常用光耦合器的检测

合集下载

光纤耦合器的用途

光纤耦合器的用途

光纤耦合器的用途1.光通信系统:光纤耦合器用于将光信号从一根光纤转移到另一根光纤,实现信号的传输。

在光纤网络中,光纤耦合器用于连接光纤之间的不同部分,如连接光缆到光收发器、光模块到光路复用器等。

它可以实现不同类型的光纤之间的互联,如单模光纤到多模光纤的连接,以及不同直径的光纤之间的连接。

2.光纤传感系统:光纤传感是一种利用光纤的光学特性进行测量和检测的技术。

光纤耦合器在光纤传感系统中起到将光信号从光源传递到传感器的作用。

光纤传感系统可以应用于多种领域,如温度、压力、应力、振动、湿度等物理量的测量。

光纤耦合器的作用是将传感器测得的物理量转化成光信号,然后通过光纤传输到接收端进行分析和处理。

3.光学测试和测量:光纤耦合器可以用于光学测试和测量领域,如光谱分析、波长选择、光功率检测和测量等。

通过光纤耦合器,可以将光信号从光学仪器中耦合到光纤中,然后进行传输和检测。

光学测试和测量常用的光学仪器包括激光器、光谱仪、功率计、光纤传感器等。

4.光纤传输系统:光纤传输是一种高带宽、低损耗、抗干扰的信号传输方式。

光纤耦合器在光纤传输系统中起到将光信号从一个传输通道转移到另一个传输通道的作用。

光纤传输系统广泛应用于通信、广播、电视、互联网和数据中心等领域。

光纤耦合器的作用是实现光纤之间的连接和转接,提高信号的传输效率和质量。

5.激光系统:激光是一种高强度、高方向性、单色性好的光源。

激光系统广泛应用于材料切割、焊接、医疗、测量等领域。

在激光系统中,光纤耦合器用于实现激光器和光纤之间的连接,将激光信号从激光器输出到光纤中。

光纤耦合器还可以用于激光束的合并、分离和调整,以及激光的功率调节和模式转换。

总之,光纤耦合器是一种重要的光纤连接和转接设备,广泛应用于光通信、传感、激光和光学测试等领域。

它能够实现光信号的传输、测量和控制,提高系统的性能和可靠性。

随着光纤技术的不断发展和进步,光纤耦合器的用途将会更加广泛和多样化。

a7840光电耦合器工作原理。

a7840光电耦合器工作原理。

a7840光电耦合器工作原理。

A7840光电耦合器是一种光电器件,也被称为光电继电器。

它主要用于将光信号转换为电信号或将电信号隔离。

其工作原理基本上可以分为以下几个步骤:1. 光输入:A7840光电耦合器通常由一个光敏二极管和一个发射器组成。

光输入时,外部光源照射到发射器上,并且发射器会将电信号转换为光信号。

2. 光检测:发射器发出的光信号会照射到光敏二极管上。

光敏二极管是一种光电转换器件,它可以将光信号转换为电信号。

光敏二极管中的光敏元件会吸收光信号,并产生对应的电压或电流信号。

3. 转换:光敏二极管中产生的电信号会经过适当的放大和处理电路进行处理,使其适用于特定的应用需求。

可以通过调整处理电路的参数来控制输出信号的特性。

4. 隔离:A7840光电耦合器的一个重要特性是隔离效果。

由于光敏二极管和发射器之间没有直接的电连接,因此输入光信号可以完全隔离起来,以防止任何电流或电压的干扰传递到输出端。

总结起来,A7840光电耦合器的工作原理是通过将外部光信号转换为电信号,并经过适当的处理和隔离,实现光与电信号之间的相互转换和隔离功能。

它在工业控制、通信、医疗设备等领域具有广泛的应用。

光耦测量方法

光耦测量方法

用两个万用表就可以测了。

光电耦合器由发光二极管和受光三极管封装组成。

如光电耦合器4N25,采用DIP-6封装,共六个引脚,①、②脚分别为阳、阴极,③脚为空脚,④、⑤、⑥脚分别为三极管的e、c、b极。

以往用万用表测光耦时,只分别检测判断发光二极管和受光三极管的好坏,对光耦的传输性能未进行判断。

这里以光耦4N25为例,介绍一种测量光耦传输特性的方法。

1.判断发光二极管好坏与极性:用万用表R×1k挡测量二极管的正、负向电阻,正向电阻一般为几千欧到几十千欧,反向电阻一般应为∞。

测得电阻小的那次,红笔接的是二极管的负极。

2.判断受光三极管的好坏与放大倍数:将万用表开关从电阻挡拨至三极管hFE挡,使用NPN型插座,将E孔连接④脚发射极,C孔连接⑤脚集电极,B孔连接⑥脚基极,显示值即为三极管的电流放大倍数。

一般通用型光耦hFE值为一百至几百,若显示值为零或溢出为∞,则表明三极管短路或开路,已损坏。

3.光耦传输特性的测量:测试具体接线见下图,将数字万用表开关拨至二极管挡位,黑笔接发射极,红笔接集电极,⑥脚基极悬空。

这时,表内基准电压2.8V经表内二极管挡的测量电路,加到三极管的c、e结之间。

但由于输入二极管端无光电信号而不导通,液晶显示器显示溢出符号。

当输入端②脚插入E孔,①脚插入C孔的NPN插座时,表内基准电源2.8V经表内三极管hFE挡的测量电路,使发光二极管发光,受光三极管因光照而导通,显示值由溢出符号瞬间变到188的示值。

当断开①脚阳极与C孔的插接时,显示值瞬间从188示值又回到溢出符号。

不同的光耦,传输特性与效率也不相同,可选择示值稍小、显示值稳定不跳动的光耦应用。

由于表内多使用9V叠层电池,故给输入端二极管加电的时间不能过长,以免降低电池的使用寿命及测量精度,可采用断续接触法测量。

817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。

各种光电耦合器参数

各种光电耦合器参数

常用参数正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。

正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。

反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。

反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。

结电容CJ:在规定偏压下,被测管两端的电容值。

反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。

输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。

反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。

电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。

脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。

从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。

传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。

从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。

入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。

入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。

入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。

最大额定值参数名称符号最大额定值单位V反向电压5VRI正向电流50mAV集-发击穿电压100V(BR)CEO I集电极电流30mACMT贮存温度-55~150℃stgT工作温度-55~125℃ambV隔离电压1000VIOP总耗散功率80mWtot推荐工作条件特性符号最小值典型值最大值单位I输入电流1050FV电源电压1560V主要光电特性测试条件(T特性符号11A=25℃±3℃)最小典型最大单位隔离特性隔离电阻RIOVIO=500V1010Ω上升时间tr10μsV开关特性下降时间tfCC=5V,IFP=10mA,RL=360Ωf=10kHz,D:1/2 10μsIV反向电流R0.011.0μALED输入特性VI正向电压FF=10mA1.21.4VCTR电流传输比VCC=5V,IF=10mA,RL=200Ω60180%集-发饱和电压VCE(sat)VCC=5V,IF=10mA,RL=4.7kΩ0.10.4V晶体管输出特性IV集-发截止电流CEOCE=5V,IF=00.011.0μA线性光电耦合器在开关电源中的应用沙占友王彦明王晓群(河北科技大学石家庄)摘要线性光耦合器是目前国际上正推广应用的一种新型光电隔离器件。

光纤耦合器种类

光纤耦合器种类

光纤耦合器种类光纤耦合器是一种将两根或多根光纤进行连接的光学器件,广泛应用于光通信、光传感、激光加工、医疗等领域。

按照工作原理和结构特点的不同,光纤耦合器可以分为几种不同的类型,下面将分别介绍。

一、分束器分束器是将一个光信号分成两个或多个光信号输出的器件。

分束器通常是基于光纤的分光技术,通过将进入的光束在不同波长或传输距离的情况下将其分成多个光束,从而实现对光信号的处理。

它可分为功率分配型、等分型和分波型分束器。

功率分配型分束器将输入的光信号按照不同的功率比例输出至多个输出端口,通常用于进行分光功率的分配,如分配至多个检测器进行监测。

等分型分束器将输入的光信号按照相等的功率比例进行输出,用于将一根进光纤接入到多个设备中以无源的方式复制信号,如使用在网络系统中。

分波型分束器能将一个光信号按照频率进行分波,然后将不同频率的光信号输出至不同的端口,常用于联网系统、光传感等领域。

二、耦合器耦合器是将两个或多个光信号耦合成一个光信号的器件。

耦合器通常有多个输入和输出端口,可用于将不同的光信号进行混合、分配、复用等功能。

它可以分为星型、网状型、串扰型和串通型等不同形式。

星型耦合器中,多跟输入信号将被耦合至一根输出端口中,通常用于传输多路光信号并将其合并,如由多个光源形成的光信号。

网状型耦合器中,多根输入信号会在内部交错交汇之后分散至多个输出端口,常用于进行星形分布的光网络。

串扰型和串通型耦合器通过在接口处及其附近小量完成一定程度的光信号交混,使其能够将输入信号转换至输出端口。

串扰型耦合器用于高速数据的传输,通过对不同的传输信息进行交错便可对其进行打包传输,大幅度提升数据传输效率。

而串通型耦合器是一种新型的光纤耦合器,能够将低速率的光信号进行优化,是电力系统中使用的一种较为普遍的器件。

三、互联器互联器是一种用于连接两个不同光纤之间的物理层设备。

通常情况下,它是用于连接多根光纤,在不丢失任何信号的情况下进行数据传输和信号复制的设备。

光耦常见电路

光耦常见电路

光耦常见电路
光耦合器(光耦)是一种常用的电子元件,用于电气信号和光信号之间的隔离和传递。

它由光发射器和光接收器组成,通过光信号的发射和接收,实现输入和输出电路之间的电气隔离。

以下是几种常见的光耦合器电路:
1.光电晶体管(Phototransistor)电路:该电路将光发射器
与晶体管连接,以实现电气信号的隔离和传递。

光发射器
发出的光可以激活光电晶体管,使其产生电流,从而实现
输入和输出电路之间的隔离。

2.光敏二极管(Photodiode)电路:光敏二极管是一种用于
检测光信号的光电探测器。

它可以将接收到的光信号转换
为电流或电压输出。

在电路中,光敏二极管通常与放大器
或其他电路元件结合使用,以实现隔离和信号放大的功能。

3.光耦合继电器电路:光耦合继电器是一种将光耦合器和继
电器相结合的装置。

它具有继电器的开关功能和光耦合器
的电气隔离功能。

通过控制光耦合器的光发射器,能够控
制继电器的开关状态,实现电气信号的隔离和传递。

4.光耦合隔离放大器电路:该电路将光耦合器与放大器相结
合,实现电气信号的隔离和放大。

通过光发射器将输入信
号转换为光信号,然后通过光接收器将光信号转换回电信
号,并经过放大器放大,实现输入和输出电路之间的电气
隔离和信号放大。

此外,还有其他类型的光耦合器电路,例如光耦合比较器、光耦合开关等,根据具体的应用需求选择适合的光耦合器电路。

光耦合器在工业控制、通信设备、医疗设备等领域具有广泛的应用。

光纤耦合实验报告

光纤耦合实验报告

篇一:光纤测量实验报告光纤测量实验报告课程名称:光纤测量实验名称:耦合器光功率分配比的测量学院:电子信息工程学院专业:通信与信息系统班级:研1305班姓名:韩文国学号:13120011实验日期:2014年4月22日指导老师:宁提纲、李晶耦合器光功率分配比的测量一、实验目的:1. 理解光纤耦合器的工作原理;2. 掌握光纤耦合器的用途和使用方法;3. 掌握光功率计的使用方法。

二、实验装置:ld激光器,1 ×2光纤耦合器,2 ×2光纤耦合器,tl-510型光功率计,光纤跳线若干。

1. ld激光器半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。

.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

电注入式半导体激光器,一般是由砷化镓(gaas)、硫化镉(cds)、磷化铟(inp)、硫化锌(zns)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。

本实验用的ld激光器中心频率是1550nm。

2. 光功率计光功率计(optical power meter )是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。

在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。

通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。

用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。

3. 耦合器光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。

光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。

(完整word版)常用光耦总结

(完整word版)常用光耦总结

光电耦合器(简称光耦)是开关电源电路中常用的器件。

光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。

常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。

非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。

线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。

开关电源中常用的光耦是线性光耦。

如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。

由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。

同时电源带负载能力下降。

在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。

常用的4脚线性光耦有PC817A----C。

PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。

常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。

以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。

光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用光耦合器的检测
一、检测
常见的光耦合器如下图1所示,至于它的工作原理就不多说了,关于它的定性检测(以四脚的为例)可以这样来做,首先用万用表(普通模拟表)的黑笔接1脚,红笔接2脚测试初级端二极管的正反向电阻,应一次较小,一次接近无穷大,然后再用两表笔分别交换测试控制端3,4脚,应都为无穷大,这时还不能判定它的控制功能是否正常!接下来用表笔的黑笔接1脚,红笔接2脚,这时在万用表上有一个电阻的指示(几K_十几K),然后将两表笔分别触向对应的3,4脚,应观察到表面指示的电阻明显减小,这是因为这时二极管的正向电阻又并上了输出控制管的导通电阻(相当于三极管的C_E极电阻),如此可定性判定此光耦合器是好的,如在第二次检测时表针基本不动,或动的很小,那么此光耦合器就要谨慎使用了!如法炮制也可检测6脚的光耦
合器.很简单方便吧
!
图1 图2 图3 图4 声明:此法对如MOC30系列的光耦合器,因为它的输出控制是双向光触发二极管,所以无效,只对输出控制是光敏三极管的才有效!
二、分类
按图可分为四类,如下表所示
可代换一、二类,选择功能相同引脚接入即可;但一、二类不能代换第三类;第四类不能与任何一类代换。

July 5, 2005。

相关文档
最新文档