其圆心到原点的距离的最小值为( ) A .9 B .11 C .13 D .153.已知半径为1的圆经过直线2110x y +-=和直线220x y --=的交点,那么其圆心到原点的距离的最大值为( )A .4B .5C .6D .74.如图,棱长为4的正四面体ABCD ,M ,N 分别是AB ,CD 上的动点,且3MN =,则MN 中点的轨迹长度为( )A .23πB .2πC .2πD .π5.在圆M :224410x y x y +---=中,过点N (1,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .67B .127C .24D .66.已知过点()2,1P 的直线l 与x 轴正半轴和y 轴正半轴分别交于A ,B 两点,当PA PB ⋅最小时,直线l 的方程为( )A .24x y +=B .3x y +=C .25x y +=D .35x y += 7.在空间四边形ABCD 中,AB BC =,AD DC =,则对角线AC 与BD 所成角的大小是( )A .90︒B .60︒C .45︒D .308.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 9.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .1610.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B .C .D .11.在正方体1111ABCD A BC D -中,三棱锥11A B CD -的表面积为43球的体积为( )A .43πB 6πC .323πD .86π 12.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 二、填空题13.以下四个命题中:①直线()32y ax a a R =-+∈必过定点()3,2;②直线310x y ++=的倾斜角为60︒,③将一组数据中的每个数据都乘以同一个非零常数a 后,方差也变为原来的a 倍;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 为互斥事件,但不是对立事件.其中正确的是________.14.已知P 是直线4100(0)kx y k +-=>上的动点,,PA PB 是圆22:2440C x y x y +-++=的两条切线,,A B 是切点,C 是圆心,若四边形PACB 的面积的最小值为22k 的值为____________.15.圆22440x y y +--=上恰有两点到直线0x y a -+=2a 的取值范围是______.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .(1)若直线l 与圆L 、圆S 均相切,则l 截圆Q 所得弦长为__________;(2)若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =__________.17.在平面直角坐标系xoy 中,ABC ∆的坐标分别为()1,1A --,()2,0B ,()1,5C ,则BAC ∠的平分线所在直线的方程为_______18.若点()1,1P 为圆()2239x y -+=的弦MN 的中点,则弦MN 所在直线方程为__________.19.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC20.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 31,利用张衡的结论可得该正方体的内切球的表面积为___________.21.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 22.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,23PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.23.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA =,设其外接球的球心为O ,已知三棱锥O ABC -的体积为3,则球O 表面积的最小值为______.24.在矩形ABCD 中,1AB =,3AD =.将BCD 沿对角线BD 翻折,得到三棱锥A BCD -,则该三棱锥外接球的表面积为________.三、解答题25.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离.26.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值;(3)求三棱锥P BCE -的体积.27.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED 3BE 5(1)求证:平面EAD ⊥平面ABCD ;(2)求三棱锥F -BCD 的体积.28.如图,已知长方体1111ABCD A BC D -,2AB =,11AA =,直线BD 与平面1AAB B 所成的角为30°,AE 垂直BD 于E .(1)若F 为棱11A B 上的动点,试确定F 的位置使得//AE 平面1BC F ,并说明理由; (2)若F 为棱11A B 上的中点;求点A 到平面BDF 的距离;(3)若F 为棱11A B 上的动点(端点1A ,1B 除外),求二面角F BD A --的大小的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆的切线的性质,可知当过P 点作圆的切线,切线与OP 所成角是圆上的点与OP 所成角的最大值,只需此角大于等于30即可,此时半径,切线与OP 构成直角三角形,由切线与OP 所成角大于等于30可得OP 小于等于半径的2倍,再用含0x 的式子表示OP ,即可求出0x 的取值范围.【详解】设过P 的C 的切线切点为R ,根据圆的切线性质,有30OPR OPQ ∠∠=︒.反过来,如果30OPR ∠︒,则存在C 上点Q 使得30OPQ ∠=︒. ∴若圆C 上存在点Q ,使30OPQ ∠=︒,则30OPR ∠︒||1OR =,||2OP ∴>时不成立,||2OP ∴.222222000000||(2)244OP x y x x x x =+=+-=-+200240x x ∴-,解得,0002x x ∴的取值范围是[0,2]故选:C .【点睛】本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考查了学生的转化能力,计算能力.2.B解析:B【分析】设圆心坐标为(),a b ,则圆的圆心轨迹方程()()225124a b -+-=,再利用点与点的距离公式求解【详解】半径为2的圆经过点()5,12,设圆心坐标为(),a b ,则其方程为()()224x a y b -+-= , 由其过点()5,12,则()()225124a b -+-=,即()()225124a b -+-= 可得该圆的圆心轨迹是以()5,12为圆心,2为半径的圆,故圆心到原点的距离的最小值为()5,12到原点的距离减半径,213211=-=,故选:B .【点睛】关键点睛:本题考查轨迹问题和点与圆上的点的距离的最值,解答本题的关键是由题意得到圆心的轨迹方程()()225124a b -+-=,再根据点与圆上的点的距离的最值的求法得出答案,属于中档题. 3.C解析:C【分析】设出圆的方程,求出直线交点代入圆可得圆心在以()3,4为圆心,1为半径的圆上,即可由此求出最值.【详解】设圆的方程为()()221x a y b -+-=, 联立直线方程2110220x y x y +-=⎧⎨--=⎩,解得34x y =⎧⎨=⎩,将()3,4代入圆得()()22341a b -+-=, 则可得圆心(),a b 在以()3,4为圆心,1为半径的圆上,则()3,4到原点的距离为22345+=,则圆心(),a b 到原点的距离的最大值为516+=. 故选:C.【点睛】关键点睛:本题考查与圆相关的距离的最值问题,解题的关键是得出圆心的轨迹是以()3,4为圆心,1为半径的圆,再求出轨迹圆的圆心到原点的距离,加上半径即可. 4.D解析:D 【分析】把正四面体放在正方体中,建立空间直角坐标系,利用空间两点间距离公式、中点坐标公式以及圆的标准方程进行求解即可.【详解】把正四面体ABCD 放在正方体AFCE HBGD -中,并建立如图所示的空间直角坐标系, 设该正方体的棱长为a ,因为正四面体ABCD 的棱长为422422a a a +=⇒= 因此相应点的坐标为:(0,00),(22,0,22),(22,22,0),(0,22,22)D A B C ,, 因为N 是CD 上的动点,所以设点N 的坐标为:(0,,)n n ,设AM mAB =,000(,,)M x y z ,因此有000(22,,22)(0,22,22)x y z m --=-, 因此00022,22,2222x y m z m ===,设MN 中点为(,,)P x y z ,因此有:2(1)22xxy n yn znz⎧=⎪⎧⎪=⎪⎪⎪⎪=⇒+=⎨⎨⎪⎪-=⎪⎪⎩+=⎪⎪⎩,因为3MN=,3=,化简得:22))1(2)n n-+-=,把(1)代入(2)中得:221((4y z+=,显然MN中点的轨迹是圆,半径为12,圆的周长为:122ππ⋅=.故选:D【点睛】关键点睛:利用正方体这个模型,结合解析法是解题的关键.5.A解析:A【分析】先求得圆的圆心和半径,易知最长弦为直径,最短弦为过点()1,1与AC(直径)垂直的弦,再求得BD的长,可得面积.【详解】由224410x y x y+---=可得:22(2)(2)9x y-+-=,故圆心为(2,2),半径为3r=,由N()1,1为圆内点可知,过N(1,1)最长弦为直径,即AC=6而最短弦为过()1,1与AC垂直的弦,圆心(2,2)到()1,1的距离:d==所以BD==所以四边形ABCD的面积:12S AC BD=⋅=故选:A【点睛】本题考查了直线与圆,圆的方程,圆的几何性质,面积的求法,属于中档题.6.B解析:B【分析】 由题意结合三角函数的知识可得1sin PA θ=,2cos PB θ=,结合正弦的二倍角公式可得4sin 2PA PB θ⋅=,求出θ后即可得直线的斜率,再由点斜式即可得解. 【详解】 设()090BAO θθ∠=<<,如图:则1sin PA θ=,2cos PB θ=, 所以124sin cos sin 2PA PB θθθ⋅=⋅=, 所以当290θ=即45θ=时,PA PB ⋅最小,此时,直线的倾斜角为135,斜率tan1351k ==-,所以直线l 的方程为()12y x -=--即3x y +=.故选:B.【点睛】本题考查了三角函数、三角恒等变换的应用,考查了直线方程的求解,关键是合理转化条件,属于中档题.7.A解析:A 【分析】取AC 中点O ,根据条件分析AC 与平面BOD 的位置关系,由此得到异面直线AC 与BD 所成角的大小.【详解】取AC 中点O ,连接,,BO DO BD ,如图所示:因为AB BC =,AD DC =,所以,BO AC DO AC ⊥⊥,且BODO O =, 所以AC ⊥平面BOD ,又BD ⊂平面BOD ,所以AC BD ⊥,所以AC 与BD 所成角为90︒, 故选:A.【点睛】关键点点睛:解答问题的关键是通过找AC 中点证明线面垂直,从而确定出线线垂直关系,和常规的求解异面直线所成角的方法不同.8.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33半径为高的三分之一,即3r =234,所以该棱柱内部可放置球的半径的最大3343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33定球的最大半径.9.C解析:C 【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C . 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.10.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直; 对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',ACB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AAC ', A C '⊂平面AAC',A C BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.11.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43 所以)1213344224AB CS S a==⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.①④【分析】根据直线方程直线的倾斜角的定义方差公式对立事件的概念分别判断各命题【详解】①直线中令则∴直线必过定点①正确;②直线的斜率为倾斜角为②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后解析:①④ 【分析】根据直线方程,直线的倾斜角的定义,方差公式,对立事件的概念分别判断各命题. 【详解】①直线()32y ax a a R =-+∈中,令3x =,则2y =,∴直线必过定点()3,2,①正确;②10y ++=的斜率为k =120︒,②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后,方差变为原来的2a 倍,③错误;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 不可能同时发生,为互斥事件,但事件3发生时,,A B 都不发生.因此它们不是对立事件,④正确. 故答案为:①④ 【点睛】本题考查命题的真假判断,掌握直线方程,直线的倾斜角,方差,对立事件等概念是解题关键.本题属于中档题.14.3【分析】由面积关系与勾股定理将已知面积转化为由表示再由点到直线的距离公式求得最小值最后由面积的最小值构建方程求得参数【详解】由题可知四边形又因为所以四边形的面积的最小值为故答案为:3【点睛】本题考解析:3 【分析】由面积关系与勾股定理将已知面积转化为由PC 表示,再由点到直线的距离公式求得PC 最小值,最后由面积的最小值构建方程求得参数. 【详解】由题可知,S 四边形1222PACE PAC S PA AC r ==⨯==,又因为min C l PC d -===所以四边形PACB 的面积的最小值为2221812234k k k ⎛⎫--=⇒= ⎪+⎝⎭故答案为:3 【点睛】本题考查利用直线与圆相切的位置关系转化所求面积,还考查点与直线的最小距离,属于中档题.15.【分析】由与直线的距离为的两条平行线一条与圆相交一条与圆相离可得【详解】圆标准方程为圆心为半径为圆心到已知直线的距离为由题意解得或故答案为:【点睛】本题考查直线与圆的位置关系利用圆心到直线的距离判断 解析:()()4,04,8-【分析】由与直线0x y a -+=2 【详解】圆标准方程为22(2)8x y +-=,圆心为(0,2)C ,半径为22r =圆心C 到已知直线的距离为02222aa d -+-==,由题意2222222222a a ⎧-+>⎪⎪⎨-<,解得40a 或48a <<.故答案为:(4,0)(4,8)-.【点睛】本题考查直线与圆的位置关系,利用圆心到直线的距离判断直线与圆的位置关系是常用方法.16.【分析】(1)设出公切线方程利用圆心到直线的距离等于半径列出方程求解即可;(2)设出方程分别表示出圆心到直线的距离结合弦长公式求得即可【详解】解:(1)根据条件得到两圆的圆心坐标分别为设公切线方程为 解析:125【分析】(1)设出公切线方程,利用圆心到直线的距离等于半径列出方程求解即可; (2)设出方程,分别表示出圆心到直线的距离1d =,2d =,3d =,结合弦长公式求得k ,m 即可【详解】解:(1)根据条件得到两圆的圆心坐标分别为(4,0)-,(4,0),设公切线方程为(0)y kx m k =+≠且k存在,则22==,解得k =,0m =,故公切线方程为y =,则Q 到直线l的距离d =, 故l 截圆Q的弦长3=; (2)设方程为(0)y kx m k =+≠且k 存在,则三个圆心到该直线的距离分别为:1d =,2d =,3d =,则22221234(4)4(4)4(9)d d d d =-=-=-,即有22=,①2249-=-,②解①得0m =,代入②得2421k =, 则2416144214(4)425121d ⨯=-=+,即125d =, 故答案为:3;125. 【点睛】本题考查直线与圆的位置关系,圆与圆的位置关系,公切线方程,方程思想,数形结合思想,属于中档题.17.【分析】设的平分线与交于根据角平分线与面积关系求出利用共线向量坐标关系求出点坐标即可求解【详解】设的角平分线与交于解得所以的平分线方程为故答案为:【点睛】本题考查角平分线方程向量共线坐标应用角平分线 解析:0x y -=【分析】设BAC ∠的平分线与BC 交于D ,根据角平分线与面积关系求出||||CD DB ,利用共线向量坐标关系,求出D 点坐标,即可求解.【详解】设BAC ∠的角平分线与BC 交于(,)D a b ,1||||sin ||210||221||||10||||sin 2ACD ABD AC AD CAD S AC CD S AB DB AB AD BAD ⋅⋅∠∴=====⋅⋅∠,2,(1,5)2(2,)CD DB a b a b ∴=--=--,解得55,33a b ==,55(,)33D ∴,所以BAC ∠的平分线AD 方程为0x y -=.故答案为:0x y -=.【点睛】本题考查角平分线方程、向量共线坐标,应用角平分线性质是解题的关键,属于中档题.18.【分析】先求出直线MN 的斜率再写出直线的点斜式方程得解【详解】∵为圆的弦的中点∴圆心与点确定的直线斜率为∴弦所在直线的斜率为2则弦所在直线的方程为即故答案为:【点睛】本题主要考查直线和圆的位置关系考 解析:210x y --=【分析】先求出直线MN 的斜率,再写出直线的点斜式方程得解. 【详解】∵()1,1P 为圆()2239x y -+=的弦MN 的中点,∴圆心与点P 确定的直线斜率为101132-=--, ∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为()121y x -=-,即210x y --=. 故答案为:210x y --= 【点睛】本题主要考查直线和圆的位置关系,考查直线的方程的求法,意在考查学生对这些知识的理解掌握水平.19.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.20.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的 解析:【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径2R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =, 正方体的外接球半径R 满足:222222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则3R a =. 由题意知:3312aR r a -=-=-,则2a =,3R =, 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以10π=, 所以内切球的表面积为410 故答案为:410 【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.21.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面解析:2. 【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又2GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB == 连接,,GE EF GF ,易得1//,//GE AC EF BC 根据线面平行判定定理证得平面1//AB C 平面EFG 所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹,因为133GE EF GF ====所以动点P 的运动轨迹周长为3GE EF GF ++==【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.22.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心,可知四边形MNEO 是矩形,右图,PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin303PN PB ∴==,PBE △是等边三角形,PE =NE ∴==MO ∴=2211641322MC AC ==+=, 223134R OC MO MC ∴==+=+=, ∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.23.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒, 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,1132OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=12ab =, 所以222222313332224a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==, 故答案为:27π. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.24.【分析】作出图示求得外接球的半径由球的表面积可求得答案【详解】作出图示因为在矩形ABCD 中则连接交于点则设该三棱锥外接球的半径为则所以该三棱锥外接球的表面积故答案为:【点睛】本题考查三棱锥的外接球的 解析:4π。
北师大版高中数学必修二第二章解析几何初步(1).docx

第二章 解析几何初步
§1 直线与直线的方程
第十课时 与直线有关的对称问题
一、选择题
1.x 轴上任一点到定点(0,2)、(1,1)距离之和最小值是( )
A .2
B .22+
C .10
D .15+
2.点(4,0)关于直线5x+4y+21=0对称的点是( )
A 、(-6,8)
B 、(-6,-8)
C 、(-8,-6)
D 、(6,8)
3.直线032=+-y x l :关于x y -=,对称的直线方程是( )
A .032=+-y x
B .032=-+x y
C .032=--y x
D .032=--y x
二、填空题
4.已知点A (2,5)、B (4,-1),若在y 轴上存在一点P ,使||||PB PA +最小,则点P 的坐标为__________.
5.直线0632=-+y x 关于点(1,-1)对称的直线方程为________.
三、解答题
6.已知点M (3,5),在直线022=+-y x l :和y 轴上各找一点P 和Q ,使△MPQ 的周长最小.
7.已知A (-3,5),B (2,15),直线0443=+-y x l :.
(1)在l 上求一点P ,使||||PB PA +的值最小;
(2)在l 上求一点Q ,使||||QB QA -的值最大.
§1 直线与直线的方程
第十课时 与直线有关的对称问题。
2019秋新版高中数学北师大版必修2习题:第二章解析几何初步 2.3.1-2.3.2 Word版含解析.docx

§3空间直角坐标系3.1空间直角坐标系的建立3.2空间直角坐标系中点的坐标1.已知点A(3,5,-7),B(-2,4,3),则线段AB的中点坐标是()A.(1,9,-4)B.-C.(5,1,-10)D.(-5,-1,10)解析:由中点坐标公式可得AB的中点坐标是--,即-.答案:B2.已知空间直角坐标系中有一点M(x,y,z)满足x>y>z,且x+y+z=0,则点M的位置是()A.一定在xOy平面上B.一定在yOz平面上C.一定在xOz平面上D.可能在xOz平面上解析:因为x>y>z且x+y+z=0,所以x>0,z<0,y有可能为0,所以点M可能在xOz平面上.答案:D3.点P(1,2,-1)在xOz平面内的垂足为点B(x,y,z),则x+y+z=()A.3B.2C.1D.0解析:由已知条件可知,x=1,y=0,z=-1,则x+y+z=1+0+(-1)=0,故选D.答案:D4.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的主视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的主视图为④,俯视图为②,故选D.答案:D5.设y∈R,则点P(1,y,2)的集合为()A.垂直于xOz平面的一条直线B.平行于xOz平面的一条直线C.垂直于y轴的一个平面D.平行于y轴的一个平面解析:因为点P的纵坐标是任意实数,所以点P的集合是过xOz平面上一点(1,0,2)的一条垂直于xOz 平面的直线.答案:A6.已知点A(-4,2,3)关于坐标原点的对称点为A1,点A1关于xOz平面的对称点为A2,点A2关于z轴的对称点为A3,则线段AA3的中点M的坐标为.答案:(-4,0,0)7.已知正四棱柱ABCD-A1B1C1D1的顶点坐标分别为A(0,0,0),B(2,0,0),D(0,2,0),A1(0,0,5),则点C1的坐标为.解析:由已知得正四棱柱的底面边长为2,高为5,所以C1的坐标为(2,2,5).答案:(2,2,5)8.如图所示,在长方体OABC-O1A1B1C1中,OA=2,AB=3,AA1=2,M是OB1与BO1的交点,则点M的坐标为.解析:因为|OA|=2,|AB|=3,|AA1|=2,所以O(0,0,0),B1(2,3,2).M是OB1的中点,所以M点的坐标为,即.答案:9.如图所示,有一个棱长为1的正方体ABCD-A1B1C1D1,以D为坐标原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,以线段DA,DC,DD1的长度为单位长度,建立起一个空间直角坐标系,一只小蚂蚁从点A出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.解小蚂蚁由点A出发可从六条路线中任选一条前进,最后到达点C或点B1或点D1中的某一个点的位置.小蚂蚁沿着A-B-C或A-B-B1或A-D-C或A-D-D1或A-A1-B1或A-A1-D1任一条路线爬行,其终点为点C或B1或D1.点C在y轴上,且DC=1,则其纵坐标为1,横坐标与竖坐标均为0,所以点C的坐标是(0,1,0);点B1在xOy平面上的投影是点B,点B的坐标是(1,1,0),且|B1B|=1,则B1的竖坐标为1,所以点B1的坐标是(1,1,1);同理可知点D1的坐标是(0,0,1).10.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G分别是BB1,D1B1,BD的中点,棱长为1,求点E,F的坐标.解方法一:点E在xDy平面上的射影为点B(1,1,0),点E的竖坐标为,所以E.点F在xDy平面上的射影为BD的中点G,如题图,点G的坐标为,点F的竖坐标为1,所以F.方法二:B1(1,1,1),D1(0,0,1),B(1,1,0),E为B1B的中点,F为B1D1的中点,故点E的坐标为,点F的坐标为.11.在三棱锥S-ABC中,∠ASC=90°,AC=2,∠ACS=30°,平面SAC⊥平面ABC,建立适当的空间直角坐标系,求点S的坐标.解由于平面SAC⊥平面ABC,取AC的中点O,过点O在平面SAC中作Oz⊥AC,则Oz⊥平面ABC,过点O在平面ABC中作Ox⊥AC,则Oz⊥Ox,以点O为坐标原点,Ox,OC,Oz所在的直线分别为x轴、y 轴、z轴建立空间直角坐标系(如图所示).过点S作SD⊥AC于点D,在Rt△ASC中,∠ACS=30°,AC=2,∴AS=1,SC=.在Rt△SDC中,SD=,CD=,∵OC=AC=1,∴OD=.∴点S的坐标为-.★12.正方体ABCD-A1B1C1D1的棱长为1,以D为原点,正方体的三条棱所在直线为坐标轴,建立如图所示的空间直角坐标系D-xyz,有一动点P在正方体的各个面上运动.(1)当点P分别在平行坐标轴的各个棱上运动时,探究点P的坐标特征;(2)当点P分别在平行于坐标平面的各个面的对角线上运动时,探究点P的坐标特征.解(1)当点P分别在平行于x轴的棱A1D1,B1C1,BC上运动时,动点P的纵坐标、竖坐标不变,横坐标在[0,1]上取值;当点P分别在平行于y轴的棱AB,A1B1,D1C1上运动时,动点P的横坐标、竖坐标不变,纵坐标在[0,1]上取值;当点P分别在平行于z轴的棱AA1,BB1,CC1上运动时,动点P的横坐标、纵坐标不变,竖坐标在[0,1]上取值.(2)当点P分别在面对角线BC1,B1C上运动时,动点P的纵坐标不变;当点P分别在面对角线A1B,AB1上运动时,动点P的横坐标不变;当点P分别在面对角线A1C1,B1D1上运动时,动点P的竖坐标不变.。
新版高中数学北师大版必修2习题:第2章解析几何初步 2.1.5.1

1.5平面直角坐标系中的距离公式第1课时两点间的距离公式1.假设点A为(1, -3),点B为(5, -1),那么原点到线段AB中点的距离是()A.1B.√13C.13D.2√10解析:因为线段AB中点为M(3, -2),所以|OM| =√32+(-2)2=√13.答案:B2.点A(2k, -1),B(k,1),且|AB| =√13,那么实数k等于()A.±3B.3C. -3D.0解析:|AB| =√(2k-k)2+(-1-1)2=√13,解得k =±3.答案:A3.点P的横坐标是7,点P到点Q( -1,5)的距离为10,那么点P的纵坐标是()A.11B. -1C.11或 -1D.41解析:设点P的纵坐标为y,那么√(-1-7)2+(5-y)2 =10,解得y =11或y = -1.答案:C4.过点A(4,a)和点B(5,b)的直线与y =2x平行,那么|AB|的值为()A.5B.√5C.2D.√2=b -a,又因为过点A,B的直线与y =2x平行,所以b -a =2,解析:k AB =b-a5-4所以|AB| =√(5-4)2+(b-a)2=√5.答案:B5.两点M(a,b),N(c,d),且√a2+b2−√c2+d2 =0,那么()A.原点一定是线段MN的中点B.M,N一定都与原点重合C.原点一定在线段MN上但不一定是中点D.点M,N到原点的距离相等解析:将等式√a2+b2−√c2+d2 =0变形为√a2+b2=√c2+d2,根据两点间的距离公式可知,点M(a,b)到原点的距离与点N(c,d)到原点的距离相等.答案:D6.过两直线x -√3y +1 =0和√3x +y -√3 =0的交点,并与原点的距离等于1的直线有( )A.0条B.1条C.2条D.3条 解析:两直线交点为A (12,√32),得|AO| =1,那么适合题意的直线只有1条.应选B .答案:B★7.A (1,3),B (5, -2),点P 在x 轴上,那么使|AP| -|BP|取最|大值的点P 的坐标是( )A .(4,0)B .(13,0)C .(5,0)D .(1,0)解析:点A (1,3)关于x 轴的对称点为A'(1, -3),连接A'B 并延长交x 轴于点P ,即为所求.直线A'B 的方程是y +3 =-2+35-1(x -1),即y =14x -134.令y =0,得x =13.答案:B8.△ABC 的顶点坐标为A (3,2),B (1,0),C (2 +√3,1 -√3),那么AB 边上的中线CM 的长为 . 解析:由中点公式得AB 的中点的坐标为M (2,1).由两点间的距离公式,有|CM| =√(2+√3-2)2+(1-√3-1)2=√6.所以AB 边上的中线CM 的长为√6.答案:√69.点A ( -3,5),B (2,15),点P 在直线l :3x -4y +4 =0上,那么|PA| +|PB|的最|小值为 . 解析:设点A 关于l :3x -4y +4 =0的对称点为C (a ,b ),那么{3·a -32-4·b+52+4=0,b -5a+3=-43, 解得{a =3,b =-3,所以|PA| +|PB|的最|小值为|CB| =√(2-3)2+[15-(-3)]2 =5√13. 答案:5√13★10.假设点P (x ,y )在直线4x +3y =0上,且满足 -14≤x -y ≤7,那么点P 到坐标原点距离的取值范围是 .解析:由4x +3y =0得y = -43x ,那么x -y =73x.由 -14≤x -y ≤7可知 -6≤x ≤3,所以x 2∈[0,36],所以点P 到坐标原点的距离为√x 2+y 2=√x 2+169x 2=53√x 2.因为x 2∈[0,36],所以53√x 2∈[0,10].答案:[0,10]★11.在平行四边形ABCD 中,A (1,1),B (7,1),D (4,6),M 是线段AB 的中点,线段CM 与BD 交于点P ,求线段AP 的长.解AB 的中点为M (4,1),因为四边形ABCD 为平行四边形,所以AC 的中点与BD 的中点重合,设点C 的坐标为(x ,y ),那么{x+12=7+42,y+12=1+62,解得点C (10,6). 所以直线CM 的方程为y -1 =6-110-4(x -4), 即5x -6y -14 =0.又直线BD 的方程为y -1 =6-14-7(x -7),即5x +3y -38 =0.由{5x -6y -14=0,5x +3y -38=0,得P (6,83). 所以由两点间的距离公式得|AP| =√(6-1)2+(83-1)2=5√103.。
最新北师大版高中数学必修二第二章《解析几何初步》测试题(有答案解析)

一、选择题1.在空间直角坐标系中,点P(-2,1,4)关于xOy 平面的对称点的坐标是 A .(-2,1,-4) B .(-2,-1,-4) C .(2,-1,4)D .(2,1,-4)2.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离等于a )A B C .2D 3.已知两个不相等的实数a ,b 满足以下关系式:2sin cos 02a a πθθ+-=,2sin cos 02b b πθθ+-=,则连接()2,A a a ,()2,B b b 两点的直线与圆心在原点的单位圆的位置关系为() A .相交B .相切C .相离D .相切或相交4.已知线段AB 是圆22:4C x y +=的一条动弦,且AB =,若点P 为直线40x y +-=上的任意一点,则PA PB +的最小值为( )A .1B .1C .2D .25.在同一平面内,已知A 为动点,B ,C 为定点,且3BAC π∠=,2ACB π∠≠,2BC =,P 为BC 中点,过点P 作PQ BC ⊥交AC 所在直线于Q ,则AQ BC ⋅的最大值是( )A .13B .3C .3D .36.已知圆()()22:122C x y -++=,若直线24y kx =-上存在点P ,使得过点P 的圆C 的两条切线互相垂直,则实数k 的取值范围是( )A .23k ≤-或0k ≥ B .38k ≤- C .38k ≤-或0k ≥D .23k ≤-7.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,AB =6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A .96π B .93π C .96π D .93π 8.正方体1111ABCD A BC D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( ) A .3B .63C .5 D .2239.在正方体1111ABCD A BC D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( ) A .6πB .4π C .3πD .2π 10.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C 10D .2 11.三棱锥P ABC -中,6AB =,8AC =,90BAC ∠=︒,若52PA PB PC ===B 到平面PAC 的距离为( )A .32B .304141C .153417D .612.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.15.若三条直线20x y -=,30x y +-=,50mx ny ++=相交于同一点,则点(,)m n 到原点的距离的最小值为________.16.数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知△ABC 的顶点(1,0),(0,3),B C AB AC -=,则△ABC 的欧拉线方程为____________________ 17.已知α∈R ,()ππ2k k Z α≠+∈,设直线:tan l y x m α=+,其中0m ≠,给出下列结论:①直线l 的方向向量与向量()cos , sin a αα=共线; ②若π04α<<,则直线l 与直线y x =的夹角为π4α-; ③直线l 与直线sin cos 0x y n αα-+=(n m ≠)一定平行; 写出所有真命题的序号________18.已知圆221:10C x y +=与圆222:22140C x y x y +++-=相交,则两圆的公共弦长为__________.19.在正三棱锥P ABC -中,E ,F 分别为棱PA ,AB 上的点,3PE EA =,3BF FA =,且CE EF ⊥.若PB =P ABC -的外接球的体积为_________.20.如图①,矩形ABCD 中,2AB =,4=AD ,E 是BC 的中点,将三角形ABE 沿AE 翻折,使得平面ABE 和平面AECD 垂直,如图②,连接BD ,则异面直线BD 和AE 所成角的余弦值为______.21.已知等腰直角三角形ABC 中,2C π∠=,22CA =,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ABD -的外接球的表面积为____.22.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是正方形,1AA ⊥平面ABCD ,且2AB BC ==,13AA =,经过顶点A 作一个平面α,使得//α平面11CB D ,若α平面1ABCD l =,α平面112ABB A l =,则异面直线1l 与2l 所成的角的余弦值为___________.23.祖恒是我国南北朝时代的伟大科学家,他总结了刘徽的有关工作,提出来体积计算的原理“幂势既同,则积不容异”,称为祖恒原理,意思是底面处于同一平面上的两个同高的几何体,若在等高处 的截面面积始终相等,则它们的体积相等,利用这个原理求半球O 的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为_________________24.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.三、解答题25.已知下列几何体三视图如图.(1)求该几何体的表面积; (2)求该几何体外接球的体积.26.如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.(1)求证:1//AB 平面1BC D ; (2)求三棱锥1D BCC -的体积.27.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.28.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】过点P 向xOy 平面作垂线,垂足为N ,则N 就是点P 与它关于xOy 平面的对称点P′连线的中点,又N (-2,1,0),所以对称点为P′(-2,1,-4),故选A.2.A解析:A 【分析】依题意求得,,A B C 的坐标,求得直线,BD CD 的方程,联立,BD CD 的方程求得D 点坐标,根据D 到直线BC 的距离等于22a a b +. 【详解】依题意可知()22,0,,,,b b A a B c C c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以()()22,AB CD a c a b k k a c a b -==--,()()22,ACBD a c a b k k a c a b -=-=-,所以直线BD :()()22a c ab y xc a b --=-①,直线CD :()()22a c ab y xc a b-+=--②, ①-②并化简得()42D b x c a c a =+-.由于D 到直线BC的距离等于a a c =+,直线BC 方程为x c =,所以()42D b x c a a c a =+=--,化简得22,a b a b ==,所以双曲线为等轴双曲线,离心率为故选:A 【点睛】本小题主要考查直线和直线交点坐标的求法,考查直线方程点斜式,考查两条直线垂直斜率的关系,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题.3.C解析:C 【分析】由题意可得直线AB 的方程为sin cos 02x y πθθ⋅+⋅-=,由点到直线的距离公式可得圆心()0,0到直线AB 的距离,即可得解. 【详解】因为实数a 满足关系式2sin cos 02a a πθθ+-=,实数b 满足关系式2sin cos 02b b πθθ+-=,且实数a ,b 不相等,所以点()2,A a a ,()2,B b b 为直线sin cos 02x y πθθ⋅+⋅-=上的两点,所以直线AB 的方程为sin cos 02x y πθθ⋅+⋅-=,因为圆心()0,0到直线AB的距离12d π==>,所以直线AB 与圆心在原点的单位圆的位置关系为相离. 故选:C. 【点睛】本题考查了直线方程的应用及直线与圆位置关系的应用,考查了运算求解能力与转化化归思想,属于中档题.4.C解析:C 【分析】取AB 中点为M ,连接PM ,OM ,根据题意,求出1OM =,再由2PA PB PM +=,PM OM OP +≥,得到PA PB +取最小值,即是PM 取最小值,所以只需OP 取最小,根据点到直线距离公式,求出OP 的最小值,即可得出结果. 【详解】取AB 中点为M ,连接PM ,OM ,因为AB 是圆22:4C x y +=的一条动弦,且23AB =,所以22212AB OM ⎛⎫=-= ⎪⎝⎭,又2PA PB PM +=,PM OM OP +≥,即1PM OP ≥- 因此,PA PB +取最小值,即是PM 取最小值,所以只需OP 取最小, 又点P 为直线40x y +-=上的任意一点, 所以点O 到直线40x y +-=的距离,即是min OP , 即min 2242211OP -==+,因此minmin 1221PMOP =-=-,即minmin2422PA PB PM+==-.故选:C.【点睛】本题主要考查求向量模的最值问题,将其转化为直线上任意一点与圆心距离的最值问题,是解决本题的关键,属于常考题型.5.D解析:D 【分析】根据题意建立直角坐标系,结合斜率与倾斜角的关系及两角和的正切公式可找到点A 的轨迹,结合平面向量的数量积即可求解. 【详解】以P 为原点,BC 所在直线为x 轴建立如图所示的平面直角坐标系则(1,0),(0,0),(1,0)B P C -,设点(,)A x y ,则31tan ,tan()131131AB ACyyyx k ABC k ABC y x x x π+=∠==∠+==+-+,化简得22343x y ⎛+= ⎝⎭,所以()232311,11,33x ⎡⎫⎛∈--⋃-⋃⎪ ⎢⎪ ⎣⎭⎝⎦, 设点()0,Q m ,则 ()(),2,02AQ BC x m y x ⋅=--⋅=-, 故当23x =AQ BC ⋅取最大值,为433. 故选:D 【点睛】本题主要考查直线的倾斜角与斜率的关系及两角和的正切公式、圆的方程及性质、平面向量的数量积,属于能力提升题.6.A解析:A 【分析】直接利用直线与圆的位置关系,由于存在点P 使圆的两条切线垂直,得到四边形为正方形,进一步利用点到直线的距离公式求出k 的取值范围. 【详解】解:设过点P 的圆C 的两条切线分别与圆相切于,A B , 因为过点P 的圆C 的两条切线互相垂直,所以四边形APBC 为正方形,此时正方形的对角线长为2, 所以只需圆心(1,2)-到直线的距离小于等于2,≤2, 1k -,解得23k ≤-或0k ≥, 故选:A 【点睛】此题考查直线与圆的位置关系的应用,点到直线的距离公式,考查运算能力和转化能力,属于中档题.7.A解析:A 【分析】先确定曲面面积占以点D 为顶点,DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,CE CC AA BC AB ''=====BE ==45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点,DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 6S rl CC DC πππ'==⨯⨯=⨯⨯,所以曲面面积为18⨯=. 故选:A. 【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 8.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A BC D -的棱长为2,故22,5BD BE ED ===,如图,2215232h ED BD ⎛⎫=-=- ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d =⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.9.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD ,∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD =3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==. 同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.C解析:C 【分析】取BC 中点为O ,连接OP ,OA ,根据题中条件,由线面垂直的判断定理,证明PO ⊥平面ABC ;求出三棱锥P ABC -的体积;以及PAC △的面积,设点B 到平面PAC 的距离为d ,根据等体积法,由P ABC B PAC V V --=,即可求出结果. 【详解】取BC 中点为O ,连接OP ,OA ,因为6AB =,8AC =,90BAC ∠=︒,所以10BC ==,则152AO BC ==;又PA PB PC ===222100PB PC BC +==,则PB BC ⊥,152PO BC ==, 所以22250PO OA PA +==,所以PO AO ⊥; 因为PB PC =,O 为BC 中点,所以PO BC ⊥,又BC AO O ⋂=,BC ⊂平面ABC ,AO ⊂平面ABC ,所以PO ⊥平面ABC ; 此时三棱锥P ABC -的体积为11168540332P ABC ABCV S PO -=⋅=⨯⨯⨯⨯=, 因为在PAC △中,PA PC ==8AC =,所以PAC △的面积为182PACS=⨯= 设点B 到平面PAC 的距离为d , 由P ABC B PAC V V --=可得1403PACS d =⋅,所以17d ==故选:C. 【点睛】 方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解;(2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平面α的一条斜线PA 所对应的向量PA ,则点P 到面α的距离即为PA m d m⋅=.12.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键 5 【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行, 所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则2252(1)d ==+- 5【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的解析:cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程15.【分析】联立解得交点代入可得:再利用两点之间的距离公式二次函数的性质即可得出【详解】解:联立解得把代入可得:点到原点的距离当时取等号点到原点的距离的最小值为故答案为:【点睛】本题考查了两条直线的交点【分析】联立23y x x y =⎧⎨+=⎩,解得交点(1,2),代入50mx ny ++=可得:250m n ++=.再利用两点之间的距离公式、二次函数的性质即可得出. 【详解】解:联立23y xx y =⎧⎨+=⎩,解得1x =,2y =.把(1,2)代入50mx ny ++=可得:250m n ++=.52m n ∴=--.∴点(,)m n 到原点的距离5d ,当2n =-,1m =-时,取等号.∴点(,)m n【点睛】本题考查了两条直线的交点、两点之间的距离公式、二次函数的性质,考查了推理能力和计算能力,属于中档题.16.【分析】因为所以外心重心垂心都位于线段的垂直平分线上由两直线垂直斜率的关系以及两点的斜率公式得出线段的垂直平分线的斜率由中点坐标公式得出的中点坐标最后由点斜式写出方程【详解】因为所以外心重心垂心都位解析:340x y +-=【分析】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上,由两直线垂直斜率的关系以及两点的斜率公式得出线段BC 的垂直平分线的斜率,由中点坐标公式得出BC 的中点坐标,最后由点斜式写出方程. 【详解】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上 设线段BC 的垂直平分线的斜率为k ,则1BC k k ⨯=-3030(1)BC k -==--,13k ∴=-又因为BC 的中点坐标为13,22⎛⎫-⎪⎝⎭ 所以△ABC 的欧拉线方程为311()232y x -=-+,即340x y +-= 故答案为:340x y +-= 【点睛】本题主要考查了两直线垂直斜率间的关系,中点坐标公式,点斜式写出直线方程,属于中档题.17.①②【分析】①求出直线l 的方向向量判断它与向量共线;②求出直线l 和直线y =x 的斜率与倾斜角即可得出两直线的夹角;②根据两直线的斜率与在y 轴上的截距得出两直线不一定平行【详解】对于①直线l 的方向向量是解析:①② 【分析】①求出直线l 的方向向量,判断它与向量()cos , sin a αα=共线; ②求出直线l 和直线y =x 的斜率与倾斜角,即可得出两直线的夹角; ②根据两直线的斜率与在y 轴上的截距,得出两直线不一定平行. 【详解】对于①,直线l 的方向向量是()1,tan α,它向量()cos , sin a αα=共线,是真命题; 对于②,当π04α<<时,直线l 的斜率是tan α,倾斜角是α,直线y =x 的斜率是1,倾斜角是π4,因此两直线的夹角为π4α-,是真命题;对于③,直线l 的斜率是tan k α=,在y 轴上的截距是m ,直线sin cos 0x y n αα-+=的斜率tan k α=,且在y 轴上的截距是cos n α,当m =cos nα时,两直线重合,不平行,∴假命题.综上,是真命题的序号是①②.故答案为:①② 【点睛】本题考查了直线的斜率,倾斜角,方向向量等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18.【分析】求出公共弦的方程再利用垂径定理求解即可【详解】由题圆与圆的公共弦方程为化简得又圆圆心到弦的距离故弦长为故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题需要利用两个圆的方程相减求出公共弦解析:【分析】求出公共弦的方程,再利用垂径定理求解即可. 【详解】由题, 圆221:10C x y +=与圆222:22140C x y x y +++-=的公共弦方程为()()22222214100xy x y x y +++--+-=,化简得20x y +-=.又圆1C 圆心()0,0到弦20x y +-=的距离d ==故弦长为=故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题,需要利用两个圆的方程相减求出公共弦的方程,再利用垂径定理求解.属于中档题.19.【分析】证明与垂直得线面垂直从而得正三棱锥的三条侧棱两两垂直结合正方体的性质得三条侧棱的平方和为外接球直径的平方求得球半径后可得球体积【详解】∵∴∴又∴取中点连接如图由于是正三棱锥∴而平面∴平面又平 解析:36π【分析】证明PB 与,CE AC 垂直得线面垂直,从而得正三棱锥的三条侧棱两两垂直,结合正方体的性质得三条侧棱的平方和为外接球直径的平方,求得球半径后可得球体积. 【详解】∵3PE EA =,3BF FA =,∴AE AFAP AB=,∴//EF PB ,又CE EF ⊥,∴PB CE ⊥,取AC 中点D ,连接,PD BD ,如图,由于P ABC -是正三棱锥,∴,PD AC BD AC ⊥⊥,而PD BD D ⋂=,,PD BD ⊂平面PBD ,∴AC ⊥平面PBD ,又PB ⊂平面PBD , ∴AC PB ⊥,∵ACCE C =,,AC CE ⊂平面PAC ,∴PB ⊥平面PAC ,而,PA PC ⊂平面PAC ,∴,PB PA PB PC ⊥⊥,同理正三棱锥中,PA PC ⊥. 设三棱锥P ABC -外接球半径为R ,则22222(2)3(23)R PA PB PC =++=⨯,3R =,球的体积为343363V ππ=⨯=. 故答案为:36π.【点睛】结论点睛:三棱锥的外接球问题,解题关键是找到外接球的球心,三棱锥的外接球球心在过各面外心且与该面垂直的直线上.当从同一顶点出发的三条棱两两垂直时,可以把三棱锥补成一个长方体,而长方体的对角线就是三棱锥外接球的直径.20.【分析】取的中点作交延长线于则是异面直线和所成角或其补角可结合原矩形求出然后由直角三角形得出再用余弦定理求得结论【详解】取的中点作交延长线于则是异面直线和所成角或其补角连接∵所以又平面平面平面平面平 6【分析】取AE 的中点O ,作//DF AE 交EC 延长线于F ,则BDF ∠是异面直线BD 和AE 所成角或其补角,可结合原矩形求出,OD OF ,然后由直角三角形得出,BD BF ,再用余弦定理求得结论. 【详解】取AE 的中点O ,作//DF AE 交EC 延长线于F ,则BDF ∠是异面直线BD 和AE 所成角或其补角,连接,OB OF ,OD , ∵AB BE =,所以BO AE ⊥, 又平面ABE ⊥平面ECDA ,平面ABE 平面ECDA AE =,BO ⊂平面ABE ,∴BO ⊥平面ECDA ,而,OD OF ⊂平面ECDA ,所以BO OF ⊥,BO OD ⊥, 又∵90ABE ∠=︒,2AB BE ==,所以2BO =2AO EO ==22AE =//DF AE ,//AD EF ,则ADFE 是平行四边形,4,22EF AD DF AE ====,在原矩形中45BAE BEA ∠=∠=︒,则45,135DAE CEA ∠=︒∠=︒,22222cos 4542242102OD AD AO AD AO =+-⋅︒=+-⨯⨯⨯=, 22222cos135********OF EF EO EF EO =+-⋅︒=++⨯⨯⨯=, 22212BD BO OD =+=,22228BF BO OF =+=,在BDF 中,222cos 2BD DF BF BDF BD DF +-∠=⋅621222==-⨯⨯, 所以异面直线BD 和AE 所成角的余弦为6. 故答案为:6.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.21.12【分析】根据题意可判断出两两垂直即可求出外接球半径得出表面积【详解】等腰直角三角形中为的中点满足两两垂直设外接球的半径为则即三棱锥的外接球的表面积为故答案为:【点睛】本题考查三棱锥外接球问题解题解析:12π 【分析】根据题意可判断出,,DC DA DB 两两垂直,即可求出外接球半径,得出表面积. 【详解】等腰直角三角形ABC 中,2C π∠=,22CA CB ==,D 为AB 的中点,2CD AD BD ∴===,,CD AD CD BD ∴⊥⊥,22AB =,满足222AD BD AB +=,AD BD ∴⊥,,,DC DA DB ∴两两垂直,设外接球的半径为R ,则222222223R =++=,即3R =,∴三棱锥C ABD -的外接球的表面积为2412R ππ=.故答案为:12π.【点睛】本题考查三棱锥外接球问题,解题的关键是得出,,DC DA DB 两两垂直.22.【分析】先利用线面平行的性质定理和平面扩展得到异面直线所成角即BD 与所成的角再结合长方体棱长的条件在中求其余弦值即可【详解】如图设平面平面平面平面因为平面所以故异面直线与所成的角即与所成的角延长AD 26 【分析】先利用线面平行的性质定理和平面扩展,得到异面直线所成角即BD 与1A B 所成的角1A BD ∠,再结合长方体棱长的条件在1A BD 中求其余弦值即可.【详解】如图,设平面11CB D ⋂平面1ABCD l '=,平面11CB D ⋂平面112ABB A l '=,因为//α平面11CB D ,所以1122//,//l l l l '',故异面直线1l 与2l 所成的角,即1l '与2l '所成的角.延长AD 至E ,使AD DE =,连接CE ,则易见BD 与CE 平行且相等,又BD 与11B D 平行且相等,故BD 与11B D 平行且相等,即四边形11D B CE 是平行四边形,CE 就是交线1l '. 同理可知1B F 就是交线2l '. 又知BD //CE ,11//B F A B ,故1l '与2l '所成的角,即BD 与1A B 所成的角1A BD ∠, 依题意可知,2AB BC ==,13AA =,故1A BD 中,1113,22A B A D BD === 故1112262cos 13BD A BD A B ∠=== 26. 【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 23.【分析】根据给定的几何体的三视图得到该几何体为一个圆柱挖去一个圆锥得出圆柱的底面半径和高利用圆柱和圆锥的体积以及圆的公式即可求解【详解】解:根据给定的几何体的三视图可得该几何体表示一个圆柱挖去一个圆 解析:23π 【分析】根据给定的几何体的三视图,得到该几何体为一个圆柱挖去一个圆锥,得出圆柱的底面半径和高,利用圆柱和圆锥的体积以及圆的公式,即可求解.【详解】解:根据给定的几何体的三视图,可得该几何体表示一个圆柱挖去一个圆锥, 且底面半径1,高为1的组合体,所以几何体的体积为:2221311113πππ⨯⨯⨯=⨯-⨯. 故答案为:23π.【点睛】关键点点睛:本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解. 24.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EM M ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =,∴平面//NMC 平面1C EF . P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =,∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P 长度的取值范围是[32,25]. 故答案为:[32,25]【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P 点位置.三、解答题。
最新北师大版高中数学必修2全册同步课时练习

北师大版高中数学必修2全册课时练习第一章《立体几何初步》简单旋转体1.给出以下说法:①圆台的上底面缩小为一点时(下底面不变),圆台就变成了圆锥;②球面就是球;③过空间四点总能作一个球.其中正确说法的个数是( )A.0 B.1 C.2 D.3答案 B解析根据圆锥和圆台的形状之间的联系可知①正确;球面是曲面,球是球体的简称,是实心的几何体,故②不正确;当空间四点在同一条直线上时,过这四点不能作球,故③不正确.2.如图阴影部分,绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个棱柱答案 B解析按旋转体的定义得到几何体B.3.有下列三个命题:①圆柱是将矩形旋转一周所得的几何体;②圆台的任意两条母线的延长线,可能相交也可能不相交;③圆锥的轴截面是等腰三角形.其中错误命题的个数是( )A.0 B.1 C.2 D.3答案 C解析①将矩形的一边作为旋转轴旋转一周得到的几何体是圆柱.②圆台的两条母线的延长线必相交,故①②错误,③是正确的.4.如图所示的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(1)(5)答案 D解析轴截面为(1),平行于圆锥轴截面的截面是(5).5.下列命题中,错误的是( )A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面都是全等的等腰三角形答案 B解析当圆锥的截面顶角大于90°时,面积不是最大.6.圆锥被平行于底面的平面所截,若截面面积与底面面积之比为1∶2,则此圆锥的高被分成的两段之比为( )A.1∶2 B.1∶4C.1∶(2+1) D.1∶(2-1)答案 D解析根据相似性,若截面面积与底面面积之比为1∶2,则对应小圆锥与原圆锥高之比为1∶2,那么圆锥的高被截面分成的两段之比为1∶(2-1).7.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )答案 B解析由组合体的结构特征知,球只与正方体的六个面相切,而与两侧棱相离,故正确答案为B.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.答案圆锥解析 由旋转体的概念可知,得到的几何体是圆锥.9.圆台两底面半径分别是2 cm 和5 cm ,母线长是310 cm ,则它的轴截面的面积是________.答案 63 cm 2解析 画出轴截面,如图,过A 作AM ⊥BC 于M ,则BM =5-2=3(cm),AM =AB 2-BM 2=9(cm),∴S 四边形ABCD =+2=63(cm 2).10.如图所示的四个几何体中,哪些是圆柱与圆锥,哪些不是,并指出圆柱与圆锥的结构名称.解 ②是圆锥,圆面AOB 是圆锥的底面,SO 是圆锥的高,SA ,SB 是圆锥的母线. ③是圆柱,圆面A ′O ′B ′和圆面AOB 分别为上、下底面,O ′O 为圆柱的高,A ′A 与B ′B 为圆柱的母线.①不是圆柱,④不是圆锥.简单多面体1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10 答案 D解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).2.有两个面平行的多面体不可能是( )A.棱柱 B.棱锥C.棱台 D.长方体答案 B解析棱锥的各面都相交,故有两个面平行的多面体不可能是棱锥.3.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案 A解析形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2 B.1∶4C.2∶1 D.4∶1答案 B解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.5.某同学制作了一个对面图案相同的正方体礼品盒(如下图1),则这个正方体礼品盒的表面展开图应该为( )答案 A 解析 两个不能相邻,B 、D 错误;两个不能相邻,C 错误,故选A.也可通过制作模型来判断.6.如下图所示,在三棱台A ′B ′C ′-ABC 中,截去三棱锥A ′-ABC 后,剩余部分是( )A .三棱锥B .四棱锥C .三棱柱D .三棱台 答案 B解析 剩余部分是四棱锥A ′-BB ′C ′C .7.若一个正棱锥有6个顶点,所有侧棱长的和为20 cm ,则每条侧棱的长为________cm. 答案 4解析 依题意,正棱锥有6个顶点,则该正棱锥为正五棱锥,所以每条侧棱长为205=4 cm.8.在下面的四个平面图形中,属于侧棱都相等的四面体的展开图的是________(填序号).答案①②解析③④中的图不能组成四面体,只有①②行.9.一个正方体内接于一个球,过球心作一截面,则截面的可能图形有________.答案①②③解析当截面平行于正方体的一个侧面时得③,当截面过正方体的对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.10.已知长方体ABCD-A1B1C1D1(如下图所示).(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用截面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,请说明理由.解(1)是棱柱,并且是四棱柱.因为以长方体相对的两个面作底面,这两个面都是四边形且平行,其余各面都是矩形,当然是平行四边形,并且四条侧棱互相平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.2 直观图1.关于斜二测画法的叙述,其中正确的个数为( ) (1)两条相交直线的直观图可能是平行直线; (2)两条互相垂直的直线的直观图仍然垂直; (3)正方形的直观图可能是梯形; (4)平行四边形的直观图是平行四边形; (5)相等线段的直观图仍然相等. A .1 B .2 C .3 D .4 答案 A解析 由于斜二测画法保共点性,所以(1)错;保平行性,所以(3)错,(4)对;原来垂直的两线段,在直观图中夹角为45°,所以(2)错;与y 轴平行的线段长度变为原来的一半,所以(5)错.2.如下图建立坐标系,得到的正三角形ABC 的直观图不是全等三角形的一组是( )答案 C解析 在A 、B 、D 中,三角形ABC 的直观图的底面边长和高均相等,它们是全等的,只有C 不全等.3.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2 B.38a 2 C.68a 2 D.616a 2 答案 D解析 先根据题意,画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.图(2)所示为实际图形的直观图,由(2)可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图(2)中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.4.如下图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是( )答案 A解析 直观图边长为1,对角线为2,则原图形中对应的对角线为2 2.故选A.5.如图所示是水平放置的正方形ABCO ,在平面直角坐标系xOy 中,点B 的坐标为(4,4),则由斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为( )A. 2B.22C .2 2D .2 答案 A解析 由斜二测画法规则画出直观图如图所示,作B′E⊥x′轴于点E,在Rt△B′C′E中,B′C′=2,∠B′C′E=45°,B′E=B′C′sin45°=2×22= 2.6.如下图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是( )A.正方形B.矩形C.菱形D.一般的平行四边形答案 C解析如图,在原图形OABC中,OD=2O′D′=2×22=4 2 cm,CD=C′D′=2 cm.∴OC=OD2+CD2=22+22=6 cm,∴OA=OC,故四边形OABC是菱形.7.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是( )A.8 cm B.6 cmC.2(1+3) cm D.2(1+2) cm答案 A解析根据直观图的画法,原几何图形如图所示,四边形OABC为平行四边形,OB=22,OA=1,AB=3,从而原图周长为8 cm.8.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的________倍.答案24解析 从这个三角形的一边所在的直线为x 轴建立坐标系,则在直观图中,该边边长不变,高变为原来的24倍. 9.如图所示,四边形ABCD 是一平面图形的水平放置的斜二测直观图.在斜二测直观图中,ABCD 是一直角梯形,AB ∥CD ,AD ⊥CD ,且BC 与y ′轴平行.若AB =6,CD =4,AD =2,则这个平面图形的实际面积是________.答案 20 2解析 由斜二测直观图作图规则知,该平面图形是梯形,且AB 与CD 的长度不变,仍为6和4,高为42,故面积为20 2.10.已知直角梯形ABCD 中,AD =22,AB =3,CD =1,用斜二测画法画出其直观图如图所示,求直观图中的梯形A ′B ′C ′D ′的周长.解 由斜二测画法可知,A ′D ′=12AD =2,A ′B ′=AB =3,C ′D ′=CD =1.在直观图中,如图,过D ′作D ′E ′⊥A ′B ′于E ′, 过C ′作C ′F ′⊥A ′B ′于F ′.∵∠D ′A ′E ′=45°,∴C′F′=D′E′=A′E′=2×sin45°=2×22=1,∴F′B′=3-1-1=1,∴B′C′=12+12=2,故梯形A′B′C′D′的周长为4+2 2.三视图1.以下说法错误的是( )A.三视图相同的几何体只有球B.直立圆锥的主视图与左视图都是等腰三角形,俯视图是圆和圆心C.直立圆柱的主视图与左视图都是矩形,俯视图是圆D.长方体的三视图都是矩形,正方体的三视图都是正方形(有一面正对观察者)答案 A解析选项A中错在“只有”这两个字上,例如正方体的三视图可以都为正方形;根据圆锥、圆柱、长方体、正方体的几何特征易知B、C、D均正确.故选A.2.下列选项是正六棱柱的三视图,其中画法正确的是( )答案 A解析主视图的矩形中应有两条实线,左视图应为两个全等的矩形且中间为实线.故选A.3.如图所示,下列几何体各自的三视图(阴影面为主视面)中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④答案 D解析在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.请根据图中三视图,想象物体的形状,用小正方块搭出这个物体,并数一数有多少个小正方块( )A.7 B.6 C.8或10 D.9或10答案 D解析物体的立体图如图所示,由9个或10个小正方块搭成.5.已知三棱锥的俯视图与左视图如下图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为( )答案 C解析由题设条件知,该三棱锥的直观图可能如图所示,其底面ABC为正三角形,侧棱PC垂直于底面,在主视图中,PA的投影是虚线.故选C.6.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如下图所示,则这个正三棱柱的侧棱长和底面边长分别为( )A.2,2 3 B.22, 2C.4,2 D.2,4答案 D解析从三视图可以看出,底面三角形的高为23,侧棱长为2,∴底面边长为4.7.某几何体的主视图与左视图均为边长为1的正方形,则下面四个图形中,可能是该几何体俯视图的个数为( )A.1 B.2 C.3 D.4答案 C解析俯视图从左到右依次记为:如果几何体为棱长为1的正方体,则俯视图如图①;如果几何体为圆柱,它的底面直径为1,高为1,则俯视图如图④;如果几何体为从棱长为1的正方体中挖去直径为2,高为1的圆柱的14,则俯视图如图②;以图③为俯视图的几何体的正视图不是正方形.故选C.8.如图所示,正三棱柱ABC -A 1B 1C 1的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为________.答案 8 3解析 由主视图可知三棱柱的高为4,底面边长为4,所以底面正三角形的高为23,所以左视图的面积为4×23=8 3.9.如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AA 1、D 1C 1的中点,G 是正方形BCC 1B 1的中心,则空间四边形AEFG 在该正方体各面上的正投影不可能是下图中的________.答案 (2)解析 四边形在面ABCD 与面A 1B 1C 1D 1的投影为(1);在面AA 1B 1B 与面DD 1C 1C 的投影为(3);在面ADD 1A 1与面BCC 1B 1的投影为(4).10.如图,物体的三视图有无错误?如果有,请指出并改正.解主视图正确,左视图和俯视图错误,正确的画法如图所示.空间图形基本关系的认识空间图形的公理(一)1.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行答案 B解析若A,B,C,D四点中有三点共线,则A,B,C,D四点共面;若AB与CD相交(或平行),则AB与CD共面,即得A,B,C,D四点共面.故选B.2.若点A∈平面α,点B∈平面α,点C∈直线AB,则( )A.C∈αB.C∉αC.AB⊆/αD.AB∩α=C答案 A解析因为点A∈平面α,点B∈平面α,所以ABα.又点C∈直线AB,所以C∈α.3.如图所示,用符号语言可表示为( )A.α∩β=m,nα,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,nα,A m,A nD.α∩β=m,n∈α,A∈m,A∈n答案 A解析很明显,α与β交于m,n在α内,m与n交于A,故选A.4.如图,平面α∩平面β=l,点A∈α,点B∈α,且点C∈β,点C∉l.又AB∩l=R,设A,B,C三点确定的平面为γ,则β∩γ是( )A.直线AC B.直线BCC.直线CR D.直线AR答案 C解析∵C∈平面ABC,AB平面ABC,而R∈AB,∴R∈平面ABC,而C∈β,lβ,R ∈l,∴R∈β,∴点C,点R为两平面ABC与β的公共点,∴β∩γ=CR.5.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上答案 A解析因为E,F,G,H分别是四面体ABCD的棱AB,BC,CD,DA上的点,EF与HG交于点M,所以点M为平面ABC与平面ACD的公共点,而两个平面的交线为AC,所以M一定在直线AC上.6.在正方体ABCD-A1B1C1D1中,E、F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1、EF、CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析如下图:在直线CD上任取一点H,则直线A1D1与点H确定一平面A1D1HG.显然EF与平面A1D1HG有公共点O且A1D1∥HG.又O∉HG.连接HO并延长,则一定与直线A1D1相交.由于点H有无数个,所以与A1D1、EF、CD都相交的直线有无数条.7.如图,在这个正方体中,①BM与ED平行;②CN与BM是异面直线;③CN与BE是异面直线;④DN与BM是异面直线.以上四个命题中,正确命题的序号是________.答案②④解析观察图形可知①③错误,②④正确.8.有下面几个说法:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一平面内,则第四条边也在这个平面内;⑤点A在平面α外,点A和平面α内的任意一条直线都不共面.其中正确的序号是________(把你认为正确的序号都填上).答案③④解析①中线段可与平面α相交;②中的四边形可以是空间四边形;③中平行的对边能确定平面,所以是平行四边形;④中三边在同一平面内,可推知第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;⑤中点A与α内的任意直线都能确定一个平面.9.已知α,β为两个不同的平面,A,B,M,N为四个不同的点,a为直线,下列推理错误的是________(填序号).①A ∈a ,B ∈a ,A ∈β,B ∈β⇒a β; ②M ∈α,M ∈β,N ∈α,N ∈β⇒α∩β=MN ; ③A ∈α,A ∈β⇒α∩β=A . 答案 ③解析 ∵A ∈α,A ∈β,∴A ∈α∩β,由公理3知α∩β为经过点A 的一条直线而不是一个点A ,故③错误.故填③.10.如下图,四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =2∶3,DH ∶HA =2∶3.求证:EF 、GH 、BD 交于一点.证明 如图所示,连接GE 、HF ,∵E 、G 分别为BC 、AB 的中点, ∴GE ∥AC ,GE =12AC .又∵DF ∶FC =2∶3,DH ∶HA =2∶3, ∴HF ∥AC ,HF =25AC ,∴GE ∥HF ,GE >HF . ∴G 、E 、F 、H 四点共面. ∴EF 与GH 相交,设交点为O .则O ∈平面ABD ∩平面BCD ,而平面ABD ∩平面BCD =BD , ∴O ∈BD .即EF 、GH 、BD 交于一点.空间图形的公理(二)1.若直线a∥b,b∩c=A,则a与c的位置关系是( )A.异面 B.相交C.平行 D.异面或相交答案 D解析a与c不可能平行,若a∥c,又因为a∥b,所以b∥c,这与b∩c=A矛盾,而a与c异面、相交都有可能.2.如图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有( )A.2对 B.3对C.4对 D.6对答案 B解析据异面直线的定义可知共有3对.AP与BC,CP与AB,BP与AC.3.如图所示,在长方体木块ABCD-A1B1C1D1中,E,F分别是B1O和C1O的中点,则长方体的各棱中与EF平行的有( )A.3条 B.4条 C.5条 D.6条答案 B解析由于E、F分别是B1O、C1O的中点,故EF∥B1C1,因为和棱B1C1平行的棱还有3条:AD、BC、A1D1,所以共有4条.4.异面直线a,b,有aα,bβ且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交答案 D解析若c与a、b都不相交,∵c与a在α内,∴a∥c.又c 与b 都在β内,∴b ∥c .由基本性质4,可知a ∥b ,与已知条件矛盾. 如图,只有以下三种情况.故直线c 至少与a ,b 中的一条相交.5.已知E ,F ,G ,H 分别为空间四边形ABCD 的各边AB ,BC ,CD ,DA 的中点,若对角线BD =2,AC =4,则EG 2+HF 2的值是(平行四边形的对角线的平方和等于四条边的平方和)( )A .5B .10C .12D .不能确定 答案 B解析 如图所示,由三角形中位线的性质可得EH 綊12BD ,FG 綊12BD ,再根据公理4可得四边形EFGH 是平行四边形,那么所求的是平行四边形的对角线的平方和,所以EG 2+HF 2=2×(12+22)=10.6.如图所示的是正三棱锥的展开图(D ,E 分别为PB ,PA 的中点),则在正三棱锥中,下列说法正确的是( )A .直线DE 与直线AF 相交成60°角B .直线DE 与直线AC 相交 C .直线DE 与直线AB 异面D .直线AF 与直线BC 平行 答案 A解析 将题中的展开图还原成正三棱锥,如图所示,点F 与点P 重合,易知在△PDE 中,PD =PE =DE ,△PDE 是等边三角形,故∠PED =60°,即直线DE 与AF 相交成60°角,A 项正确.由图易知其余选项均错误.7.如图所示,在三棱锥A -BCD 中,M ,N 分别为AB ,CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )答案 D解析 如图所示,取BC 的中点E ,连接ME ,NE ,则ME =12AC ,NE =12BD ,所以ME +NE =12(AC +BD ).在△MNE 中,有ME +NE >MN ,所以MN <12(AC +BD ).8.如图,在正方体ABCD -A 1B 1C 1D 1中,BD 和B 1D 1是正方形ABCD 和A 1B 1C 1D 1的对角线,(1)∠DBC 的两边与________的两边分别平行且方向相同; (2)∠DBC 的两边与________的两边分别平行且方向相反. 答案 (1)∠D 1B 1C 1 (2)∠B 1D 1A 1解析 (1)B 1D 1∥BD ,B 1C 1∥BC 并且方向相同,所以∠DBC 的两边与∠D 1B 1C 1的两边分别平行且方向相同;(2)B 1D 1∥BD ,D 1A 1∥BC 且方向相反,所以∠DBC 的两边与∠B 1D 1A 1的两边分别平行且方向相反.9.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱C 1D 1,C 1C 的中点.有以下四个结论:①直线AM 与CC 1是相交直线 ②直线AM 与BN 是平行直线 ③直线BN 与MB 1是异面直线 ④直线AM 与DD 1是异面直线其中正确的结论为________(注:把你认为正确结论的序号都填上). 答案 ③④解析 由异面直线的定义知③④正确.10.如图,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且AEAB=AH AD =λ,CF CB =CGCD=μ.(1)当λ=μ时,求证:四边形EFGH 是平行四边形;(2)当λ≠μ时,求证:①四边形EFGH 是梯形;②三条直线EF ,HG ,AC 交于一点. 证明 在△ABD 中,AE AB =AH AD=λ, 故EH 綊λBD .同理FG 綊μBD . 由公理4得EH ∥FG ,又可得FG =μλEH .(1)若λ=μ,则FG =EH ,故EFGH 是平行四边形. (2)①若λ≠μ,则EH ≠FG ,故EFGH 是梯形.②若λ≠μ,则EH ≠FG ,则在平面EFGH 中EF 、HG 不平行,必然相交. 不妨设λ>μ,EF ∩HG =O ,如图所示. 由O ∈EF ,EF 平面ABC ,得O ∈平面ABC . 同理有O ∈HG 平面ACD .而平面ABC ∩平面ACD =AC ,所以O ∈AC , 即EF 、HG 、AC 交于点O .平行关系的判定1.已知两条相交直线a ,b ,a ∥α,则b 与平面α的位置关系是( ) A .b ∥α B .b 与α相交 C .b α D .b ∥α或b 与α相交答案 D解析 ∵a ,b 相交,∴a ,b 确定一个平面β,如果β∥α,则b ∥α,如果β不平行于α,则b 与α相交.2.不同直线m 、n 和不同平面α、β,给出下列命题:其中错误的有( )A.0个 B.1个 C.2个 D.3个答案 D解析由面面平行与线面平行的定义知:①是正确的.对于②,n可能在平面β内.对于③,在正方体ABCD-A1B1C1D1中,如图,AA1平面ADD1A1,CC1平面CDD1C1,而AA1∥C1C,从而A1A与CC1可确定一个平面AA1C1C.即AA1,C1C可以共面.对于④,m可能在平面β内.故②③④错,选D.3.如图,在四面体ABCD中,若M,N,P分别为线段AB,BC,CD的中点,则直线BD 与平面MNP的位置关系为( )A.平行B.可能相交C.相交或BD平面MNP D.以上都不对答案 A解析因为N,P分别为BC,CD的中点.∴NP∥BD.又NP平面MNP,BD⊆/平面MNP,∴BD∥平面MNP.4.平面α与△ABC的两边AB,AC分别交于点D,E,且AD∶DB=AE∶EC,如图所示,则BC与α的位置关系是( )A .平行B .相交C .异面D .BC α 答案 A解析 在△ABC 中,AD DB =AEEC,∴DE ∥BC . ∵DE α,BC ⊆/ α,∴BC ∥平面α.5.直线l ∥平面α,直线m ∥平面α,直线l 与m 相交于点P ,且l 与m 确定的平面为β,则α与β的位置关系是( )A .相交B .平行C .异面D .不确定 答案 B解析 因为l ∩m =P ,所以过l 与m 确定一个平面β.又因l ∥α,m ∥α,l ∩m =P ,所以β∥α.6.一条直线l 上有相异三个点A 、B 、C 到平面α的距离相等,那么直线l 与平面α的位置关系是( )A .l ∥αB .l ⊥αC .l 与α相交但不垂直D .l ∥α或l α答案 D解析 l ∥α时,直线l 上任意点到α的距离都相等,l α时,直线l 上所有的点到α的距离都是0;l ⊥α时,直线l 上有两个点到α的距离相等;l 与α斜交时,也只能有两点到α的距离相等.7.已知不重合的直线a ,b 和平面α.给出下列命题: ①若a ∥α,b α,则a ∥b ; ②若a ∥α,b ∥α,则a ∥b ; ③若a ∥b ,b α,则a ∥α; ④若a ∥b ,a ∥α,则b ∥α或b α. 其中正确的是________(填序号). 答案 ④解析 ①若a ∥α,b α,则a ,b 平行或异面; ②若a ∥α,b ∥α,则a ,b 平行或相交或异面;③若a ∥b ,b α,则a ∥α或a α. ④正确.8.对于平面α与平面β,有下列条件:①α,β都平行于平面γ;②α内不共线的三点到β的距离相等;③l ,m 为两条平行直线,且l ∥α,m ∥β;④l ,m 是异面直线,且l ∥α,m ∥α,l ∥β,m ∥β.则可判定平面α与平面β平行的条件是________(填序号).答案 ①④解析 由面面平行的传递性可知①能得出α∥β.对于④,l ,m 是异面直线,则分别在α,β内作l ′∥l ,m ′∥m 及l ″∥l ,m ″∥m ,则l ′与m ′,l ″与m ″都分别相交,故α∥β.对于②③,平面α与平面β可能相交.9.在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 、平面ABD解析 如图,连接AM 并延长交CD 于点E ,连接BN 并延长交CD 于点F .由重心的定义及性质可知,E ,F 重合为一点,设为E ,且该点为CD 的中点,由EM MA =EN NB =12,得MN ∥AB , 因此,MN ∥平面ABC 且MN ∥平面ABD .10.如图所示,在三棱锥S -ABC 中,D ,E ,F 分别是棱AC ,BC ,SC 的中点,求证:平面DEF ∥平面SAB .证明 因为D ,E 分别是棱AC ,BC 的中点,所以DE 是△ABC 的中位线,DE ∥AB . 因为DE ⊆/ 平面SAB ,AB 平面SAB ,所以DE ∥平面SAB , 同理可证:DF ∥平面SAB ,又因为DE ∩DF =D ,DE 平面DEF ,DF 平面DEF ,所以平面DEF∥平面SAB.平行关系的性质1.a∥α,b∥β,α∥β,则a与b位置关系是( )A.平行 B.异面C.相交 D.平行或异面或相交答案 D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.三棱锥S-ABC中,E、F分别是SB、SC上的点,且EF∥平面ABC,则( ) A.EF与BC相交 B.EF与BC平行C.EF与BC异面 D.以上均有可能答案 B解析由线面平行的性质定理可知EF∥BC.3.如图,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( )A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能答案 B解析∵MN∥平面PAD,MN平面PAC,平面PAD∩平面PAC=PA,∴MN∥PA.4.下列说法正确的个数是( )①两个平面平行,夹在两个平面间的平行线段相等;②两个平面平行,夹在两个平面间的相等线段平行;③如果一条直线和两个平行平面中的一个平行,那么它和另一个也平行;④平行于同一条直线的两个平面平行.A.1 B.2 C.3 D.4答案 A解析只有①正确.②中的两线段还可能相交或异面;③中的直线可能在另一个平面内;④中的两个平面可能相交.5.平面α截一个三棱锥,如果截面是梯形,那么平面α必定和这个三棱锥的( ) A.一个侧面平行 B.底面平行C.仅一条棱平行 D.某两条相对的棱都平行答案 C解析当平面α∥平面ABC时,如下图(1)所示,截面是三角形,不是梯形,所以A、B 不正确;当平面α∥SA时,如上图(2)所示,此时截面是四边形DEFG.又SA平面SAB,平面SAB∩α=DG,所以SA∥DG.同理,SA∥EF,所以EF∥DG.同理,当平面α∥BC时,GF∥DE,但是截面是梯形,则四边形DEFG中仅有一组对边平行,所以平面α仅与一条棱平行.所以D不正确,C正确.6.下列说法正确的是( )A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c 均平行答案 B解析平行于同一条直线的两个平面可以平行也可以相交,所以A错;B显然正确;C 中没有指明这三个点在平面的同侧还是异侧,不正确;D不正确,因为过直线a的平面中,只要b ,c 不在其平面内,则与b ,c 均平行.7.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构成三个命题,写出你认为正确的一个命题:________.(用序号表示)答案 ①②⇒③(或①③⇒②) 解析 ①②⇒③设过m 的平面β与α交于l .∵m ∥α,∴m ∥l ,∵m ∥n ,∴n ∥l ,∵n ⊆/ α,l α,∴n ∥α.8.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.答案2解析 因为直线EF ∥平面AB 1C ,EF 平面ABCD ,且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC ,又因为E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得:EF =12AC ,又因为在正方体ABCD -A 1B 1C 1D 1中,AB =2,所以AC =22,所以EF = 2.9.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱A 1B 1,B 1C 1的中点,P 是棱AD 上一点,AP =a3,过P ,M ,N 的平面与棱CD 交于Q ,则PQ =________.答案22a3解析 ∵MN ∥平面AC ,PQ =平面PMN ∩平面ABCD , ∴MN ∥PQ ,易知DP =DQ =2a3,故PQ =PD 2+DQ 2=2DP =22a 3.10.如图,在正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN .求证:MN ∥平面AA 1B 1B .证明 如图,作MP ∥BB 1交BC 于点P ,连接NP ,∵MP ∥BB 1,∴CM MB 1=CP PB. ∵BD =B 1C ,DN =CM , ∴B 1M =BN ,∴CM MB 1=DN NB ,∴CP PB =DN NB, ∴NP ∥CD ∥AB .∵NP ⊆/ 平面AA 1B 1B ,AB 平面AA 1B 1B , ∴NP ∥平面AA 1B 1B .∵MP ∥BB 1,MP ⊆/ 平面AA 1B 1B ,BB 1平面AA 1B 1B , ∴MP ∥平面AA 1B 1B .又∵MP 平面MNP ,NP 平面MNP ,MP ∩NP =P , ∴平面MNP ∥平面AA 1B 1B .∵MN 平面MNP ,∴MN ∥平面AA 1B 1B .平面与平面垂直的判定1.下列说法中正确的是( )A .平面α和β分别过两条互相垂直的直线,则α⊥βB .若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC .若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥β。
北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)(2)

一、选择题1.动圆M 与定圆22:40C x y x ++=相外切,且与直线:2l x =相切,则动圆M 的圆心(),x y 满足的方程为( )A .212120y x -+=B .212120y x +-=C .280y x +=D .280y x -=2.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为A .4B C D 3.已知半径为2的圆经过点()5,12,则其圆心到原点的距离的最小值为( ) A .9B .11C .13D .154.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A .B .C .D .5.已知圆C 与直线30x y ++=相切,直线10mx y ++=始终平分圆C 的面积,则圆C方程为( ) A .2222x y y +-= B .2222x y y ++= C .2221x y y +-= D .2221x y y ++=6.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( )A .B .C .⎝⎭D .⎛ ⎝⎭7.在三棱锥P ABC -中,PA ⊥平面ABC ,1204BAC AP AB AC ∠====,则三棱锥P ABC -的外接球的表面积是( ) A .18πB .36πC .40πD .72π8.已知m ,n 是两条直线,α,β是两个平面,则下列命题中错误的是( ) A .若m n ⊥,m α⊥,n β⊥,则αβ⊥ B .若m α⊂,//αβ,则//m βC .若m n ⊥,m α⊥,βn//,则αβ⊥D .若l αβ=,//m α,//m β,则//m l9.如图,在矩形ABCD 中,1AB =,BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .10 D .210.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3πD .2π 11.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π12.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .3二、填空题13.当点P 在圆221x y +=上运动时,它与定点()30Q -,的连线PQ 的中点的轨迹方程是________________.14.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.15.以下四个命题中:①直线()32y ax a a R =-+∈必过定点()3,2;②直线10y ++=的倾斜角为60︒,③将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a 倍;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 为互斥事件,但不是对立事件.其中正确的是________.16.直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,则11a b+的最小值为__________ 17.在平面直角坐标系xOy 中,过点(0,3)M -的直线l 与圆223x y +=交于A ,B 两点,且2MB MA =,则直线l 的方程为________.18.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.19.四棱锥V ABCD -中,底面ABCD 是正方形,各条棱长均为2.则异面直线VC 与AB所成角的大小为______.20.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.21.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.22.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 23.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.24.在矩形ABCD 中,1AB =,AD =.将BCD 沿对角线BD 翻折,得到三棱锥A BCD -,则该三棱锥外接球的表面积为________.三、解答题25.已知四棱锥P ABCD -中,//AB CD ,AB AD ⊥,4AB =,AD =,2CD =,PA ⊥平面ABCD ,4PA =.(1)设平面PAB ⋂平面PCD m =,求证:CD //m ;(2)若E 是PA 的中点,求四面体PBEC 的体积.26.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.27.在三棱锥A BCD -中,BCD △为等腰直角三角形,点E ,G 分别是线段BD ,CD 的中点,点F 在线段AB 上,且2BF FA =.若1AD =,3AB =,2CB CD ==.(Ⅰ)求证://AG 平面CEF ; (Ⅱ)求直线AD 与平面CEF 所成的角.28.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r ,则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ,从而|MC|﹣d=2,由此能求出动圆圆心轨迹方程. 【详解】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r , 则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ∴|MC|﹣d=222(2)x y ++2﹣x )=2, 化简得: y 2+12x -12=0.∴动圆圆心轨迹方程为y 2+12x -12=0. 故选B . 【点睛】本题考查动圆圆心轨迹方程的求法,考查直线方程、圆、两点间距离公式、两圆相外切、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.2.C解析:C 【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长.【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,② ①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为∴圆心到公共弦的距离为=∴公共弦长==故答案为:C 【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.3.B解析:B 【分析】设圆心坐标为(),a b ,则圆的圆心轨迹方程()()225124a b -+-=,再利用点与点的距离公式求解 【详解】半径为2的圆经过点()5,12,设圆心坐标为(),a b ,则其方程为()()224x a y b -+-= ,由其过点()5,12,则()()225124a b -+-=,即()()225124a b -+-=可得该圆的圆心轨迹是以()5,12为圆心,2为半径的圆, 故圆心到原点的距离的最小值为()5,12到原点的距离减半径, 213211=-=, 故选:B . 【点睛】关键点睛:本题考查轨迹问题和点与圆上的点的距离的最值,解答本题的关键是由题意得到圆心的轨迹方程()()225124a b -+-=,再根据点与圆上的点的距离的最值的求法得出答案,属于中档题.4.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C (),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=的几何意义可知,m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;5.D解析:D 【分析】计算出直线10mx y ++=所过定点的坐标,由题意得出定点是圆C 的圆心,然后利用点到直线的距离公式计算出圆C 的半径长,即可得出圆C 的方程. 【详解】在直线10mx y ++=的方程中,令0x =,则1y =-,则直线10mx y ++=过定点()0,1-.由于直线10mx y ++=始终平分圆C 的面积,则点()0,1-是圆C 的圆心,又圆C 与直线30x y ++=相切,则圆C 的半径r ==.因此,圆C 的方程为()2212x y ++=,即2221x y y ++=.故选D. 【点睛】本题考查圆的方程的求解,同时也考查了直线过定点问题,求出圆的圆心坐标为解题的关键,考查运算求解能力,属于中等题.6.D解析:D【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.D解析:D 【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可. 【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,12ON AP ==4AN =,故R =2441872S R πππ==⨯=.故选:D. 【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法.8.C解析:C 【分析】利用直二面角可判断A 的正误,利用面面平行或线面平行性质定理即判断定理可判断BD 的正误,从而可得正确的选项,利用反例可判断C 是错误的. 【详解】 对于A ,如图,设l αβ=,空间中取一点O (O 不在平面,αβ内,也不在直线,m n上),过O 作直线,a b ,使得,////a m b n ,且,a A b B αβ⋂=⋂=,故a b ⊥. 因为m α⊥,故a α⊥,而l α⊂,故a l ⊥,同理b l ⊥, 因为a b O ⋂=,故l ⊥平面OAB . 设平面OAB 交l 与C ,连接,AC BC ,因为,AC BC ⊂平面OAB ,故,,l AC l BC ⊥⊥所以ACB ∠为l αβ--的平面角. 因为a α⊥,AC α⊂,故OA AC ⊥,同理OB BC ⊥,而OA OB ⊥, 故在四边形OACB 中,90ACB ∠=︒即αβ⊥,故A 正确.对于B ,由面面平行的性质可得若m α⊂,//αβ,则//m β,故B 正确. 对于D ,如图,过m 作平面γ,使得a γα=,过m 作平面η,使得b ηβ⋂=,因为//m α,m γ⊂,故//a m ,同理//b m ,故//a b , 而a β⊄,b β⊂,故//a β,而a α⊂,l αβ=,故//a l ,所以//m l ,故D 正确.对于C ,在如图所示的正方体中,//AD 平面11A D CB ,1AA ⊥平面ABCD ,1AD AA ⊥,但是平面11A D CB 与平面ABCD 不垂直,故C 错误.故选:C. 【点睛】思路点睛:对于立体几何中与位置有关的命题的真假判断,一般根据性质定理和判定定理来处理,反例一般可得正方体中寻找.9.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()12CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+ ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.10.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.11.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.12.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.二、填空题13.【分析】设动点的中点由中点坐标公式可解出将点点的坐标代入已知圆的方程化简可得到所求中点的轨迹方程【详解】解:设动点的中点由题意可得:解得:又点在圆上运动化简得:即为所求的轨迹方程故答案为:【点睛】方 解析:()22+3124y x +=【分析】设动点00(,)P x y ,P ,Q 的中点(,)M x y ,由中点坐标公式可解出0x ,0y ,将点P 点的坐标代入已知圆的方程,化简可得到所求中点的轨迹方程. 【详解】解:设动点00(,)P x y ,P ,Q 的中点(,)M x y , 由题意可得:032x x -+=,02y y =, 解得:023x x =+,02y y =, 又点P 在圆221x y +=上运动,22(23)(2)1x y ∴++=,化简得:()22+3124y x +=,即为所求的轨迹方程. 故答案为:()22+3124y x +=.【点睛】方法点睛:求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设(,)P x y 是轨迹上的任意一点;②寻找动点(,)P x y 所满足的条件;③用坐标(,)x y 表示条件,列出方程0(),f x y =;④化简方程0(),f x y =为最简形式;⑤证明所得方程即为所求的轨迹方程,注意验证.14.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.15.①④【分析】根据直线方程直线的倾斜角的定义方差公式对立事件的概念分别判断各命题【详解】①直线中令则∴直线必过定点①正确;②直线的斜率为倾斜角为②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后解析:①④ 【分析】根据直线方程,直线的倾斜角的定义,方差公式,对立事件的概念分别判断各命题. 【详解】①直线()32y ax a a R =-+∈中,令3x =,则2y =,∴直线必过定点()3,2,①正确;②310x y ++=的斜率为3k =-120︒,②错误;③将一组数据中的每个数据都乘以同一个非零常数a 后,方差变为原来的2a 倍,③错误;④基本事件空间是{}1,2,3,4,5,6Ω=,若事件{}1,2A =,{}4,5,6B =,A ,B 不可能同时发生,为互斥事件,但事件3发生时,,A B 都不发生.因此它们不是对立事件,④正确. 故答案为:①④ 【点睛】本题考查命题的真假判断,掌握直线方程,直线的倾斜角,方差,对立事件等概念是解题关键.本题属于中档题.16.【分析】由得可知圆心为半径为2而所以可得直线过圆心由此得所以可化为然后利用基本不等式可求得其最小值【详解】解:由得所以曲线表示圆其圆心为半径为2因为直线与曲线交于且所以直线过圆心所以所以当且仅当即时解析:3+【分析】由222410x y x y +--+=得,22(1)(2)4x y -+-=,可知圆心为(1,2),半径为2,而AB 4=,所以可得直线过圆心,由此得21a b +=,所以11a b+可化为112a b a b ⎛⎫+⋅+ ⎪⎝⎭(),然后利用基本不等式可求得其最小值 【详解】解:由222410x y x y +--+=得,22(1)(2)4x y -+-=, 所以曲线222410x y x y +--+=表示圆,其圆心为(1,2),半径为2,因为直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,所以直线()10,0ax by a b +=>>过圆心(1,2), 所以21a b +=,所以11112a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭()2333b a a b =++≥+=+当且仅当2b aa b =,即212a b ==时,取等号故答案为:3+【点睛】此题考查的是直线与圆的位置关系,利用基本不等式求最值,属于中档题17.【分析】根据题意知点为的中点设再由得利用韦达定理建立方程解得即可【详解】由题知点为的中点设直线设将直线带入圆的方程得则由得即所以解得故直线方程为:故答案为:【点睛】本题考查直线和圆的位置关系属于基础题解析:3y =-【分析】根据题意知,点A 为MB 的中点,设()11,A x y ,()22,B x y ,再由2MB MA =得122x x =,利用韦达定理建立方程,解得即可.【详解】由题知,点A 为MB 的中点,设直线:3l y kx =-,设()11,A x y ,()22,B x y ,将直线带入圆的方程得()221660k x kx +-+=,则12261k x x k +=+,12261x x k⋅=+, 由2MB MA =,得122x x =,即2221k x k =+,1241kx k =+, 所以,21222246111k k x x k k k ⋅=⨯=+++,解得k =3y =-.故答案为:3y =-. 【点睛】本题考查直线和圆的位置关系,属于基础题.18.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】 设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =,所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.19.60°【分析】根据AB∥CD得到异面直线与所成角即为∠VCD由△VCD为等边三角形即可求解【详解】如图示因为是正方形所以AB∥CD所以异面直线与所成角即为∠VCD又各条棱长均为2所以△VCD为等边三解析:60°【分析】根据AB∥CD,得到异面直线VC与AB所成角即为∠VCD,由△ VCD为等边三角形,即可求解.【详解】如图示,因为ABCD是正方形,所以AB∥CD,所以异面直线VC与AB所成角即为∠VCD.又各条棱长均为2,所以△ VCD为等边三角形,所以∠VCD=60°,异面直线VC与AB所成角的大小为60°.故答案为:60°【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心,可知四边形MNEO 是矩形,右图,PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin303PN PB ∴==,PBE △是等边三角形,PE =NE ∴==MO ∴=12MC AC ==4R OC ∴===, ∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++,(2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.21.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:310【分析】取11AC 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11AC 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =,所以111=2EO AC ==,BE == 因为111A B C △是等边三角形,112AE A A =,所以11B O == 因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以1BO === 在1BEO中,22211115192cos 220BE EO BO BEO BE EO +-+-∠===-⨯, 因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE所成角的余弦值为20,【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三解析:3【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得22r,最后计算体积即可.【详解】解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =. 设内切球半径为r ﹐圆锥高为h ,则9122h =-=, 如图,是圆锥轴截面三角形图, 所以3r Rh r =-,解得:2r , 故3442223383r V πππ==⨯=. 故答案为:23π【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题.23.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =2AB =,PA PD =,则//OE AB ,112OE AB ==,132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.24.【分析】作出图示求得外接球的半径由球的表面积可求得答案【详解】作出图示因为在矩形ABCD 中则连接交于点则设该三棱锥外接球的半径为则所以该三棱锥外接球的表面积故答案为:【点睛】本题考查三棱锥的外接球的 解析:4π【分析】作出图示,求得外接球的半径,由球的表面积可求得答案. 【详解】作出图示,因为在矩形ABCD 中,1AB =,3AD =.则2==AC BD ,连接AC BD ,交于点O ,则1AO BO CO DO ====,设该三棱锥外接球的半径为R ,则1R =, 所以该三棱锥外接球的表面积244S R ππ==, 故答案为:4π.【点睛】本题考查三棱锥的外接球的表面积计算,关键在于求得外接球的球心位置和半径,属于中档题.三、解答题25.(1)证明见解析;(2)3.【分析】(1)先证//CD 平面PAB ,然后由线面平行性质定理可得结论;(2)由线面平行的性质,把体积利用等高进行转换PBEC C PBE D PBE V V V --==,然后由体积公式计算, 【详解】(1)证明:因为//AB CD ,CD ⊄平面PAB ,AB平面PAB ,所以//CD 平面PAB .因为CD ⊂平面PCD ,平面PAB ⋂平面PCD m =,所以//CD m .(2)解:1114222PBE PBA S S PA AB ==⨯⨯⨯=△△, ∵//CD 平面PAB ,所以,C D 两点到平面PAB 的距离相等.由条件易得DA ⊥平面PAB 且AD =∴114333PBEC C PBE D PBE PBE V V V S DA --===⋅=⨯⨯=△. 【点睛】关键点点睛:本题考查证明线线平行,考查求棱锥的体积.在立体几何的证明中,注意掌握线面间关系的判定定理和性质定理,下结论时需要满足定理的所有条件,一个不缺,一一列举,然后得出结论,否则证明过程不完整. 26.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==,所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 27.(Ⅰ)证明见解析;(Ⅱ)6π. 【分析】(Ⅰ)连接BG 交EC 于H ,连接FH ,即可得到2BHHG=,又2BF FA =,所以//FH AG ,从而得证;(Ⅱ)依题意利用余弦定理求出EF ,从而得到EF BD ⊥,即可证明BD ⊥平面CEF . 过F 作AD 的平行线FP ,交BD 于P .则PE ⊥平面CEF .所以直线FP 与平面CEF 所成角为PFE ∠,再利用锐角三角函数计算可得; 【详解】解:(Ⅰ)连接BG 交EC 于H ,连接FH . 则点H 为BCD △的重心,有2BHHG=. 因为2BF BHFA HG==, 所以//FH AG ,且FH ⊂平面CEF ,AG ⊄平面CEF ,所以//AG 平面CEF .。
北师大版高中数学必修二第二章 解析几何初步.docx

高中数学学习材料唐玲出品第二章 解析几何初步 §1 直线与直线的方程 1.1 直线的倾斜角和斜率【课时目标】 1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素.1.倾斜角的概念和范围在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按____________方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.与x 轴平行或重合的直线的倾斜角为0°.直线倾斜角α的范围是0°≤α<180°.2.斜率的概念及斜率公式定义 倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率,记为k ,即k =tan α取值范围当α=0°时,______;当0°<α<90°时,______;且α越大,k 越大;当90°<α<180°时,______;且α越大,k 越大; 当α=90°时,斜率________.过两点的直线的斜率公式直线经过两点P 1(x 1,y 1),P 2(x 2,y 2),其斜率k =__________ (x 1≠x 2).一、选择题1.对于下列命题①若α是直线l 的倾斜角,则0°≤α<180°; ②若k 是直线的斜率,则k ∈R ;③任一条直线都有倾斜角,但不一定有斜率; ④任一条直线都有斜率,但不一定有倾斜角. 其中正确命题的个数是( )A.1 B.2 C.3 D.42.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为()A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=33.设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°4.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是()A.[0°,90°]B.[90°,180°)C.[90°,180°)或α=0° D.[90°,135°]5.若图中直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k26.直线mx+ny-1=0同时过第一、三、四象限的条件是()A.mn>0 B.mn<0C.m>0,n<0 D.m<0,n<0二、填空题7.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为____________.8.如图,已知△ABC为等腰三角形,且底边BC与x轴平行,则△ABC三边所在直线的斜率之和为____________________________________________________________________.9.已知直线l的倾斜角为α-20°,则α的取值范围是______________.三、解答题10.如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率.11.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的坐标.能力提升12.已知实数x ,y 满足y =-2x +8,当2≤x ≤3时,求yx的最大值和最小值.13.已知函数f (x )=log 2(x +1),a >b >c >0,则f (a )a ,f (b )b ,f (c )c的大小关系是________________.1.利用直线上两点确定直线的斜率,应从斜率存在、不存在两方面入手分类讨论,斜率不存在的情况在解题中容易忽视,应引起注意.2.三点共线问题:(1)已知三点A ,B ,C ,若直线AB ,AC 的斜率相同,则三点共线;(2)三点共线问题也可利用线段相等来求,若|AB |+|BC |=|AC |,也可断定A ,B ,C 三点共线.3.斜率公式的几何意义:在解题过程中,要注意开发“数形”的转化功能,直线的倾斜角与斜率反映了某一代数式的几何特征,利用这种特征来处理问题更直观形象,会起到意想不到的效果.第二章 解析几何初步 §1 直线与直线的方程 1.1 直线的倾斜角和斜率答案知识梳理 1.逆时针 2.定义 倾斜角不是90°的直线,它的倾斜 角的正切值叫做这条直线的斜率,记为k ,即k =tan α 取值范围当α=0°时,k =0;当0°<α<90°时,k >0;且α越大,k 越大; 当90°<α<180°时,k <0;且α越大,k 越大; 当α=90°时,斜率不存在.过两点的直线的斜率公式直线经过两点P 1(x 1,y 1),P 2(x 2,y 2), 其斜率k =y 2-y 1x 2-x 1 (x 1≠x 2).作业设计1.C [①②③正确.]2.C [由题意,得⎩⎪⎨⎪⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2.解得a =4,b =-3.]3.D [因为0°≤α<180°,显然A ,B ,C 未分类讨论,均不全面,不合题意.通过画图(如图所示)可知:当0°≤α<135°时,倾斜角为α+45°; 当135°≤α<180°时,倾斜角为45°+α-180° =α-135°.]4.C [倾斜角的取值范围为0°≤α<180°,直线过原点且不过第三象限,切勿忽略x 轴和y 轴.]5.D [由图可知,k 1<0,k 2>0,k 3>0, 且l 2比l 3的倾斜角大. ∴k 1<k 3<k 2.]6.C [由题意知,直线与x 轴不垂直,故n ≠0.直线方程化为y =-m n x +1n ,则-mn>0,且1n<0,即m >0,n <0.] 7.30°或150° 33或-338.0 9.20°≤α<200°解析 因为直线的倾斜角的范围是[0°,180°), 所以0°≤α-20°<180°,解之可得20°≤α<200°. 10.解 αAD =αBC =60°,αAB =αDC =0°,αAC =30°, αBD =120°.k AD =k BC =3,k AB =k CD =0,k AC =33,k BD =-3.11.解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意,由光的反射定律得k P A =-k PB ,即3x +1=13-x, 解得x =2,即P (2,0). 12.解y x =y -0x -0其意义表示点(x ,y )与原点连线的直线的斜率. 点(x ,y )满足y =-2x +8,且2≤x ≤3,则点(x ,y )在线段AB 上,并且A 、B 两点的坐标分别为A (2,4),B (3,2),如图所示.则k OA =2,k OB =23.所以得y x 的最大值为2,最小值为23.13.f (c )c >f (b )b >f (a )a解析 画出函数的草图如图,f (x )x可视为过原点直线的斜率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5平面直角坐标系中的距离公式第1课时两点间的距离公式
1.若点A为(1,-3),点B为(5,-1),则原点到线段AB中点的距离是()
A.1
B.
C.13
D.2
解析:因为线段AB中点为M(3,-2),所以|OM|=.
答案:B
2.已知点A(2k,-1),B(k,1),且|AB|=,则实数k等于()
A.±3
B.3
C.-3
D.0
解析:|AB|=,
解得k=±3.
答案:A
3.已知点P的横坐标是7,点P到点Q(-1,5)的距离为10,则点P的纵坐标是()
A.11
B.-1
C.11或-1
D.41
解析:设点P的纵坐标为y,则=10,解得y=11或y=-1.
答案:C
4.过点A(4,a)和点B(5,b)的直线与y=2x平行,则|AB|的值为()
A.5
B.
C.2
D.
解析:k AB==b-a,又因为过点A,B的直线与y=2x平行,所以b-a=2, 所以|AB|=.
答案:B
5.已知两点M(a,b),N(c,d),且=0,则()
A.原点一定是线段MN的中点
B.M,N一定都与原点重合
C.原点一定在线段MN上但不一定是中点
D.点M,N到原点的距离相等
解析:将等式=0变形为,根据两点间的距离公式可知,点M(a,b)到原点的距离与点N(c,d)到原点的距离相等.
答案:D
6.过两直线x-y+1=0和x+y-=0的交点,并与原点的距离等于1的直线有()
A.0条
B.1条
C.2条
D.3条
解析:两直线交点为A,得|AO|=1,
则适合题意的直线只有1条.故选B.
答案:B
★7.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是()
A.(4,0)
B.(13,0)
C.(5,0)
D.(1,0)
解析:
点A(1,3)关于x轴的对称点为A'(1,-3),连接A'B并延长交x轴于点P,即为所求.
直线A'B的方程是y+3=(x-1),
即y=x-.令y=0,得x=13.
答案:B
8.已知△ABC的顶点坐标为A(3,2),B(1,0),C(2+,1-),则AB边上的中线CM的长为.解析:由中点公式得AB的中点的坐标为M(2,1).
由两点间的距离公式,有|CM|=.
所以AB边上的中线CM的长为.
答案:
9.已知点A(-3,5),B(2,15),点P在直线l:3x-4y+4=0上,则|PA|+|PB|的最小值为.
解析:设点A关于l:3x-4y+4=0的对称点为C(a,b),
则
解得所以|PA|+|PB|的最小值为|CB|==5.
答案:5
★10.若点P(x,y)在直线4x+3y=0上,且满足-14≤x-y≤7,则点P到坐标原点距离的取值范围是.解析:由4x+3y=0得y=-x,则x-y=x.
由-14≤x-y≤7可知-6≤x≤3,
所以x2∈[0,36],所以点P到坐标原点的距离为.
因为x2∈[0,36],所以∈[0,10].
答案:[0,10]
★11.在平行四边形ABCD中,A(1,1),B(7,1),D(4,6),M是线段AB的中点,线段CM与BD交于点P,求线段AP的长.
解AB的中点为M(4,1),
因为四边形ABCD为平行四边形,
所以AC的中点与BD的中点重合,
设点C的坐标为(x,y),
则解得点C(10,6).
所以直线CM的方程为y-1=(x-4),
即5x-6y-14=0.
又直线BD的方程为y-1=(x-7),
即5x+3y-38=0.
由得P.
所以由两点间的距离公式得|AP|=.。