中考数学知识点归纳总结

合集下载

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

中考数学的所有知识点归纳

中考数学的所有知识点归纳

中考数学的所有知识点归纳中考数学是初中阶段数学学习的重要总结,它涵盖了多个数学领域的知识点。

以下是中考数学所有知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等。

2. 数的运算:四则运算、乘方、开方、绝对值、倒数等。

3. 代数式:代数式的基本运算、同类项、合并同类项、代数式的化简等。

4. 方程与不等式:一元一次方程、一元二次方程、不等式、方程组的解法等。

5. 函数:函数的概念、性质、图象、一次函数、二次函数等。

二、几何1. 平面图形:线段、角、三角形、四边形、圆等基本图形的性质。

2. 图形的变换:平移、旋转、反射等。

3. 相似与全等:相似三角形、全等三角形的判定与性质。

4. 圆的性质:圆周角、切线、弧长、扇形面积等。

5. 立体几何:立体图形的表面积、体积计算。

三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。

2. 统计图:条形统计图、折线统计图、饼图等。

3. 平均数、中位数、众数:计算方法及其意义。

4. 方差:衡量数据的离散程度。

5. 概率:事件的概率、概率的计算方法。

四、综合应用1. 数学建模:将实际问题转化为数学问题进行求解。

2. 问题解决:运用数学知识解决实际问题。

3. 创新思维:培养创新思维,解决新颖的数学问题。

结束语中考数学的知识点广泛,要求学生具备扎实的数学基础和灵活的解题能力。

通过系统地复习和练习,学生可以更好地掌握数学知识,为中考做好充分的准备。

希望以上的归纳能够帮助学生更好地理解和复习中考数学的知识点。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数。

(一)有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。

- 减法:减去一个数,等于加上这个数的相反数。

即a - b=a+(-b)。

- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。

- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

即a÷b=a×(1)/(b)(b≠0)。

两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。

- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。

中考数学知识点总结(最全)

中考数学知识点总结(最全)

中考数学知识点总结第一章实数考点一、实数的概念及分类(有理数、无理数)考点二、实数的倒数、相反数和绝对值考点三、平方根、算数平方根和立方根考点四、近似数、有效数字和科学记数法考点五、实数大小的比较考点六、实数的运算(做题的基础,分值相当大)考点七、实数的综合与创新第二章代数式考点一、整式的概念与运算考点二、分式考点三、多项式考点四、求代数式的值考点五、因式分解考点六、二次根式考点七、代数式的综合与创新第三章不等式与不等式组考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组考点五、列不等式(组)解应用题考点六、不等式的综合与创新第四章方程与方程组考点一、一元一次方程的概念考点二、一元二次方程考点三、一元二次方程的解法考点四、一元二次方程根的判别式考点五、一元二次方程根与系数的关系考点六、分式方程考点七、二元一次方程组考点八、方程的综合与创新第五章函数及其图像考点一、平面直角坐标系考点二、不同位置的点的坐标的特征考点三、函数及其相关概念考点四、正比例函数和一次函数考点五、反比例函数考点六、二次函数的概念和图像考点七、二次函数的解析式考点八、二次函数的最值考点九、二次函数的性质考点十、函数的综合与创新第六章统计与概率考点一、平均数、众数、中位数考点二、统计学中的几个基本概念考点四、方差与极差考点五、频率分布考点六、确定事件和随机事件考点七、随机事件发生的可能性考点八、确定事件和随机事件的概率之间的关系考点九、古典概型考点十、列表法求概率考点十一、树状图法求概率考点十二、利用频率估计概率考点十三、统计图考点十四、调查方式与随机事件考点十五、概率的计算与实际应用考点十六、统计与概率的综合与创新第七章图形的初步认识与三角形考点一、角与线考点二、三角形的概念与全等三角形考点三、等腰三角形与直角三角形考点四、命题、定理、证明考点五、投影与视图考点六、三角形的综合与创新第八章全等与相似考点一、比例线段考点二、平行线分线段成比例定理考点三、相似三角形考点四、全等与相似的综合与创新第九章四边形考点一、四边形的相关概念考点二、平行四边形考点三、矩形考点四、菱形考点五、正方形考点六、梯形考点七、四边形的综合与创新第十章解直角三角形考点一、直角三角形的性质与判定考点二、勾股定理考点三、锐角三角函数的概念与解直角三角形考点四、解直角三角形的实际应用考点五、解直角三角形的综合与创新第十一章圆考点一、圆的概念与性质考点二、过三点的圆考点三、直线与圆的位置关系考点四、圆和圆的位置关系考点五、三角形的内切圆考点六、正多边形和圆考点七、与正多边形有关的概念(对称性)考点八、圆的弧长及扇形面积考点九、圆的综合与创新第十二章图形的变换考点一、对称考点二、平移与旋转考点三、中心对称考点四、位似的概念、性质、画法、判定考点五、图形变换的综合创新、。

中考数学必考知识点及总结

中考数学必考知识点及总结

中考数学必考知识点及总结一、代数1.整数运算:加减乘除,整数的乘方、乘方根、分式等的运算。

2.一元一次方程:解一元一次方程的方法,如用等式的性质、加减消元法、加法逆元素法、代入法等。

3.一元一次方程组:联立一元一次方程组的解法,如代入法、消元法等。

4.二元一次方程:通过解方程组方法以及用递推法。

5.实数的性质:包括有理数和无理数的性质、实数的数轴表示、实数的大小比较、实数的运算律等。

6.整式运算:包括多项式的加减乘除、综合运算等。

7.分式运算:包括分式的加减乘除、分式的化简、分式方程的解等。

8.二次根式:二次根式的概念、性质以及二次根式的加减乘除、化简等相关运算。

9.二次根式方程:涉及到解二次根式方程以及二次根式的应用等。

10.不等式:包括一元一次不等式、一元一次绝对值不等式、一元一次分式不等式、二元一次不等式等的解法。

11.初步函数:包括函数的概念、函数的表示、函数的对应法则、函数的性质等。

12.函数的图像:初步了解一元一次函数、一元二次函数的图像以及通过解题的方法掌握一元一次函数、一元二次函数的图像。

13.数列与等差数列:了解数列的概念、等差数列的概念、等差数列的通项公式、前n项和公式等。

二、平面几何1.线段的中点:中点的性质,中点的坐标,中点的应用。

2.线段的分点:分点的概念,分点的坐标,分点的共线性等相关知识。

3.三角形:三角形的性质、三角形的分类、三角形的周长、面积等相关知识。

4.多边形:包括正多边形的边数、对角、内角和外角等相关知识。

5.圆的相关性质:包括圆周率π、圆的面积、周长、内切外切相切线等相关知识。

6.平行线与相交线:包括平行线的性质、相交线的性质、平行线的判定等相关知识。

7.三角形的相似:了解相似三角形的性质、相似三角形的判定等相关知识。

8.勾股定理:了解勾股定理的概念、勾股定理的应用等相关知识。

9.平面直角坐标系:了解平面直角坐标系的概念、直角坐标系的应用等相关知识。

10.直角三角形:包括直角三角形的性质、勾股定理及其应用等相关知识。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、代数与函数1.代数运算:四则运算及其混合运算,带分数的运算,分数的运算等。

2.代数式的计算:展开与因式分解、配方法进行提公因式、合并同类项等。

3.一次函数与二次函数:通过图像与函数式子之间的转化,解一元一次方程与一元二次方程。

4.等式与方程:含有未知数的等式,一元一次方程组,解方程组的方法,解一次方程,解带括号等。

5.函数关系:表达式、函数的定义域、值域、幂函数的性质。

6.值域以函数为规律的数列与函数的概念及表示法。

7.平面直角坐标系表示,直线的斜截式、截距等表示方式。

二、图形的认识与计算1.图形的位置与方位:平行线、直线、三角形的判定等。

2.直角三角形的性质:勾股定理、正弦定理、余弦定理等。

3.图形的面积与体积:长方体、正方体、圆锥等的面积、体积计算,物体表面积及物体表面积的计算。

4.图形的对称:轴对称与中心对称,最简单的拓扑关系。

5.平面直角坐标系下直线方程、两点间距离与平面图形的方程表示。

三、数据与统计1.统计指标与绘制:算术平均数,众数,中位数,极差,计算3种指标。

数据调查、讨论、记录、整理回答问题的能力,频率,百分数等。

2.抽样调查和反比例函数:抽样调查中的抽样方法,分析和处理已经抽今了的总体数据。

3.概率的计算:顺序与循环事件,相互独立与互斥,随机问题的计算等。

四、数与计算1.约数和倍数:整数的除法,能整除等概念,一般式。

2.数的性质:中位数、众数、四舍五入、求平方根、解具体应用问题等。

3.填表与运算:运算式的简化与计算、改写问题中的语句为计算式。

4.分数:分数间的大小比较,分数的加减乘除,容量单位和国际单位之间的换算。

5.数的应用:速度的计算、比与比例的应用、物体的相对布局以及市价等的计算等。

五、几何与证明1.分类与性质:图形的名称与分类、角的名称与分类、直线的名称与分类、线段的名称、划分区域。

2.相似与全等图形:相似三角形的基本比例式、相似四边形的判定条件、图形的平移、旋转、翻折、镜像与轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a n n nb a b a =)(p p b a a b )()(=-32a n a n a am bm a b a b a b a b -=-=-)(121n x x x n x +++= )(212211n f f f n f x f x f x x k k k =++++++= a x x -=1'1a x x -=2'2a x x n n -='ax x +='])()()[(1222212x x x x x x n s n -++-+-= 2s s =b a b a =b a ab ⋅=2a a )0()(2≥=a a a 初中数学总复习知识点1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。

实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。

2.自然数(0和正整数);奇数2n-1、偶数2n 、质数、合数。

科学记数法:n a 10⨯(1≤a <10,n 是整数),有效数字。

3.(1)倒数积为1;(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。

4.数轴:①定义(“三要素”);②点与实数的一一对应关系。

(2)性质:若干个非负数的和为0,则每个非负数均为0。

5非负数:正实数与零的统称。

(表为:x ≥0)(1)常见的非负数有:6.去绝对值法则:正数的绝对值是它本身,“+( )”;零的绝对值是零,“0”; 负数的绝对值是它的相反数,“-( )”。

7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。

8.代数式,单项式,多项式。

整式,分式。

有理式,无理式。

根式。

9. 同类项。

合并同类项(系数相加,字母及字母的指数不变)。

10. 算术平方根: (正数a 的正的平方根); 平方根: 11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式;(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;(3)分母有理化:化去分母中的根号。

12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。

13.指数:n 个a 连乘的式子记为 。

(其中a 称底数,n 称指数, 称作幂。

) 正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。

14. 幂的运算性质:①a m a n =a m+n ; ②a m ÷a n =a m-n ; ③(a m )n =a mn ;④( ab )n =a n b n ; ⑤ 15.分式的基本性质 = = (m ≠0);符号法则:16.乘法公式:(a+b )(a-b )=a 2-b 2; (a+ b)2= a 2+2ab+b 2; a 2-b 2=(a+b )(a-b ); a 2+2ab+b 2 = (a+ b)2 17.算术根的性质:① = ;② ; ③ (a ≥0,b ≥0); ④ (a ≥0,b >0)18.统计初步:通常用样本的特征去估计总体所具有的特征。

(1).总体,个体,样本,样本容量(样本中个体的数目)。

(2)众数:一组数据中,出现次数最多的数据。

平均数:平均数是刻划数据的集中趋势(集中位置)的特征数。

中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)① ; ② ③若 , ,… , , ; 则 (3)极差:样本中最大值与最小值的差。

它是刻划样本中数据波动范围的大小。

方差:方差是刻划数据的波动大小的程度。

标准差: (4)调查:普查:具有破坏性、特大工作量的往往不适合普查;抽样调查:抽样时要主要样本的代表性和广泛性。

(5)频数、频率、频数分布表及频数分布直方图:19.概率:用来预测事件发生的可能性大小的数学量(1)P(必然事件)=1;P(不可能事件)=0;0〈P(不确定事件A)〈1。

(2)树形图或列表分析求等可能性事件的概率: ;(3)游戏公平性是指双方获胜的概率的大小是否相等(“牌,球”游戏中放回与不放回的概率是不同的)。

20. (1)两点之间,线段最短(两点之间线段的长度,叫做这两点之间的距离);(2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离);(3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离);(4)同平行于一条直线的两条直线平行(传递性);(5)同垂直于一条直线的两条直线平行。

21.性质:在垂直平分线上的点到该线段两端点的距离相等;判定:到线段两端点距离相等的点在这线段的垂直平分线上。

22.性质定理:角平分线上的点到该角两边的距离相等;判定定理:到角的两边距离相等的点在该角的角平分线上。

23.同角或等角的余角(或补角)相等。

24.性质:两直线平行,同位角(内错角)相等,同旁内角互补;判定:同位角(内错角)相等(同旁内角互补),两直线平行。

25.三角形分锐角三角形、直角三角形、钝角三角形或等腰三角形、不等边三角形。

①三角形三个内角的和等于180度;任意一个外角等于和它不相邻的两个内角的和;②第三边大于两边之和,小于两边之差;③重心:三条中线的交点;垂心:三条高线的交点;外心:三边中垂线的交点;内心:三角平分线线的交点。

④直角三角形斜边上的中线等于斜边的一半;一边上的中线等于该边一半的三角形是直角三角形。

⑤勾股定理:直角三角形两直角边的平方和等于斜边的平方;逆定理也成立。

⑥300角所对的边等于斜边的一半;Rt△中,等于斜边的一半的边所对的角是300。

26.全等三角形:①全等三角形的对应边,角相等。

②条件:SSS、AAS、ASA、SAS、HL。

27.等腰三角形:在一个三角形中①等边对等角;②等角对等边;③三线合一;④有一个600角的三角形是等边三角形。

28.三角形的中位线平行于第三边并且等于第三边的一半;梯形的中位线平行于两底并且等于两底和的一半29.n边形的内角和为(n-2).1800,外角和为3600,正n边形的每个内角等于。

30.平行四边形的性质:①两组对边分别平行且相等;②两组对角分别相等;③两条对角线互相平分。

判定:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④两组对角分别相等;⑤两条对角线互相平分。

31特殊的平行四边形:矩形、菱形与正方形。

32. 梯形:一组对边平行而另一组对边不平行的四边形。

梯形可分①直角梯形②等腰梯形。

等腰梯形同一底上的两个内角相等;等腰梯形的对角线相等。

33.梯形常用辅助线:34.平面图形的密铺(镶嵌):同一顶点的角之和为3600。

35.轴对称:翻转1800能重合;中心对称(图形):旋转180度能重合。

36.命题(题设和结论)、定义、公理、定理;原命题,逆命题;真命题,假命题;反证法。

37. ①轴对称变换:对应点所连的线段被对称轴垂直平分;对应线段,对应角相等。

②图形的平移:对应线段,对应点所连线段平行(或在同一直线上)且相等;对应角相等;平移方向和距离是它的两要素。

③图形的旋转:每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连去分母 分式方程 整式方程 )0(02≠=++a c bx ax )04(24222,1≥--±-=ac b a ac b b x ac b42-=∆线所成的角都是旋转角,对应点到旋转中心的距离相等。

旋转的方向、角度、旋转中心是它的三要素。

④位似图形:它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心);对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个。

位似中心,位似比是它的两要素。

38.相似图形:形状相同,大小不一定相同(放大或缩小)。

(1)判定①平行;②两角相等;③两边对应成比例,夹角相等;④三边对应成比例。

(2)对应线段比等于相似比;对应高之比等于相似比;对应周长比等于相似比;面积比等于相似比的平方。

(3)比例的基本性质:若 , 则ad=bc ;(d 称为第四比例项)比例中项:若 , 则 。

(b 称为a 、c 的比例中项;c 称为第三比例项)(4)黄金分割:线段AB 被点C 黄金分割(AC<BC ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比:(5)相似基本图形:平行,不平行;变换对应关系作出正确的分类。

39. 三角函数:在Rt △ABC 中,设k 法转化为比的问题是常用方法。

(4).俯、仰角:2.方位角: 3.坡度:(1).定义: (2)特殊角的三角函数值: 记忆碎片 sin300= , tan300= . (3)三角函数关系:sin(90°-α)=cos α; tan α=sin α/cos α; sin 2α+cos 2α=140. 方程基本概念:方程、方程的解(根)、方程组的解、解方程组(1).一元一次方程:最简方程ax=b(a ≠0);解法。

(2)二元一次方程的解有无数多对。

(3)二元一次方程组:①代入消元法;②加减消元法。

(4)一元二次方程一般形式: 的求根公式 常用方法①因式分解法; ②公式法; ③开平方法; ④配方法。

根的判别式:; 当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根。

(5)分式方程: ;分式方程有增根,必须要检验。

应用题也不例外。

(6)列方程(组)解应用题:①审题;②设元(未知数);③用含未知数的代数式表示相关的量;④寻找相等关系列方程(组);⑤解方程及检验;⑥答案。

41.(1)不等号:>、<、≥、≤、≠。

(2)一元一次不等式:ax >b 、ax <b 、ax ≥b 、ax ≤b 、ax ≠b(a ≠0)。

(3)不等式的性质:⑴a>b ←→a+c>b+c ⑵a>b ←→ac>bc(c>0) ⑶a>b ←→ac<bc(c<0)(4)一元一次不等式组: ⑷(传递性)a>b,b>c →a>c ⑸a>b,c>d →a+c>b+d.(用文字怎么叙述?)(5)一元一次不等式的解、解一元一次不等式。

(乘除负数要变方向,但要注意乘除正数不要要变方向)(6)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)42.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系;(1)坐标平面内的点与一个有序实数对之间是一一对应的。

30° 45° 60° sin α cos α tg αx o y (k>0,b>0x o y (k<0,b>0x o y (k>0,b<0x o y (k<0,b<0)0(),0(22≠+=≠=a k ax y a ax y (2)两点间的距离: AB =︳X a -X b ︳; CD=︳Y c -Y d ︳; 。

相关文档
最新文档