2018普通高中新课程数学学科高三质量检测理科数学命题意图解读

合集下载

2018年高考理科数学新课标全国2卷逐题解析

2018年高考理科数学新课标全国2卷逐题解析

2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及稿本纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。

1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。

2018年全国高考数学(新课标Ⅰ)试卷分析

2018年全国高考数学(新课标Ⅰ)试卷分析

2018年全国高考数学(新课标Ⅰ)试卷分析试题特点高考数学题遵循了往年全国卷命题原则,如多数试题均以学生最熟悉的知识和问题呈现,只要对所涉及的知识和方法有基本的认知就可正确作答,这类试题有利于稳定考生的心态,有利于考生正常发挥。

此外,试题注重对高中所学内容的全面考查,如集合、复数、函数、数列、线性规划、平面向量、计数原理、极坐标与参数方程、不等式等内容都得到了有效的考查。

在此基础上,试卷还强调对主干内容的重点考查,如在解答题中考查了函数与导数、解三角形、概率统计、立体几何、圆锥曲线等主干内容,这体现了试卷对数学知识考查的基础性、全面性和综合性。

试卷总体评价2018年普通高考数学试卷依纲靠本,试卷结构稳中求变,试卷均减少算法和简易逻辑的考查。

试题编制科学规范、难易适度,各种难度的试题比例适当,有较好的区分度。

试题坚持能力立意,坚持多角度、多层次地考查考生的数学素养,突出对逻辑推理、数学运算、创新意识与中国传统数学文化的考查,突出数学的基础性和应用性。

考题难度适中,选择题填空题压轴题难度降低,中间部分选择题和填空题难度也比较适中,压轴大题的形式依然很常规,导数难度中上。

2018 年高考数学命题严格依据考试大纲,聚焦学科主干内容,突出关键能力的考查,强调逻辑推理等理性思维能力,重视数学应用,关注创新意识,渗透数学文化。

试题体现考主干、考能力、考素养,重思维、重应用、重创新的指导思想。

试卷稳中求新,在保持结构总体稳定的基础上,科学灵活地确定试题的内容和顺序;合理调控整体难度,并根据文理科考生数学素养的综合要求,调整文理科同题比例,为新一轮高考数学不分文理科的改革进行了积极的探索;贯彻高考内容改革的要求,将高考内容和素质教育要求有机结合,把促进学生健康成长成才和综合素质提高作为命题的出发点和落脚点,强化素养导向,助推素质教育发展。

一、聚焦主干内容,突出关键能力2018 年高考数学试题,立足于培育学生支撑终身发展和适应时代要求的能力,重点考查学生独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力;重视学科主干知识,将其作为考查重点,围绕主干内容加强对基本概念、基本思想方法和关键能力的考查,基础性与中档性题目各约占整卷的40%,重点考查考生对数学本质的认识,考查考生对数学思想方法的理解和运用,多考一点想的,少考一点算的,杜绝偏题、怪题和繁难试题,以此引导中学教学遵循教育规律、回归课堂,用好教材,避免超纲学、超量学。

高三数学学科命题意图与试题说明

高三数学学科命题意图与试题说明

盐城市2008/2009学年度高三第三次调研考试数学学科命题意图和试题说明为了真正落实教科院领导提出的结构、难度、内容、品质四个方面的仿真要求,此次命题,我们命题小组首先认真学习了考试说明,研究了近期各大市一模二模试题和江苏省近几年高考试题,并综合考虑我市前几次模拟考试,拟定了本次试卷命题思路.根据精心谋划突出方向性、精致选材突出原创性、精细打磨突出科学性总的策略要求,命题组针对大部分试卷存在的容易题太傻、难题太难、中档题太旧、附加题老一套的问题,对本次试卷提出了基础题不傻瓜、中档题不死做、较难题不作废、附加题不俗套的基本想法,精心安排试卷内容,应用题、三角综合题、解几综合题、数列综合题、立体几何综合题、函数综合题为解答题的基本模式,较难题的考查仍然以数列、函数为主,应用题我们结合前几次内容,确定考查概率统计的内容,接着,我们排查知识点,尤其是C能级知识点优先在填空题安排,对相关知识点进行补充,完成了本次试题的研制工作.命题本着稳定为主、创新为辅的方向,确定本次考试的均分在90分左右(去年省均分88)。

现对试卷试题进行具体分析一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.如果复数的模为,则▲ .此为开篇第一题,容易题,涉及复数运算和复数模的概念,教师讲解时,可对复数的几何意义作一定说明,一个是复数所对应的点,另一个是模的意义。

2.已知集合,则()= ▲ .容易题,涉及一元二次不等式的解、集合的补集、交集运算等知识点,可联系数轴对集合运算的注意点作适当提示,如:端点的开闭、集合的表示等。

3.抛物线的焦点坐标为▲ .容易题,圆锥曲线基本量的运算,注意提醒学生化为标准方程,现在考纲中对三大曲线的要求比较低,对基本量的运算要重视,可适当补充关于椭圆、双曲线的相关问题。

4.如图所示,一个水平放置的“靶子”共由10个同心圆构成,其半径分别为1㎝、2㎝、3㎝、…、10㎝,最内的小圆称为10环区,然后从内向外的圆环依次为9环区、8环区、…、1环区,现随机地向“靶子”上撒一粒豆子,则豆子落在8环区的概率为▲ .容易题,考查几何概型,讲解时要注意维度的分析,要适当补充从长度、体积等方面分析的题目。

2018年全国高考新课标3卷理科数学试题(解析版)

2018年全国高考新课标3卷理科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标3卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x-1≥0},B={0,1,2},则A ∩B=( ) A .{0} B .{1} C .{1,2} D .{0,1,2} 解析:选C2.(1+i)(2-i)=( ) A .-3-i B .-3+i C .3-i D .3+i 解析:选D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A4.若sin α=13,则cos2α= ( )A .89B .79C .- 79D .- 89解析:选B cos2α=1-2sin 2α=1-19=895.(x 2+2x )5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:选C 展开式通项为T r+1=C 5r x 10-2r (2x)r = C 5r 2r x 10-3r ,r=2, T 3= C 5222x 4,故选C6.直线x+y+2=0分别与x 轴,y 轴交于A,B 两点,点P 在圆(x-2)2+y 2=2上,则ΔABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[2,32] D .[22,32]解析:选A ,线心距d=22,P 到直线的最大距离为32,最小距离为2,|AB|=22,S min =2, S max =67.函数y=-x 4+x 2+2的图像大致为( )解析:选D 原函数为偶函数,设t=x 2,t ≥0,f(t)=-t 2+t+2,故选D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A .0.7 B .0.6 C .0.4 D .0.3解析:选B X ~B(10,p),DX=10p(1-p)=2.4,解得p=0.4或p=0.6,p=0.4时,p(X=4)=C 104(0.4)4(0.6)6>P(X=6)= C 106(0.4)6(0.6)4,不合。

2018年全国高考新课标1卷理科数学试题(解析版)

2018年全国高考新课标1卷理科数学试题(解析版)

高考真题高三数学2018 年普通高等学校招生全国统一考试新课标 1 卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1-i1.设z=1+i+2i ,则|z|=12A.0 B .C .1D . 2解析:选 C z= 1-i1+i+2i=-i+2i=i2.已知集合A={x|x 2-x-2>0} ,则?R A =R A =A.{x|-1<x<2} B .{x|-1 ≤x≤2} C .{x|x<-1} ∪{x|x>2} D .{x|x ≤-1} ∪{x|x ≥2} 解析:选 B A={x|x<-1 或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选 A4.设S n 为等差数列{a n} 的前n 项和,若3S3=S2+S4,a1=2,则a5=A.-12 B.-10 C.10 D.12解析:选∵3(3a1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax,若f(x) 为奇函数,则曲线y=f(x) 在点(0,0) 处的切线方程为A.y=-2x B.y=-x C.y=2x D.y=x解析:选 D ∵f(x) 为奇函数∴a=1 ∴f(x)=x 3+x f ′(x) =3x2+1 f ′(0)=1 故选 D→= 6.在ΔABC中,AD为BC边上的中线, E 为AD的中点,则EB3→- A.AB4 14→B.AC14→-AB34→C.AC34→+AB14→D.AC14→+AB3→AC4共7 页第1页高考真题高三数学→=- 1 →+B→D)=- 1→- 1→=- 1→-1→-A→B)= 3→- 1→解析:选A结合图形,EB (BA BA BC BA (AC AB AC2 2 4 2 4 4 47.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.2解析:选B所求最短路径即四份之一圆柱侧面展开图对角线的长28.设抛物线C:y =4x 的焦点为F,过点(–2,0)且斜率为23→→的直线与C交于M,N两点,则FM·FN=A.5 B.6 C.7 D.823 解析:选D F(1,0) ,MN方程为y=→=(0,2),FN→=(3,4) (x+2), 代入抛物线方程解得交点M(1,2),N(4,4), 则FM∴F→M·→F N=89.已知函数f(x)= e x,x ≤0x,x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g(x)存在 2 个零点,则 a 的取值范围是A.[ –1,0)B.[0 ,+∞)C.[ –1,+∞)D.[1 ,+∞)解析:选C g(x)=0 即f(x)=-x-a ,即y=f(x) 图象与直线y=-x-a 有2 个交点,结合y=f(x) 图象可知-a<1 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p3解析:选A∵AC=3,AB=4,∴BC=5,∴1 3 1AC= AB=2 ,,2 2 21 5BC=2 2∴以AC和AB为直径的两个半圆面积之和为12×π×(32)1 252 2+ ×π×2 =π2 8∴以BC为直径的半圆面积与三角形ABC的面积之差为12×π×(5)22-1 25×3×4= π-6 ;2 8∴两个月牙形(图中阴影部分)的面积之和等于258258π-( π-6)=6= ΔABC面积∴p1=p22x- y 2 =1 ,O为坐标原点, F 为C的右焦点,过 F 的直线与 C 的两条渐近线的交点分别11.已知双曲线C:3为M、N.若ΔOMN为直角三角形,则|MN|=共7 页第2页高考真题高三数学32A.B.3 C.2 3 D.4解析:选 B 依题F(2,0), 曲线C的渐近线为y=±3x,MN 的斜率为3,方程为y= 3(x-2), 联立方程组解得33 M( ,-23),N(3, 3), ∴|MN|=3 212.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为3 34 A.B.2 33C.3 24D.32解析:选 A 如图正六边形与正方体每条棱缩成角相等。

精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标III卷)(解析版)

精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标III卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。

2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。

详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。

3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。

详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。

4. 若,则A. B. C. D.【答案】B详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C所以故选C.点睛:本题主要考查二项式定理,属于基础题。

6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。

2018新课标I数学(理)高考真题命题分析

2018新课标I数学(理)高考真题命题分析

今年全国I卷理科试题命题分析一是保持稳定,主要体现在全面考查基础,突出考查主干试卷在强调通性通法的同时,还坚持能力立意,试卷往往以一道题为载体,呈现给考生的是解决一类问题的通用方法。

如第18题考查了证明面面垂直和求线面角的一般方法,重点考查考生的逻辑推理和空间想象能力;第19题考查了解决圆锥曲线定值问题的一般方法,重点考查考生的运算求解能力;特别是第21题考查了化归与转化的思想方法,揭示了如何构造辅助函数证明不等式的方法,重点考查考生分析问题和解决问题的能力。

二是坚持创新,主要体现在注重题型设计创新,综合考查数学素养,试题设问新颖。

如第10题以古希腊数学家研究的几何图形为情境,设计了一个几何概型及几何概率计算的问题;第16题关于三角函数的最值问题,体现导数工具在研究函数最值问题中的一般性应用;第20题将函数与概率综合,设问新颖,体现了考生运用数学知识解决数学问题的能力和素养。

三是注重应用,试题贴近生产生活实际,体现数学应用价值。

如第3题以新农村建设为背景,试题情境丰富,贴近生活,具有浓厚的时代气息,设计的问题自然却不乏新颖;再如第20题以产品质量检查为背景,设计的问题有很强的现实意义,如何根据期望进行科学合理决策,不仅考查考生对概率统计知识的理解,更是考查概率统计知识在数学和生活中的应用,使考生体会到数学知识与现实生活息息相关。

总的来说,今年全国I卷理科数学试题全面覆盖中学数学的主干内容,坚持平凡问题考查真功夫,没有偏题怪题,非常有利于高校科学选拔,也对高中教学有很好的导向作用。

附:命题专家权威解析2018年高考数学试题教育部考试中心命题专家认为,2018年高考数学卷一个突出的特点是,根据文理科考生数学素养综合要求,调整文理科同题比例,为新一轮高考数学不分文理科的改革进行了积极探索。

试题采用“Y字形排列”,即文理科容易题和中档题相同,构成试卷的基础,在中途文科增加中档题,理科增加较难题,组成文理科不同难度结构的试卷。

2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2018年云南省高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.12.(5.00分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y 4 ≥ 0, 理 14.若 x, y 满足约束条件 x 2 y 4≤ 0, x y ≥ 0,
则 z 2 x y 的最小值为
实测均分:2.87 实测难度:0.38 均分最高:泉州市 3.25 均分最低:2.49

代交点?
理 17.各项均为正数的数列
些小吾曹命题组
一题一问总关情
2018年省质检理科数学试题命题意图解读
引子
命题千古事, 得失寸心知。 都云省检难, 谁解其中味?
2017年高考试题评价
• 1.加强理性思维考查,突出选拔性
• 2.弘扬优秀传统文化,体现基础性 • 3.加强应用能力考查,增强实践性 • 4.考查数学思想方法,凸显创新性
PT 5 1 .下列关系中正确的是 A AT 2
T S R D E
5 1 RS P B 2 Q 5 1 B. CQ TP TS 实测均分:1.73 C 2
C. ES AP 5 1 BQ 2 D. A度:0.35 均分最高:厦门市 2.10 均分最低:1.36
2018年质检命题意图
• 1.立足学科,坚持导向 • 2.立足基础,合理综合 • 3.立足能力,强调应用 • 4.立足本质,关注素养 • 5.立足通法,注重生成 • 6.科学诊断,暴露问题
关于17.18题难度问题
15年18题不规则几何体 16年18题五面体、二面角定义 17年17题解三角形
竹石 咬定青山不放松, 立根原在破岩中。 千磨万击还坚韧, 任尔东西南北风。
1.实测均分:1.9 2.实测均分:1.19 实测难度:0.38 实测难度:0.24 均分最高:漳州市 2.30 均分最高:厦门市 1.79 均分最低:1.33 均分最低:0.60
考查意图:以含绝对值不等式、不等式恒成 立问题为载体,考查含绝对值不等式的解法、 绝对值三角不等式等
2.思想、能力立意,考查关键能力
考查意图: 必修五习题2.5A组
我们在刷题的路上走得太远,是否应 该停下来思考我们丢了什么?
2 理 18(2) .…二面角 B AE D 为 ,… 3
[选修 4 4 :坐标系与参数方程] 在直角坐标系 xOy 中,以 O 为极点, x 轴正半轴为 极轴建立极坐标系.已知曲线 M 的参数方程为
an 的首项 a1 ,前 n 项
1
和为 Sn ,且 Sn1 Sn a (1)求 an 的通项公式;
2 n1 .
(2) 若数列 bn 满足 bn an , 求 bn 的前 n 项和 Tn .
n
2.实测均分:1.93 1.实测均分:3.06 实测难度:0.32 实测难度:0.51 均分最高:福州市 3.34 均分最高:厦门市 2.17 均分最低:1.56 均分最低:2.70
23.[选修 4 5 :不等式选讲] 已知函数 f ( x) | x 2 | , g ( x) a | x | 1 . 值;
(1) 若不等式 g x 3≥ 3 的解集为 2,4 , 求a的 (2)当 x R 时, f x ≥g x ,求 a 的取值范围.
A. q1 , q3 B. q1 , q4 C. q2 , q3 D. q2 , q4
q 3 : † p1 p2 和 q 4 : p1 † p2 中,真命题是
实测均分:1.92 实测难度:0.38 均分最高:厦门市 2.26 均分最低:1.79
考查意图:考查函数的图象与性质(对称性、单 调性)、导数及其应用、逻辑联结词的含义等
理 11. 已知 A, B, C , D 四点均在以点 O1 为球心的球面上, 且 AB AC AD 2 5 , BC BD 4 2 , BD 8 .若球 O2 在球 O1 内且与平面 BCD 相切, 则球 O2 直径的最大值为 A. 1 C. 4 B. 2 D. 8
实测均分:1.01 实测难度:0.20 均分最高:三明市 1.08 均分最低:0.90
考查意图:球、空间想象能力
x 1 cos , ( 为参数) ,l1 , l2 为过点 O 的两条直线, y 1 sin l1 交 M 于 A, B 两点, l2 交 M 于 C , D 两点,且 l1 的倾斜 角为 , AOC . 6 (1)求 l1 和 M 的极坐标方程; (2)当 0, 时,求点 O 到 A, B, C , D 四点的距 6
离之和的最大值.
1.实测均分:3.35 2.实测均分:0.53 实测难度:0.67 实测难度:0.11 均分最高:厦门市 3.75均分最高:厦门市 0.81 均分最低:3.12 均分最低:0.28
考查意图:考查直线的极坐标方程、参数方 程与普通方程、直角坐标方程与极坐标方程 的互化、极坐标的几何意义等
考查意图:考查平面向量概念及运算
x2 理 6.已知函数 f ( x) . 2 x 2x 2 命题 p1 : y f ( x) 的图象关于点 1,1 对称;
命题
p2 :若 a b 2 ,则 f a f b .
p1 p2 , 则在命题 q1 : p1 p2 , q 2 : 唵
1.注重概念本质,考查必备知识
理 13.已知复数 z 满足 z (1 i) 2 z ,则 z ______.
2
实测均分:1.85 实测难度:0.37 均分最高:宁德市 2.12 均分最低:1.47 考查意图:考查复数的基本概念、复数相等 的充要条件、复数的运算
理 3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正 五角星是一个非常优美的几何图形,且与黄金分割有着密切的 联系: 在如图所示的正五角星中, 以 A, B, C , D, E 为顶点的多 边形为正五边形,且 A. BP TS
相关文档
最新文档