北京中考数学知识点总结(全)

合集下载

(最新)北京中考数学知识点

(最新)北京中考数学知识点

(最新)北京中考数学知识点(最新)北京中考数学知识点在大家的学习时代里,大家都没少背知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

下面小编为大家带来北京中考数学知识点,希望对您有所帮助!北京中考数学知识点1、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

弄不清绝对值与数的分类。

选择题考得比较多。

易错点2:关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

易错点4:分式值为零时易忽略分母不能为零。

易错点5:分式运算要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

填空题易考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题易考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

科学记数法,精确度。

这个知道就好!易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

2、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。

消元降次的主要陷阱在于消除了一个带X公因式时回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0。

易错点5:关于一元一次不等式组有解、无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.10.(2022•北京)解不等式组:.11.(2021•北京)解不等式组:.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象过点(4,3),(﹣2,0),且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当x >0时,对于x 的每一个值,函数y =x +n 的值大于函数y =kx +b (k ≠0)的值,直接写出n 的取值范围.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 (填“甲”“乙”或“丙”).一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 和 .北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【答案】5.【解答】解:原式=4×+3+2﹣2=2+3+2﹣2=5.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.【答案】4.【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.【答案】3+4.【解答】解:原式=2×+2+5﹣1=+2+5﹣1=3+4.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【答案】2x2+4x+1,原式=5.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.【答案】1.【解答】解:原式=a2﹣2ab+b2+2ab+b2=a2+2b2,∵a2+2b2﹣1=0,∴a2+2b2=1,∴原式=1.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.【答案】见试题解答内容【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)【答案】边的宽为4cm,天头长为24cm.【解答】解:设天头长为6x,地头长为4x,则左、右边的宽为x,根据题意得,100+10x=4×(27+2x),解得x=4,答:边的宽为4cm,天头长为24cm.五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.【答案】见试题解答内容【解答】(1)证明:∵a=1,b=﹣4m,c=3m2,∴Δ=b2﹣4ac=(﹣4m)2﹣4×1×3m2=4m2.∵无论m取何值时,4m2≥0,即Δ≥0,∴原方程总有两个实数根.(2)解:方法一:∵x2﹣4mx+3m2=0,即(x﹣m)(x﹣3m)=0,∴x1=m,x2=3m.∵m>0,且该方程的两个实数根的差为2,∴3m﹣m=2,∴m=1.方法二:设方程的两根为x1,x2,则x1+x2=4m,x1•x2=3m2,∵x1﹣x2=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,∴(4m)2﹣4×3m2=4,∴m=±1,又m>0,∴m=1.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.【答案】1<x<2.【解答】解:,解不等式①得:x>1,解不等式②得:x<2,∴原不等式组的解集为:1<x<2.10.(2022•北京)解不等式组:.【答案】1<x<4.【解答】解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4.11.(2021•北京)解不等式组:.【答案】2<x<4.【解答】解:解不等式4x﹣5>x+1,得:x>2,解不等式<x,得:x<4,则不等式组的解集为2<x<4.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.【答案】(1)y=x﹣1.(2)≤m≤1.【解答】解:(1)函数y=x的图象向下平移1个单位长度得到y=x﹣1,∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到,∴这个一次函数的表达式为y=x﹣1.(2)把x=﹣2代入y=x﹣1,求得y=﹣2,∴函数y=mx(m≠0)与一次函数y=x﹣1的交点为(﹣2,﹣2),把点(﹣2,﹣2)代入y=mx,求得m=1,∵当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x﹣1的值,∴≤m≤1.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【答案】(1)y=x+1,A(0,1);(2)n≥1.【解答】解:(1)把(4,3),(﹣2,0)分别代入y=kx+b得,解得,∴一次函数的解析式为y=x+1,当x=0时,y=x+1=1,∴A点坐标为(0,1);(2)当n≥1时,当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b (k≠0)的值.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB .【答案】(1)见解答过程;(2)见解答过程.【解答】证明:方法一:∵DE ∥BC ,∴∠B =∠BAD ,∠C =∠CAE ,∵∠BAD +∠BAC +∠CAE =180°,∴∠B +∠BAC +∠C =180°;方法二:∵CD ∥AB ,∴∠A =∠ACD ,∠B +∠BCD =180°,∴∠B +∠ACB +∠A =180°.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【答案】见试题解答内容【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.【答案】(1)证明见解答过程;(2)GC=6,OF=.【解答】(1)证明:∵AD是⊙O的直径,AD⊥BC,∴=,∴∠BAD=∠CAD;(2)解:在Rt△BOE中,OB=5,OE=3,∴BE==4,∵AD是⊙O的直径,AD⊥BC,∴BC=2BE=8,∵BG是⊙O的直径,∴∠BCG=90°,∴GC==6,∵AD⊥BC,∠BCG=90°,∴AE∥GC,∴△AFO∽△CFG,∴=,即=,解得:OF=.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.【答案】见试题解答内容【解答】证明:(1)如图,连接AD,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠BAD,∵∠BOD=2∠BAD,∴∠BOD=2∠A;(2)如图,连接OC,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90°,∴∠CDE+∠DCE=90°,∴∠OCD+∠DCE=90°,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).【答案】见试题解答内容【解答】解:(1)①由题意知,P'(﹣2+1,0+1),∴P'(﹣1,1),如图,点Q即为所求;②连接PP',∵∠P'PO=∠MOx=45°,∴PP'∥ON,∵P'N=QN,∴PT=QT,∴NT=PP',∵PP'=OM,∴NT=OM;(2)如图,连接PO,并延长至S,使OP=OS,延长SQ到T,使ST=OM,由题意知,PP'∥OM,PP'=OM,P'N=NQ,∴TQ=2MN,∵MN=OM﹣ON=1﹣t,∴TQ=2﹣2t,∴SQ=ST﹣TQ=1﹣(2﹣2t)=2t﹣1,∵PS﹣QS≤PQ≤PS+QS,∴PQ的最小值为PS﹣QS,PQ的最大值为PS+QS,∴PQ长的最大值与最小值的差为(PS+QS)﹣(PS﹣QS)=2QS=4t﹣2.一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.【答案】(1)∠BAE=∠CAD,BE+MD=BM;(2)EN=DN.【解答】解:(1)∵∠DAE=∠BAC=α,∴∠DAE﹣∠BAD=∠BAC﹣∠BAD,即∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴BE=CD,∵M为BC的中点,∴BM=CM,∴BE+MD=BM;(2)如图,作EH⊥AB交BC于H,交AB于F,由(1)△ABE≌△ACD得:∠ABE=∠ACD,∵∠ACD=∠ABC,∴∠ABE=∠ABD,在△BEF和△BHF中,,∴△BEF≌△BHF(ASA),∴BE=BH,由(1)知:BE+MD=BM,∴MH=MD,∵MN∥HF,∴,∴EN=DN.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 甲 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 丙 (填“甲”“乙”或“丙”).【答案】见试题解答内容【解答】解:(1)m=×(10+10+10+9+9+8+3+9+8+10)=8.6;(2)甲同学的方差S2甲=×[2×(7﹣8.6)2+2×(8﹣8.6)2+4×(9﹣8.6)2+2×(10﹣8.6)2]=1.04,乙同学的方差S2乙=×[4×(7﹣8.6)2+2×(9﹣8.6)2+4×(10﹣8.6)2]=1.84,∵S2甲<S2乙,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为×(7+8×2+9×4+10)=8.625;乙同学的最后得分为×(3×7+9×2+10×3)=8.625;丙同学的最后得分为×(8×2+9×3+10×3)=9.125,∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 甲组 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 170 和 172 .【答案】(1)166;165;(2)甲组;(3)170,172.【解答】解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生的中位数为m==166,众数为n=165;(2)甲组学生身高的平均值是:=164.8,甲组学生身高的方差是:×[(164.8﹣162)2+(164.8﹣165)2+(164.8﹣165)2+(164.8﹣166)2+(164.8﹣166)2]=2.16,乙组学生身高的平均值是:=165.4,乙组学生身高的方差是:×[(165.4﹣161)2+(165.4﹣162)2+(165.4﹣164)2+(165.4﹣165)2+(165.4﹣175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为(168+168+172)=169,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,∴数据的差别较小,可供选择的有170,172,平均数为:(168+168+170+172+172)=170,方差为:[(168﹣170)2+(168﹣170)2+(170﹣170)2+(172﹣170)2+(172﹣170)2]=3.2<,∴选出的另外两名学生的身高分别为170和172.故答案为:170,172.。

北师大版中考数学方程部分知识点总结

北师大版中考数学方程部分知识点总结

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 北师大版中考数学方程部分知识点总结第二章方程一、基础知识点 1、一元一次方程(1)概念:只含有一个(即次方程。

(2)标准形式:是 ax+b=0(a,项;bx 叫做;c 叫做。

(3)求根公式:x= ??? 2、一元二次方程(1)概念:只含有一个未知数(2)标准形式:是 ax+bx+c=0(3)求根公式:x ????? ? ???(4)一元二次方程有四种解法(5)直接开平方法适用于一次(6)配方法的方法一般不唯一(7)公式法即用求根公式求解程都可以用。

(8)因式分解法有两种情况:化为 x(ax+b)?0;二是方【(9)一元二次方程根的判别式当时,方程有的实数根;当时,方程有的实数当时,方程实数根。

(10)韦达定理? ? ? ? ? ? ??? ,程(组)和不等式(第一节整式方程元),并且未知数的为 1(即次)的,b 为常数,x 为未知数,且 a0)。

其中数,并且未知数的最高次数是 2 的整式方程0(a,b,c 为常数,x 为未知数,且 a0??? :1、直接开平方法;2、配方法;3、公式次项系数为零的情况。

1 / 11一,要具体问题具体分析,看题找到最合理,公式法适用范围广,只要有解(? ? ? 4a一是常数项为零的情况,此时方程a? ? ?方程各项系数都不为零的情况,此时方】将方程分解因式。

式(△=b-4ac)判断方程的根的情况:根; ? ? ? ? ??? (其中? ? 、? ? 为方程的两个实数(组)的整式方程叫做一元一ax2 叫做,a 叫做二次程叫做一元二次方程。

0)。

式法;4、因式分解法。

理的配法。

ac ? 0)的一元二次方bx ? 0(a ? 0),可方程要用十字相乘法数根) 3、方程的解(根)的意义:能使方程左右两边相等的未知数的值是方程的解(即能使方程等式成立的未知数的值)。

北京初中数学知识点总结大全

北京初中数学知识点总结大全

北京初中数学知识点总结大全一、数与代数1. 整数和有理数- 整数的概念:正整数、负整数、零- 有理数的概念:分数、小数、混合数- 有理数的四则运算:加法、减法、乘法、除法- 有理数的比较大小:绝对值、相反数、倒数2. 不等式与方程- 一元一次不等式及其解法- 一元一次方程及其解法- 含有绝对值的一元一次方程- 二元一次方程组的解法:代入法、消元法3. 函数- 函数的概念:定义、函数关系式- 线性函数、二次函数、反比例函数的图像和性质- 函数的基本运算:函数的和、差、积、商4. 几何图形的坐标表示- 平面直角坐标系的建立- 点的坐标表示- 直线、圆的方程表示5. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长和面积公式- 立体图形的表面积和体积公式二、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类与性质:等边、等腰、直角三角形- 四边形的分类与性质:平行四边形、矩形、菱形、正方形- 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 空间几何- 空间图形的基本概念:点、线、面、体- 空间直线与平面的位置关系- 空间图形的计算:体积、表面积3. 变换几何- 平移、旋转、对称(轴对称、中心对称)的概念及其在几何图形中的应用- 通过变换解决几何问题的方法三、统计与概率1. 统计- 数据的收集、整理与描述- 频数分布表和直方图的绘制与解读- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的计算:古典概型、列举法- 事件的可能性和不可能性四、解题技巧与方法1. 逻辑推理- 演绎推理、归纳推理、类比推理- 通过逻辑推理解决数学问题2. 解题策略- 分析法、综合法、反证法- 通过策略选择解决复杂问题3. 数学思维- 数学建模、抽象思维、空间想象- 培养解决实际问题的能力以上是北京初中数学的主要知识点总结。

在实际学习过程中,学生应该注重理解和掌握每个知识点的内在联系和逻辑结构,通过大量的练习来巩固和深化理解。

北京市中考数学知识点分布与试卷分析

北京市中考数学知识点分布与试卷分析

北京市初中数学专题知识点I、数与代数部分:一、数与式:1、实数:1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题,必考题4分) 2)科学记数法表示一个数(选择题第二题,必考4分)3)实数的运算法则:混合运算(解答题13题,必考4分)4)实数非负性应用:3、整式: 1)整式的概念和简单运算、化简求值(解答题5分)2)利用提公因式法、公式法进行因式分解(选择填空必考题4分)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题4分)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点的特征;3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)2、一次函数(通常与反比例函数相结合,以解答题形式出现。

)3、反比例函数4、二次函数(必考解答题,基本在24题出现,通常是求解析式以及与特殊几何图形综合,动态探究等,有时也在选择题第八题中出现。

)II、空间与图形一、图形的认识1、立体图形、视图和展开图(不是常考题型,但是如果出现则以选择题形式出现)2、线段、射线、直线(其中垂直平分线、线段中点性质及应用常在解答题中出现,两点间线段最短常用于解决路径最短的问题)3、角与角分线(解答题)4、相交线与平行线5、三角形(三角形的内角和、外角和、三边关系常以选择题形式出现,而三角形中位线的性质应用又是解答题中常用的添加辅助线的方法,其中有关三角形全等的性质、判定是必考解答题,三角形运动、折叠、旋转、平移(全等变换)、拼接等又是探究问题中的重要考点之一)6、等腰三角形与直角三角形(该考点常与四边形与圆相结合在解答题中出现,而与函数综合形成代数几何综合题,也是必考的解答题)7、多边形:内角和公式、外角和定理(选择题)8、四边形(特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用以动点问题、面积问题及相关函数解析式问题出现,同时,梯形问题是中考中的必考解答题,而与四边形有关的图形探究题又是最后一道解答题25题的通常考察形式。

初中数学知识点北京版总结

初中数学知识点北京版总结

初中数学知识点北京版总结一、数与代数1. 有理数的运算- 正数、负数、整数、分数、小数的概念- 有理数的加、减、乘、除运算规则- 乘方、开方的概念及运算- 绝对值的概念及性质2. 整式的运算- 单项式、多项式的概念- 整式的加减、乘法、除法运算- 因式分解的方法:提公因式、公式法、分组分解法3. 代数式的化简与变形- 代数式的基本概念- 代数式的化简技巧- 代数式的变形方法4. 一元一次方程与不等式- 方程与方程的解法- 不等式的性质与解法- 线性方程组的解法:代入法、消元法5. 函数的基本概念与性质- 函数的定义与表示方法- 函数的图象与性质- 常见函数:一次函数、二次函数、反比例函数二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念:邻角、对角、平行线与对顶角- 三角形的分类与性质:等边、等腰、直角三角形2. 图形的变换- 平移、旋转、对称(轴对称、中心对称)的概念及性质 - 坐标系中点的平移与坐标变化规律3. 圆的性质- 圆的基本性质:圆心、半径、直径、弦、弧、切线- 圆的定理:垂径定理、圆周角定理、切线长定理4. 面积与体积的计算- 平面图形的面积计算公式:矩形、三角形、梯形、圆- 立体图形的体积计算公式:长方体、正方体、圆柱、圆锥5. 解析几何初步- 坐标系中点的位置表示- 直线与曲线的方程表示三、统计与概率1. 统计- 数据的收集、整理与描述- 频数与频率的概念- 统计图表的制作与解读:条形图、折线图、饼图2. 概率- 随机事件的概念- 概率的计算方法- 简单事件与组合事件的概率四、综合应用1. 实际问题的数学建模- 运用数学知识解决实际问题- 数学建模的基本步骤2. 数学思想方法的应用- 逻辑思维与数学推理- 数学归纳法、反证法等数学证明方法3. 数学综合题的解题策略- 分析问题、寻找解题思路- 综合运用各种数学知识点解题以上是北京版初中数学的主要知识点总结,学生在学习过程中应注重理解和掌握每个知识点的内涵和联系,通过大量的练习来提高解题能力和应用能力。

中考数学知识点总结完整版

中考数学知识点总结完整版

第一讲 数与式第1课时 实数的有关概念考点一、实数的概念及分类 〔3分〕正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数〔π〕、开方开不尽的数 负无理数凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;考点二、实数的倒数、相反数和绝对值 〔3分〕2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 绝对值的问题经常分类讨论;5、倒数假设ab =1⇔ a 、b 互为倒数;假设ab =-1⇔a 、b 互为负倒数。

倒数等于本身的数是1和-1。

零没有倒数。

11a a-=考点三、平方根、算数平方根和立方根 〔3—10分〕 6、平方根①如果一个数的平方等于a ,那么这个数就叫做a 的平方根〔或二次方跟〕。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±〞。

②算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a 〞。

正数和零的算术平方根都只有一个,零的算术平a ,2a =;注意a 的双重非负性:0≥a a ≥07、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根〔或a 的三次方根〕。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

北京中考数学知识点(全)

北京中考数学知识点(全)

初中数学知识点大全1、一元一次方程根的状况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个同样的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个极点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线相互均分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线相互垂直均分,每一组对角线均分一组对角。

③判断条件:定义/对角线相互垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形拥有平行四边形,矩形,菱形的全部性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)×180度②多边形内角的一边与另一边的反向延伸线所构成的角叫做这个多边形的外角,在每个极点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)均匀数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术均匀数,记为X加权均匀数:一组数据里各个数据的重要程度未必同样,因此,在计算这组数据的均匀数时常常给每个数据加一个权,这就是加权均匀数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连结的全部线段中,垂线段最短7、平行公义经过直线外一点,有且只有一条直线与这条直线平行8、假如两条直线都和第三条直线平行,这两条直线也相互平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公义(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公义( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和此中一角的对边对应相等的两个三角形全等25、边边边公义(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公义(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的均分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离同样的点,在这个角的均分线上29、角的均分线是到角的两边距离相等的全部点的会合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边平等角)31、推论1 等腰三角形顶角的均分线均分底边而且垂直于底边32、等腰三角形的顶角均分线、底边上的中线和底边上的高相互重合33、推论3 等边三角形的各角都相等,而且每一个角都等于60°34、等腰三角形的判断定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角平等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直均分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直均分线上41、线段的垂直均分线可看作和线段两头点距离相等的全部点的会合42、定理1 对于某条直线对称的两个图形是全等形43、定理 2 假如两个图形对于某直线对称,那么对称轴是对应点连线的垂直均分线44、定理3 两个图形对于某直线对称,假如它们的对应线段或延伸线订交,那么交点在对称轴上45、逆定理假如两个图形的对应点连线被同一条直线垂直均分,那么这两个图形对于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理假如三角形的三边长a、b、c相关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论随意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线相互均分56、平行四边形判断定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判断定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判断定理3 对角线相互均分的四边形是平行四边形59、平行四边形判断定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判断定理1 有三个角是直角的四边形是矩形63、矩形判断定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线相互垂直,而且每一条对角线均分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判断定理1 四边都相等的四边形是菱形68、菱形判断定理2 对角线相互垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,而且相互垂直均分,每条对角线均分一组对角71、定理1 对于中心对称的两个图形是全等的72、定理2 对于中心对称的两个图形,对称点连线都经过对称中心,而且被对称中心均分73、逆定理假如两个图形的对应点连线都经过某一点,而且被这一点均分,那么这两个图形对于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判断定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线均分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其余直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必均分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必均分第三边81、三角形中位线定理三角形的中位线平行于第三边,而且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,而且等于两底和的一半 L=(a+b)÷2S=L×h83、(1)比率的基天性质:假如a:b=c:d,那么ad=bc假如 ad=bc ,那么a:b=c:d84、(2)合比性质:假如a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:假如a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比率定理三条平行线截两条直线,所得的对应线段成比率87、推论平行于三角形一边的直线截其余两边(或两边的延伸线),所得的对应线段成比率88、定理假如一条直线截三角形的两边(或两边的延伸线)所得的对应线段成比率,那么这条直线平行于三角形的第三边89、平行于三角形的一边,而且和其余两边订交的直线,所截得的三角形的三边与原三角形三边对应成比率90、定理平行于三角形一边的直线和其余两边(或两边的延伸线)订交,所构成的三角形与原三角形相像91、相像三角形判断定理1 两角对应相等,两三角形相像(ASA)92、直角三角形被斜边上的高分红的两个直角三角形和原三角形相像93、判断定理2 两边对应成比率且夹角相等,两三角形相像(SAS)94、判断定理3 三边对应成比率,两三角形相像(SSS)95、定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比率,那么这两个直角三角形相像96、性质定理1 相像三角形对应高的比,对应中线的比与对应角均分线的比都等于相像比97、性质定理2 相像三角形周长的比等于相像比98、性质定理3 相像三角形面积的比等于相像比的平方99、随意锐角的正弦值等于它的余角的余弦值,随意锐角的余弦值等于它的余角的正弦值100、随意锐角的正切值等于它的余角的余切值,随意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的会合102、圆的内部能够看作是圆心的距离小于半径的点的会合103、圆的外面能够看作是圆心的距离大于半径的点的会合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直均分线107、到已知角的两边距离相等的点的轨迹,是这个角的均分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同向来线上的三点确立一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京中考数学知识点总结(全)知识点1:一元二次方程的基本概念1.一元二次方程3x+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0. 2知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限.4.直角坐标系中,点A(-2,3)在第四象限.5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=2.当x=3时,函数y=3.当x=-1时,函数的值为的值为1. 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数.2.函数y=4x+1是正比例函数.3.函数2x是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下.25.抛物线y=4(x-3)-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2).7.反比例函数x的图象在第一、三象限.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°= 32.2.sin260°+ cos260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.12013年北京中考数学知识点总结(全)5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面B.x=-2 C.x1=2,x2=-2 D.x=42.方程x-1=0的两根为.A.x=1 B.x=-1 C.x1=1,x2=-1 D.x=23.方程(x-3)(x+4)=0.A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-42 22013年北京中考数学知识点总结(全)4.方程x(x-2)=0A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-225.方程x-9=0的两根为.A.x=3 B.x=-3 C.x1=3,x2=-3 D.x1=+3,x2=-3 知识点12:方程解的情况及换元法1.一元二次方程的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x2-5x+3=0的根的情况是.A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x2+4x+2=0 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4.不解方程,判别方程4x2+4x-1=0 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x2-7x+5=0 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6.不解方程,判别方程5x2+7x=-5 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根7.不解方程,判别方程x2+4x+2=0.A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程,判断方程5y2+1=25y的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用换元法解方程x22时, 令于是原方程变为.A.y2-5y+4=0B.y2-5y-4=0C.y2-4y-5=0D.y2+4y-5=010. 用换元法解方程x2时,令于是原方程变A.5y2-4y+1=0B.5y2-4y-1=0C.-5y2-4y-1=0D. -5y2-4y-1=011. 用换元法解方程(x-5(x时,设x,则原方程化为关于yA.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0 知识点13:自变量的取值范围32013年北京中考数学知识点总结(全)1.函数y中,自变量x的取值范围是.A.x≠2B.x≤-2C.x≥-2D.x≠-2 2.函数y=的自变量的取值范围是.A.x&gt;3B. x≥3C. x≠3D. x为任意实数3.函数y=的自变量的取值范围是.A.x≥-1B. x&gt;-1C. x≠1D. x≠-1 4.函数的自变量的取值范围是.A.x≥1B.x≤1C.x≠1D.x为任意实数5.函数y=的自变量的取值范围是.2A.x&gt;5B.x≥5C.x≠5D.x为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 A. y=-8x B.y=-8x+1 C.y=8x2+12.下列函数中,反比例函数A. y=8x2 B.y=8x+1 C.y=-8x D.y=-8x 3.下列函数:①y=8x2;②y=8x+1;③y=-8x;④y=-8x.其中,一次函数.A.1个B.2个C.3个D.4个知识点15:圆的基本性质1.如图,四边形ABCD B. 80°C. 90°D. 100° 2.已知:如图,⊙O中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数. A.100° B.130° C.80° D.50° 3.已知:如图,⊙O中, 圆心角∠BOD=100°,则圆周角∠BCD的度数A.100° B.130° C.80° D.50°4.已知:如图,四边形ABCD . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=905.半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为. A.3cm B.4cm C.5cm D.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是. A.100°B.130° C.80° D.50 7.已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是.4AOBDCAO•BDC•CO•ABAOBDCAOBDCAOBDC2013年北京中考数学知识点总结(全)A.100°B.130°C.200°D.508. 已知:如图,⊙O中, 圆周角∠BCD=130°,则圆心角∠BOD的度数A.100°B.130°C.80°D.50°9. 在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径为A.3B.4C.5D. 1010. 已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数A.100°B.130°C.200°D.50°12.在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为.A. 3cmB. 4 cmC.5 cmD.6 cm ACO• B知识点16:点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为.A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交3.已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关A.点在圆上B. 点在圆C. 点在圆外D.不能确定4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 不能确定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm, .A.相切B.相离C.相交D. 相离或相交8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这A.点在圆上 B. 点在圆C. 点在圆外D.不能确定2知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是.A. 外离B. 外切C. 相交D. .A. B. 外切 C. 相交 D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,A.外切 B.相交 C. D. B. 外切 C.相交 D. .A.外切B.C.D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,A.外切 B.相交 C. D. 内含 52013年北京中考数学知识点总结(全)知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条知识点19:正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为A. 5cm B.cm C.10cm D.5πcm2.正三角形外接圆的半径为2, .A. 2B. 3C.1D.23.已知,正方形的边长为2,.A. 2B. 1C.2D.34.扇形的面积为3,半径为2,那么这个扇形的圆心角为.A.30°B.60°C.90°D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为. A.12R B.R C.2R D.3R6.圆的周长为C,那么这个圆的面积S= .7.正三角形 B.1:3 C.3:2 D.1:28. 圆的周长为C,那么这个圆的半径.9.已知,正方形的边长为2,那么这个正方形外接圆的半径为.A.2B.4C.22D.2362013年北京中考数学知识点总结(全)10.已知,正三角形的半径为3,.A. 3B. 3C.32D.33知识点20:函数图像问题1.已知:关于x的一元二次方程的一个根为,且二次函数的对称轴是直线x=2,则抛物线的顶点坐标是.A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)+2,A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)3.一次函数y=x+1 .A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4.函数y=2x+1 .A.第一象限B. 第二象限C. 第三象限D. 第四象限5.反比例函数y=2x2的图象在.A.第一、二象限B. 第三、四象限C. 第一、三象限D. 第二、四象限6.反比例函数y=-10x的图象不经过.A第一、二象限 B. 第三、四象限C. 第一、三象限 D. 第二、四象限7.若抛物线的解析式为y=2(x-3)2+2,A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 8.一次函数y=-x+1的图象在.A.第一、二、三象限 B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限9.一次函数y=-2x+1的图象经过.A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限10. 已知抛物线y=ax2+bx+c(a&gt;0且a、b、c为常数)的对称轴为x=1,且函数图象上有三点A(-1,y1)、B(C(2,y3),则y1、y2、y3的大小关系是.A.y3&lt;y1&lt;y2B. y2&lt;y3&lt;y1C. y3&lt;y2&lt;y1D. y1&lt;y3&lt;y2 12,y2)、知识点21:分式的化简与求值1.计算:的正确结果为.1计算:1-(的正确结果为.72013年北京中考数学知识点总结(全)- D. -3.计算:的正确结果为x)A.xB.1C.-1xx D. -x4.计算:的正确结果为.x D.15.计算(x的正确结果是. A.x-xx-x6.计算的正确结果是A.xy-xy- xy7.计算:的正确结果为. A.x-yC.-(x+y)D.y-x8.计算:的正确结果为.A.1B.1C.-1D.19.计算(xx的正确结果是. A.1 B. 1- 1- 1知识点22:二次根式的化简与求值1. 已知xy&gt;0,化简二次根式的正确结果为. x2-y D.-2.化简二次根式a2的结果是-8B.x+y2013年北京中考数学知识点总结(全)3.若a&lt;b,化简二次根式a的结果是. A.ab B.--a若a&lt;b,化简二次根式的结果是. A.a B.-a5. 化简二次根式的结果是6.若a&lt;b,化简二次根式aa2的结果是. A.a B.-7.已知xy&lt;0,则x2y化简后的结果是. A.xy B.-xya.若a&lt;b,化简二次根式的结果是. A.a B.-a C..若b&gt;a,化简二次根式a2的结果是. A.aaba210.化简二次根式的结果是-1.若ab&lt;0,化简二次根式的结果是. b B.--知识点23:方程的根92013年北京中考数学知识点总结(全)1.当时,分式方程2x会产生增根.A.1B.2C.-1D.22.分式方程2x1的解为. A.x=-2或x=0 B.x=-2 C.x=0 D.方程无实数根3.用换元法解方程,设x=y,则原方程化为关于y的方程.A.y2+2y-5=0B.y2+2y-7=0C.y2+2y-3=0D.y2+2y-9=0224.已知方程(a-1)x+2ax+a+5=0有一个根是x=-3,则a的值为A.-4 B. 1 C.-4或1 D.4或-15.关于x的方程有增根,则实数a为.A.a=1B.a=-1C.a=±1D.a= 26.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是.A.x2+23x-1=0B.x2+23x+1=0C.x2-23x-1=0D.x2-23x+1=07.已知关于x的一元二次方程(k-3)x-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是. A.k&gt;-322 B.k&gt;-32且k≠3 C.k&lt;-32 D.k&gt;32且k≠3知识点24:求点的坐标1.已知点P的坐标为(2,2),PQ‖x轴,且PQ=2,则Q点的坐标是.A.(4,2)B.(0,2)或(4,2)C.(0,2)D.(2,0)或(2,4)2.如果点P到x轴的距离为3,到y轴的距离为4,且点P在第四象限 B.(-3,4) C.4,-3) D.(-4,3)3.过点P(1,-2)作x轴的平行线l1,过点Q(-4,3)作y轴的平行线l2, l1、l2相交于点A,则点A的坐标是.A.(1,3)B.(-4,-2)C.(3,1)D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y1)、B(-14,y2)、C(12,y3)在反比例函数y=kx(k&lt;0)的图象上,A.y3&lt;y1&lt;y2 B.y2+y3&lt;0 C.y1+y3&lt;0 D.y1•y3•y2&lt;02.在反比例函数x的图象上有两点A(x1,y1)、B(x2,y2),若x2&lt;0&lt;x1 ,y1&lt;y2,则m.A.m&gt;2B.m&lt;2C.m&lt;0D.m&gt;03.已知:如图,过原点O的直线交反比例函数y=面积为S,则.A.S=2B.2&lt;S&lt;4C.S=4D.S&gt;4 2x 的图象于A、B两点,AC ⊥x轴,AD⊥y轴,△ABC的102013年北京中考数学知识点总结(全)4.已知点(x1,y1)、(x2,y2)在反比例函数y=-2x的图象上, 下列的说法中:①图象在第二、四象限;②y随x的增大而增大;③当0&lt;x1&lt;x2时, y1&lt;y2;④点(-x1,-y1) 、(-x2,-y2)也一定在此反比例函数的图象上,其中正确的有个.A.1个B.2个C.3个D.4个5.若反比例函数必是.A. k&gt;1B. k&lt;1C. 0&lt;k&lt;1D. k&lt;06.若点(m,1mkx的图象与直线y=-x+2有两个不同的交点A、B,且∠AOB&lt;90º,则k的取值范围)是反比例函数x2的图象上一点,则此函数图象与直线y=-x+b(|b|&lt;2)的交点的个数为.A.0B.1C.2D.47.已知直线与双曲线x交于A(x1,y1),B(x2,y2)两点,则x1²x2的值.A.与k有关,与b无关B.与k无关,与b有关C.与k、b都有关D.与k、b都无关知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为.A. 正三边形B.正四边形C.正五边形D.正六边形2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是.A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是A.正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A.正三边形B.正四边形C. 正五边形D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.A.2种B.3种C.4种D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同).112013年北京中考数学知识点总结(全)A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是. A.正三边形 B.正四边形 C.正六边形 D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是. A.正四边形 B.正六边形 C.正八边形D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2³105B.6³105C.2.02³105D.6.06³1052.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周.A.4.2³108B.4.2³107C.4.2³106D.4.2³105知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为. A. 45 B. 51C. 54D. 572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5).8A.①②B.②③C.①③D.①②③3.某学校按年龄组报名参加乒乓球赛,规定“n岁年龄组”只允许满n岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是. A.报名总人数是10人;B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论, . ①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖,122013年北京中考数学知识点总结(全)则获一等奖的学生有5人.A ①②③B ①②C ②③D ①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数. A.43 B.44 C.45 D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A 45B 51C 54D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分析,各分数段人数如图所示,下列结论,其中正确的有()①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组; ④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④ B.①②④ C.②③④ D.①③④8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格,则下列结论:其中正确的有个.①初三(1)班共有60名学生; ②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%. A.①②③ B.②③ C.①③ D.①②绩知识点29:增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是. A.①② B. ①③ C. ②③ D. ①2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸易总额为亿美元D.3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为. A.71500 B.82500 C.59400 D.605 4.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为元.78元 B.100元 C.156元 D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是元.()A.700元B.800元C.850元D.1000元132013年北京中考数学知识点总结(全)6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是元.A.44B.45C.46D.487.某商品的价格为a元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是元.A.a元B.1.08a元C.0.96a元D.0.972a元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0&lt;n&lt;m&lt;100,则调价后该商品价格最高的方案是.A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价%,再降价%D.先涨价mn%,再降价mn%9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为.A.1600元B.3200元C.6400元D.8000元10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金元.16360元 B.16288 C.16324元 D.16000元BA知识点30:圆中的角1.已知:如图,⊙O1、⊙O2外切于点C,AB为外公切线,AC的延长线交⊙O1于点D,若AD=4AC,则∠ABC的度数为. A.15° B.30° C.45° D.60°2.已知:如图,PA、PB为⊙O的两条切线,A、B为切点,AD⊥PB于D点,AD交⊙O于点E,若∠DBE=25°,则∠P= .A.75°B.60°C.50°D.45°3.已知:如图,AB为⊙O的直径,C、D为⊙O上的两点,AD=CD,∠CBE=40°,过点B作⊙O的切线交DC的延长线于E点,则∠CEB= .A. 60°B.65°C.70°D.75°4.已知EBA、EDC是⊙O的两条割线,其中EBA过圆心,已知弧AC的度数是105°,且AB=2ED,则∠E的. A.30° B.35° C.45° D.755.已知:如图,Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径作⊙O 与BC相切于点D, 与AC相交于点E,若∠ABC=40°,则∠CDE= .A.40°B.20°C.25°D.30°6.已知:如图,在⊙O的. A.40ºB.45ºC.50ºD.65º 7.已知:如图,两同心圆的圆心为O,大圆的弦AB、AC切小圆于D、E两点,弧DE的度数为110°,则弧AB的度数为. 14BDAO1•C•O2DAPEDB• oCEAOBCDAEBOAECBDDPAOBEO•C2013年北京中考数学知识点总结(全)A.70°B.90°C.110°D.1308. 已知:如图,⊙O1与⊙O2外切于点P,⊙O1的弦AB切⊙O2于C点,若∠APB=30º,则∠BPC= .A.60ºB.70ºC.75ºD.90ºBCA知识点31:三角函数与解直角三角形• O1• O21.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为米.(结果保留两位小数,2≈1.4 ,3≈1.7)A.8.66 B.8.67 C.10.67 D.16.672.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.54 3.已知:如图,P为⊙O外一点,PA 切⊙O于点A,直线PCB交⊙O于C、B, AD⊥BC于D,若PC=4,PA=8,设∠ABC=α,∠ACP=β,则sinα:sinβ= . A.13OA•BCDPB.12C.2D. 4A4.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC为米. A. 23米 B. 3米 C.3.2米 D.332米67A5.已知△ABC中,BD平分∠ABC,DE⊥BC于E点,且DE:BD=1:2,DC:AD=3:4,CE=BC=6,则△ABC的面积为.,DBECA.3B.123C.243D.12AB知识点32:圆中的线段1.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连结AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=B.3 C.2 D.3A² O1²O22,则Rr的值为. A.2EF2.已知:如图,⊙O1、⊙O2 B.13 C.14 D.163.已知:如图,⊙O1、⊙O2 . A.2:7 B.2:5 C.2:3 D.1:3 15O2O1CB•O 2A1PB2013年北京中考数学知识点总结(全)4.已知:如图,⊙O1与⊙O2外切于A点,⊙O1的半径为r,⊙O2的半径为R,且r:R=4:5,O1一点,PB 切⊙O2于B点,若PB=6,则PA= . A.2 B.3C.4D.554P为⊙6.已知:如图,PA为⊙O的切线,PBC为过O点的割线,PA=134,⊙O的半径为3,A. B.313C.52613D.1526134.已知:如图, RtΔABC,∠C=90°,AC=4,BC=3,⊙O1 D.45DO2•C5.已知⊙O1与边长分别为18cm、25cm的矩形三边相切,⊙O2与⊙O1外切,与边BC、CD相切,则⊙O2的半径为.A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD为⊙O 的直径,AC是⊙O的切线,AC=2,过A点的割线AEF交CD的延长线于B点,且AE=EF=FB,则⊙O的半径为. A.57AEFCODBE•OB.514C.7D.14AB7.已知:如图, ABCD,过B、C、D三点作⊙O,⊙O切AB 于B点,交AD 于E点.若AB=4,CE=5,则DE的长为. A.2 B.95PC.165D.1OOABCD128. 如图,⊙O1、⊙O2 . A.1 B.2 C.12D.14知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B地返回学校时的平均速度为百米/分.)162013年北京中考数学知识点总结(全)11034B.72C.11043D.210932.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟升.A.15B.16C.17D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少. A.12天 B.13天 C.14天 D.15天4. 某油库有一储油量为40吨的储油罐.在开始的一段时间分钟. A.16分钟B.20分钟C.24分钟D.44分钟分)5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y是时间t的函数,则这个函数的大致图像只能是.6. 如图,某航空公司托运行李的费用y(元)与托运行李的重量x(公斤)的关系为一次函数,由图中可知,行李不超过公斤时,可以免费托运.A.18 B.19C.20D.217. 小明利用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,平路,再走下坡路到小姨家.行程情况如图所示.星期日小明又沿原路返回自己家.小明上坡、平路、下坡行驶的速度相对不变,则星期日,小明返回家的时间是A. 30分钟B.3813分钟 C.4123分钟 D.4313分钟8. 有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟 B.25分钟C.353)学校分钟D.953分钟9. 一学生骑自行车上学,最初以某一速度匀速前进, 中途由于自行车发生故障,停下修车耽误了几分钟.为了按时到校,这位学生加快了速度,仍保持匀速前进,结果准时到达学校,172013年北京中考数学知识点总结(全)这位学生的自行车行进路程S(千米)与行进时间t(分钟)的函数关系如右图所示,则这位学生修车后速度加快了千米/分.A.5B.7.5C.10D.12.510. 某工程队接受一项轻轨建筑任务,计划从2002年6月初至2003年5月底(12个月) 完成,施工3个月后,实行倒计时,提高工作效率,施工情况如图所示,那么按提高工作效率后的速度做完全部工程,可提前月完工.A.10.5个月B.6个月C.3个月D.1.5个月知识点34:二次函数图像与系数的关系1. 如图,抛物线y=ax2+bx+c图象,则下列结论中:①abc&gt;0;②2a+b&lt;0;③a&gt;结论是.A.①②③B.①③④C.①②④D.②③④2. 已知:如图,抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc&gt;0;②1213;④c&lt;1.其中正确的; ④b&gt;1.其中正确的结论.A.①②B.②③C.③④D.②④3. 已知:如图所示,抛物线y=ax2+bx+c的对称轴为x=-1,则下列结论正确的个数是.①abc&gt;0 ②a+b+c&gt;0 ③c&gt;a ④2c&gt;b A.①②③④ B.①③④ C.①②④ D.①②③4. 已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1&lt;x1&lt;2,与y轴的正半轴的交点在点(0,2)的上方.下列结论:①a&lt;b <0;②2a+c>0;③4a+c<0;④2a-b+1&gt;0.其中正确结论的个数为.A1个B2个C3个D4个5. 已知:如图所示,抛物线y=ax2+bx+c的对称轴为x=-1,且过点(1,-2),则下列结论正确的个数是. ①abc&gt;0 ②&gt;-1 ③b&lt;-1 ④5a-2b&lt;0A.①②③④B.①③④C.①②④D.①②③6. 已知:如图所示,抛物线y=ax2+bx+c的图象如图所示,下列结论:①a&lt;-1;②-1&lt;a&lt;0;③其中正确的个数是.A.①④B.②③④C.①③④D.②③7. 二次函数y=ax+bx+c的图象如图所示,则a、b、c的大小关系是A.a&gt;b&gt;cB.a&gt;c&gt;bC.a&gt;b=cD.a、b、c的大小关系不能确定。

相关文档
最新文档