人教版中考数学专题复习总结课件
合集下载
人教版初中中考数学专题复习课件PPT课件

(1)请指出小明解答中存在的问题,并补充缺少的过程. 变化一下会怎样?
(2)如图,矩形 A′B′C′D′在矩形 ABCD 的内部,AB∥A′B′,AD∥A′D′,且 AD∶AB=2∶1.设 AB 与 A′B′,BC 与 B′C′,CD 与 C′D′,DA 与 D′A′之间的距 离分别为 a,b,c,d.要使矩形 A′B′C′D′∽矩形 ABCD,a,b,c,d 应满足什么条件? 请说明理由.
【解析】(1) 小明解答中存在的问题是:在设未知数时设错了,所以方程也列错了.应 该设温室的宽为 x m,则长为 2x m,而不应该设蔬菜种植区域的宽为 x m,则长为 2x m,以 下是正确的解答过程.
解:设温室的宽为 x m,则长为 2x m,蔬菜种植区域的长为(2x-4) m,宽为(x-2) m, 根据题意,得(2x-4)·(x-2)=288,解这个方程,得 x1=-10(不合题意,舍去),x2=14.
解析:∵在休息时段,油量不会变化,而选项A和B图象的整个变化过程中,都不能够反映休息时段时间变 化而油量不变化这一情况,∴选项A和B错误;∵最后余油量为4升,而选项D,图象中反映休息后油量反而 上升,余油量比4升多. 答案:C
(2012·南京)“?”的思考 下面是小明对一道题目的解答以及老师的批注:
题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为 2∶1,在温室内, 沿前侧内墙保留 3 m 宽的空地,其他三侧内墙各保留 1 m 宽的通道.当温室的长与宽各是 多少时,矩形蔬菜种植区域的面积是 288 m2?
解:设矩形蔬菜种植区域的宽为 x_m.则长为 2x m.? 根据题意,得 x·2x=288. 解这个方程,得 x1=-12(不合题意,舍去),x2=12. 所以温室的长为 2×12+3+1=28(m),宽为 12+1+1=14(m). 答:当温室的长为 28 m,宽为 14 m 时,矩形蔬菜种植区域的面积是 288 m2. 我的结果也正确. 小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打了一个 “?” 结果为何正确呢?
中考复习专题:求线段的长度课件19张

类型三:与圆有关的线段长度的计算
例3 (2019·遵义)如图,已知⊙O的半径为1,AB,AC是⊙O
的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC.若
AD2=AB·DC,则O5D2-=1
.
【思路分析】
由题意可证△AOB≌△AOC,推出∠ACO=∠ABD.由OA=OC,得∠OAC= ∠ACO=∠ABD,再结合∠ADO=∠ADB,即可证明△OAD∽△ABD.根据对应边 成比例,设OD=x,表示出AB,AD,根据AD2=AB·DC,列方程求解即可.
人教版九年级数学
中考复习专题
求线段长度
专题解读:线段长度的计算是中考的必考题.此类试题通常以三
角形、四边形或圆为背景,结合图形的变换构造出较复杂的图形,然后 计算其中某特定线段的长度. 此类试题通常为填空题的压轴题,考查的 是各种图形的性质,要求学生具有较强的分解复杂图形、整合利用条件、 合理添加辅助线、构造基本图形的能力,综合性较强,难度较大.解决 此类问题需要熟练掌握求线段长的基本方法,如利用勾股定理、相似三 角形的对应边成比例以及直角三角形的边角关系等,要注意总结添加辅 助线、构造基本图形的方法,积累分析求解此类问题的经验.
2.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB
的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为
10 3
.
类型二: 与四边形有关的线段长度的计算
例2 如图,在平行四边形ABCD中,对角线AC,BD相交于点O, AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M, EM交BD于点N.若∠CEF=45°,FN=5,则线段BC的长为 44, 且晴朗 明澈, 但是缺 少深度 。也有 评论家 认为好 就好在 没有深 度,因 为没有 深度的 “看” 风景, 其实就 不为一 般的社 会价值 所局限 ,这样 也就抛 弃了自 以为是 的优越 感和置 身事外 的位置 ,而是 在宇宙 万汇的 动静之 中“看 ”。
【最新】九年级数学中考复习课件人教版 课件

3
3
2 0 .6 3 所以 : 2 0 . 6
3
比较大小的方法 利用数轴比较
利用绝对值比较 求平方比较
适用范围
所有实数 负实数 正实数
主要的依据
举例
实数与数轴上的点是一一对 应关系,有大小顺序排列。
(略)
两负实数比较,绝对值大的 反而小,绝对值小的反而大。
-√5、-3
两正数比较,平方值大的数 大,平方值小的数小。
负数的奇次幂是负数,偶次幂是正数; 0的任何正整数次幂都是0.
1、有括号先算括号里面的,括号层次多时,由里 向外,依次计算;
2、在没有括号的部分,先乘方、再乘除、最后加 减;
3、只有同级运算的从左到右依次计算.
加法的运算律
交换律 a+b=b+a 结合律 (a+b)+c=a+(b+c)
乘法的运算律
5.立方根的性质:
一个正数有一个正的立方根;
一个负数有一个负的立方根, 零的立方根是零。
你知道算术平方根、平方根、立方根联系和区别吗?
算术平方根
平方根
立方根
表示方法
a的取值
性 正数
0
质
负数
a
a
3a
a≥ 0
a≥ 0 a是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
开方
(1)除以一个不为0的数,等于乘以这个数的倒数;
(2)两数相除,同号得正,异号得负,并把绝对值相 除.0除以任何一个不等于0的数,都得0.
5、有理数乘方运算
求几个相同因数的积的运算,叫做乘方。
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
中考数学总复习全套课件

中考数学模拟试题一及答案解析
总结词:基础题
详细描述:本套试题主要考察学生对数学基础知识的掌握程度,包括代数、几何 、概率等各个方面的基本概念和计算方法。答案解析详细,帮助学生理解解题思 路和方法。
中考数学模拟试题二及答案解析
总结词:提高题
详细描述:本套试题难度有所提高,考察学生对数学知识的综合运用能力,强调对解题技巧和思维能力的考察。答案解析详 尽,有助于学生拓展解题思路。
圆
理解圆的基本性质,掌握 圆的周长、面积计算,以 及圆与直线的位置关系。
函数与方程基础知识
函数的概念与性质
理解函数的概念,掌握函 数的图像与性质,包括一 次函数、反比例函数、二 次函数等。
方程的解法
掌握一元一次方程、一元 二次方程的解法,以及分 式方程、根式方程的解法 。
函数与方程的应用
理解函数与方程在实际问 题中的应用,能够解决一 些实际问题。
函数与方程思想
理解函数与方程思想在解题中的应用,如构 造函数证明不等式、解方程组等。
03
中考数学解题技巧与方法
代数解题技巧与方法
代数方程解题技巧
代数式化简技巧
通过移项、合并同类项、去分母等方 法简化方程,求解未知数。
通过因式分解、提取公因式、公式变 形等手段,简化代数式,便于计算和 推理。
代数不等式解题技巧
法。
函数及其图像
理解函数的概念,掌握函数的图像 与性质,以及一次函数、反比例函 数、二次函数的图像与性质。
代数运算
掌握实数的四则运算,以及代数式 的化简与求值。
几何基础知识
01
02
03
三角形
掌握三角形的性质、分类 、全等与相似,以及解直 角三角形的方法。
人教版九年级数学下册专题复习:只用直尺的中考作图题赏析课件(16张ppt)

思考:直尺只能连线,目前能作的不只有对角线和延长BA 和CD吗?
直尺作图题赏析
引申一: 已知线段BD的中点C及直线BD外一点P,只用直尺 过P作BD的平行线. 引申二:一道题的讨论 下列轴对称图形中,只用一把无刻度的直尺不能画出 对称轴的是( )
A.菱形 B.矩形 C.等腰梯形 D.正五边形
思考1:正A五B边是形的其顶点中与对一边中个点所小在的长直线方为对形称轴的。 对角线,请在大长方形中完成下列画图,
拓展:矩形和正方形的结合,平行四边形和圆的结合。
功能,发要挥“求转化:”的1威、力。仅用无刻度直尺,2、保留必要的画图痕迹.
思考2:轴对称图形的对称线段(或延长线)相交,交点必在对
思考2:在已(作1出)在的图图1中,(1P点)中是三画角形一中什个么线4段5的°交点角? ,使点A或点B是这个角的顶点,且AB
2、作图题的思考原则:假设图已作出,再分析图形应具备 的特征。
直尺作图题赏析
(2004,江西)如图,己知方格纸中的每个小方格都是相同 的正方形. AOB画在方格纸上,请在小方格的格点上 标出一个点P,使点P落在 AO的B平分线上.
思考:由于CA=CB,所以可考虑全等三角形、等腰三 角形三线合一、菱形。
就需要深入挖掘图形自身性质,用好直接的或潜在的固有
(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB (2015、南昌市).
直尺作图题赏析
(2012,江西)如图12,已知正五边形ABCDF,仅用无刻度的直 尺准确作出其一条对称轴.(保留作图痕迹)
思考1:正五边形的顶点与对边中点所在的直线为对称轴。 思考2:轴对称图形的对称线段(或延长线)相交,交点必在对 称轴上。 思考3:正多边形的对称轴都仅用直尺能作吗?
直尺作图题赏析
引申一: 已知线段BD的中点C及直线BD外一点P,只用直尺 过P作BD的平行线. 引申二:一道题的讨论 下列轴对称图形中,只用一把无刻度的直尺不能画出 对称轴的是( )
A.菱形 B.矩形 C.等腰梯形 D.正五边形
思考1:正A五B边是形的其顶点中与对一边中个点所小在的长直线方为对形称轴的。 对角线,请在大长方形中完成下列画图,
拓展:矩形和正方形的结合,平行四边形和圆的结合。
功能,发要挥“求转化:”的1威、力。仅用无刻度直尺,2、保留必要的画图痕迹.
思考2:轴对称图形的对称线段(或延长线)相交,交点必在对
思考2:在已(作1出)在的图图1中,(1P点)中是三画角形一中什个么线4段5的°交点角? ,使点A或点B是这个角的顶点,且AB
2、作图题的思考原则:假设图已作出,再分析图形应具备 的特征。
直尺作图题赏析
(2004,江西)如图,己知方格纸中的每个小方格都是相同 的正方形. AOB画在方格纸上,请在小方格的格点上 标出一个点P,使点P落在 AO的B平分线上.
思考:由于CA=CB,所以可考虑全等三角形、等腰三 角形三线合一、菱形。
就需要深入挖掘图形自身性质,用好直接的或潜在的固有
(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB (2015、南昌市).
直尺作图题赏析
(2012,江西)如图12,已知正五边形ABCDF,仅用无刻度的直 尺准确作出其一条对称轴.(保留作图痕迹)
思考1:正五边形的顶点与对边中点所在的直线为对称轴。 思考2:轴对称图形的对称线段(或延长线)相交,交点必在对 称轴上。 思考3:正多边形的对称轴都仅用直尺能作吗?
九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)

2x a x a x 1 3 2
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3
组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3
组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5
2021人教版数学中考总复习课件-专题18 等腰、等边三角形问题

P.若∠BPC=70°,则∠ABC 的度数等于( B )
A.75°
B.70°
C.65°
D.60°
20
4.已 知 等 边 三 角 形 的 边 长 为 3,点 P 为 等 边 三 角 形 内 任 意 一 点 ,则 点 P 到 三 边 的 距 离 之 和 为
( B)
A.
B.
C.
D. 不能 确 定
5.(2019•浙江衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。借助如图所示 的“三等分角仪”能三等分任一角。这个三等分角 仪由两根有槽的棒 OA,OB 组成,两根棒在 O 点相连并可绕 O 转动,C 点固定,OC=CD=DE, 点 D,E 可在槽中滑动,若∠BDE=75形 ABC 的边 BC、AC 上分别取点 D、E,使
BD=CE,AD 与 BE 相交于点 P.则∠APE 的度数为 60 °.
11
【解析】根据 BD=CE 可得 CD=AE,即可证明△ACD≌△BAE,得∠CAD=∠ABE,再根 据内角和为 180°的性质即可解题。 ∵BD=CE,∴BC﹣BD=AC﹣CE,即 CD=AE,
题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。
3.分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的 情况下求其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是 根据边是腰还是底来分类。
5
例题解析
【例 1】(2020•临沂)如图,在△ABC 中,AB=AC,∠A= 40°,CD∥AB,则∠BCD=( D )
∴∠DAE=n°﹣∠BAD=n°﹣90° m°,∵EA=EC,
∴∠CAE AEB=90° n° m°,
∴∠DAC=∠DAE+∠CAE=n°﹣90° m°+90° n° m° n°.
A.75°
B.70°
C.65°
D.60°
20
4.已 知 等 边 三 角 形 的 边 长 为 3,点 P 为 等 边 三 角 形 内 任 意 一 点 ,则 点 P 到 三 边 的 距 离 之 和 为
( B)
A.
B.
C.
D. 不能 确 定
5.(2019•浙江衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。借助如图所示 的“三等分角仪”能三等分任一角。这个三等分角 仪由两根有槽的棒 OA,OB 组成,两根棒在 O 点相连并可绕 O 转动,C 点固定,OC=CD=DE, 点 D,E 可在槽中滑动,若∠BDE=75形 ABC 的边 BC、AC 上分别取点 D、E,使
BD=CE,AD 与 BE 相交于点 P.则∠APE 的度数为 60 °.
11
【解析】根据 BD=CE 可得 CD=AE,即可证明△ACD≌△BAE,得∠CAD=∠ABE,再根 据内角和为 180°的性质即可解题。 ∵BD=CE,∴BC﹣BD=AC﹣CE,即 CD=AE,
题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。
3.分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的 情况下求其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是 根据边是腰还是底来分类。
5
例题解析
【例 1】(2020•临沂)如图,在△ABC 中,AB=AC,∠A= 40°,CD∥AB,则∠BCD=( D )
∴∠DAE=n°﹣∠BAD=n°﹣90° m°,∵EA=EC,
∴∠CAE AEB=90° n° m°,
∴∠DAC=∠DAE+∠CAE=n°﹣90° m°+90° n° m° n°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识结构 典例精选 专题训练
答案:B
知识结构 典例精选 专题训练
首页
按ESC退出
5.图①是一个长为 2m,宽为 2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把 它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空白部 分的面积是( )
A.2 mn C.(m-n)2
B.(m+n)2 D.m2-n2
知识结构 典例精选 专题训练
首页
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
在结束了 380 课时初中阶段数学内容的教学后,唐老师计划安排 60 课时用于总复 习,根据数学内容所占课时比例,绘制统计图表(图①~图③),请根据图表提供的信息,回 答下列问题:
(1)图①中“统计与概率”所在扇形的圆心角为________度; (2)图②,图③中的 a=________,b=________; (3)在 60 课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
知识结构 典例精选 专题训练
首页
按ESC退出
9.(2012·金华第四中学调研)读一读,式子“1+2+3+4+…+100”表示从 1 开始的
100
100 个自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为 n,
n=1
这里“∑”是求和符号.通过对以上材料的阅读,计算2n=0112nn1+1=_________.
知识结构 典例精选 专题训练
首页
数与代数(内容) 数与式
方程(组 )与不等式(组) 函数 图②
课时数 67 a 44
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
【思路点拨】 读图获取数据 → 计算 → 填空 【解析】(1)36 (2)60 14 (3)依题意,得 45%×60=27(课时). 答:唐老师应安排 27 课时复习“数与代数”内容.
所以温室的长为 2×14=28(m),宽为 14(m).
答:当温室的长为 28 m,宽为 14 m 时,矩形蔬菜种植区域的面积是 288 m2. (2)设 AD=2x,AB=x,则2xx--ba--dc=21,可得 a+c=2(b+d),当 a,b,c,d 满足 a+c =2(b+d)时矩形 A′B′C′D′∽矩形 ABCD.
解析:根据题目提供的信息可知,
=1×1 2+2×1 3+…+2
1 012×2
,观察 013
发现:1×1 2=1-12,2×1 3=12-13,…,2
1 012×2
013=2
0112-2
0113;所以
=
1×1 2+2×1 3+…+2
1 012×2
013=1-12+12-13+…+2
0112-2
0113=1-2
0113=22
012 013.
答案:22
012 013
知识结构 典例精选 专题训练
首页
按ESC退出
三、解答题 10.今年 5 月 31 日是世界卫生组织发起的第 25 个“世界无烟日”.为了更好地宣传吸 烟的危害,某中学八年级一班数学兴趣小组设计了如下调查问卷,在达城中心广场随机调查 了部分吸烟人群,并将调查结果绘制成统计图.
知识结构 典例精选 专题训练
首页
专题训练
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
一、选择题 1.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关 数据制成如图不完整的统计图,已知甲类图书有30本,则丙类图书的本数是( )
A.90
B.144
C.200
D.80
解析:因为甲类图书有30本,占图书总数的15%,因此图书的总数量为30÷15%= 200(本),丙类图书的百分比为100%-15%-45%=40%,丙类图书的数量为: 200×40%=80(本).
2016年中考数学第一轮复习
数学
专题十一 阅读理解、图表信息问题
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
【专题分析】阅读理解与图形信息问题在中考中的常考点有:迁移学习型,新公式应用 题,纠错补全型;表格信息题,函数图象信息题,图形语言信息题,统计图表信息题等.
【思路点拨】 代入部分数值 → 找到规律 → 运用规律计算 → 结果
【解析】2 012 ∵当 x=1 时,f(1)=12,当 x=2 时,f(2)=13,当 x=12时,f(12)=23;当 x =3 时,f(3)=14,当 x=13时,f(13)=34,…,∴f(2)+f(12)=1,f(3)+f(13)=1,…,∴f(n)+ f(n -1)+…+f(1)+f(1)+ f(12)+…+f(1n)=n,∴f(2 012)+f(2 011)+…+f(2)+f(1)+f(12)+…+ f(2 0111)+f(2 0112)=2 012.
知识结构 典例精选 专题训练
首页
按ESC退出
根据以上信息,解答下列问题:
(1)本次接受调查的总人数是________人,并把条形统计图补充完整; (2)在扇形统计图中,C 选项的人数所占的百分比是______,E 选项所在扇形的圆心角的 度数是______; (3)若通川区约有烟民 14 万人,试估计对吸烟有害持“无所谓”态度的约有多少人?你 对这部分人群有何建议?
A.1 月至 2 月 B.2 月至 3 月 C.3 月至 4 月 D.4 月至 5 月
解析:1~5 月份的用电量分别为 110,125,95,100,90(单位:千瓦时),1 月至 2 月用电量 增加 125-110=15,2 月至 3 月用电量减少 125-95=30,3 月至 4 月用电量增加 100-95=5,4 月至 5 月用电量减少 100-90=10,由此可知,2 月至 3 月用电量变化最大.
答案:D
知识结构 典例精选 专题训练
首页
按ESC退出
2.(2012·台州初级中学模拟)某人驾车从A地上高速公路前往B地,中途在服务区休 息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从A地 出发到达B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是( )
解析:∵在休息时段,油量不会变化,而选项A和B图象的整个变化过程中,都不 能够反映休息时段时间变化而油量不变化这一情况,∴选项A和B错误;∵最后余 油量为4升,而选项D,图象中反映休息后油量反而上升,余油量比4升多.
知识结构 典例精选 专题训练
首页
按ESC退出
【解析】(1) 小明解答中存在的问题是:在设未知数时设错了,所以方程也列错了.应 该设温室的宽为 x m,则长为 2x m,而不应该设蔬菜种植区域的宽为 x m,则长为 2x m,以 下是正确的解答过程.
解:设温室的宽为 x m,则长为 2x m,蔬菜种植区域的长为(2x-4) m,宽为(x-2) m, 根据题意,得(2x-4)·(x-2)=288,解这个方程,得 x1=-10(不合题意,舍去),x2=14.
知识结构 典例精选 专题训练
首页
按ESC退出
(1)请指出小明解答中存在的问题,并补充缺少的过程. 变化一下会怎样? (2)如图,矩形 A′B′C′D′在矩形 ABCD 的内部,AB∥A′B′,AD∥A′D′,且 AD∶AB=2∶1.设 AB 与 A′B′,BC 与 B′C′,CD 与 C′D′,DA 与 D′A′之间的距 离分别为 a,b,c,d.要使矩形 A′B′C′D′∽矩形 ABCD,a,b,c,d 应满足什么条件? 请说明理由.
知识结构 典例精选 专题训练
首页
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
对于正数 x,规定 f(x)=1+1 x,例如:f(4)=1+1 4=15,f(14)=1+1 14=45,则 f(2 012) +f(2 011)+…+f(2)+f(1)+f(12)+…+f(2 0111)+f(2 0112)=___________.
【解题方法】解决阅读理解、图表信息题常用的数学思想是方程思想,类比思想,化归 思想;常用的数学方法有:分析法,比较法等.
知识结构 典例精选 专题训练
首页
按ESC退出
知识结构 典例精选 专题训练
首页
按ESC退出
(2012·德阳)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收 方由密文→明文(解密).已知加密规则为:明文 a,b,c,d,对应密文 a+2b,2b+c,2c+3d,4d. 例如:明文 1,2,3,4 对应的密文 5,7,18,16.当接收方收到密文 14,9,23,28 时,则解密得到的明 文为( )
C.42 万人,112 万人
D.103 万人,112 万人
大竹县 112
)
渠县 145
万源市 59
解析:极差=145-42=103(万人);共 7 个数,排序后第 4 个数是中位数,即 112 万人.
答案:D
知识结构 典例精选 专题训练
首页
按ESC退出
4.(2012·衢州兴华中学调研)小林家今年 1~5 月份的用电量情况如图所示,由图可知, 相邻的两个月中,用电量变化最大的是( )
解:设矩形蔬菜种植区域的宽为 x_m.则长为 2x m.? 根据题意,得 x·2x=288. 解这个方程,得 x1=-12(不合题意,舍去),x2=12. 所以温室的长为 2×12+3+1=28(m),宽为 12+1+1=14(m). 答:当温室的长为 28 m,宽为 14 m 时,矩形蔬菜种植区域的面积是 288 m2. 我的结果也正确. 小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打了一个 “?” 结果为何正确呢?