上海市金山区2018届九年级上学期期末质量检测数学试题(解析版)
┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=1.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,1)B .(1,1)C .(﹣1,1)D .(1,﹣1)【答案】A 【分析】根据旋转变换的性质得到旋转变换后点A 的对应点坐标,根据平移的性质解答即可.【详解】∵点C 的坐标为(﹣1,0),AC=1,∴点A 的坐标为(﹣3,0),如图所示,将Rt △ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,1),再向右平移3个单位长度,则变换后点A′的对应点坐标为(1,1),故选A .【点睛】本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键. 2.抛物线23123y x x =-+-的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)【答案】A【分析】把抛物线解析式化为顶点式即可求得答案.【详解】∵223123=3(2)9y x x x =-+---+,∴顶点坐标为(2,9).故选:A .【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在2()y a x h k =-+中,对称轴为x=h ,顶点坐标为(h ,k ).3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B 【详解】解:∵ABCD 是矩形,∴AD=BC ,∠B=90°,∵翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,∴AO=AD ,CO=BC ,∠AOE=∠COF=90°,∴AO=CO ,AC=AO+CO=AD+BC=2BC ,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°, ∴BE=12CE , ∵AB ∥CD ,∴∠OAE=∠FCO ,在△AOE 和△COF 中,∵∠OAE=∠FCO ,AO=CO ,∠AOE=∠COF ,∴△AOE ≌△COF ,∴OE=OF ,∴EF 与AC 互相垂直平分,∴四边形AECF 为菱形,∴AE=CE ,∴BE=12AE , ∴12AE AE EB AE ==2, 故选B .【点睛】本题考查翻折变换(折叠问题).4.如图,Rt △ABC 中,∠B =90°,AB =3,BC =2,则cosA =( )A .32B .23C .21313D .3133【答案】D【分析】根据勾股定理求出AC ,根据余弦的定义计算得到答案. 【详解】由勾股定理得,AC =22AB BC +=2232+=13,则cosA =AB AC =13=31313, 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 5.二次函数2y ax bx c =++图象如图所示,下列结论:①240b ac ->;②20a b +=;③0abc >;④420a b c ++>;⑤230ax bx c ++-=有两个相等的实数根,其中正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据图象与x 轴有两个交点可判定①;根据对称轴为12b a-=可判定②;根据开口方向、对称轴和与y 轴的交点可判定③;根据当0x =时0y >以及对称轴为1x =可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x 轴有两个交点可得240b ac ->,此结论正确;②对称轴为12b a-=,即2b a =-,整理可得20a b +=,此结论正确; ③抛物线开口向下,故0a <,所以20b a =->,抛物线与y 轴的交点在y 轴的正半轴,所以0c >,故0abc <,此结论错误;④当0x =时0y >,对称轴为1x =,所以当2x =时0y >,即420a b c ++>,此结论正确; ⑤当3y =时,只对应一个x 的值,即230ax bx c ++-=有两个相等的实数根,此结论正确; 综上所述,正确的有4个,故选:D .【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.6.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 【答案】B【分析】根据二次函数的定义,二次项系数不等于0列式求解即可.【详解】根据二次函数的定义,二次项系数不等于0,3-a ≠0,则a≠3,故选B【点睛】本题考查二次函数的定义,熟记概念是解题的关键.7.已知二次函数()22y x a b =---的图象如图所示,则反比例函数ab y x=与一次函数y ax b =+的图象可能是 ( )A .B .C .D .【答案】B【分析】观察二次函数图象,找出a >0,b >0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:抛物线()22y x a b =---的顶点坐标()a b -,在第四象限,即00a b >-<,, ∴0a >,0b >. ∵反比例函数ab y x=中0ab >, ∴反比例函数图象在第一、三象限;∵一次函数0y ax b a =+>,,0b >,∴一次函数y ax b =+的图象过第一、二、三象限.故选:B .【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出0a >,0b >.解决该题型题目时,熟记各函数图象的性质是解题的关键.8.下列事件中,属于必然事件的是( )A .明天的最高气温将达35℃B .任意购买一张动车票,座位刚好挨着窗口C .掷两次质地均匀的骰子,其中有一次正面朝上D .对顶角相等【答案】D【解析】A 、明天最高气温是随机的,故A 选项错误;B 、任意买一张动车票,座位刚好挨着窗口是随机的,故B 选项错误;C 、掷骰子两面有一次正面朝上是随机的,故C 选项错误;D 、对顶角一定相等,所以是真命题,故D 选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D .【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.9.如果零上2℃记作+2℃,那么零下3℃记作( )A .-3℃B .-2℃C .+3℃D .+2℃【答案】A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.10.如图是半径为2的⊙O 的内接正六边形ABCDEF ,则圆心O 到边AB 的距离是( )A.2 B.1 C.3D.3 2【答案】C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB=3606︒=60°,根据等腰三角形的性质得到∠AOH=30°,AH=12AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB=3606︒=60°,∵OA=OB,∴∠AOH=30°,AH=12AB=1,∴OH=3AH=3,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.11.关于x的一元二次方程210x mx--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【答案】A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.12.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )A .4B .﹣4C .1D .﹣1【答案】D【详解】解:根据一元二次方程根的判别式得,△()224a 0=-⋅-=, 解得a=﹣1.故选D .二、填空题(本题包括8个小题)13.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC =12∠BOC ,再利用∠BAC+∠BOC =180°可计算出∠BOC 的度数. 【详解】解:∵∠BAC 和∠BOC 所对的弧都是BC ,∴∠BAC =12∠BOC ∵∠BAC+∠BOC =180°, ∴12∠BOC+∠BOC =180°, ∴∠BOC =120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.14.如图,矩形纸片ABCD 中,AB =6cm ,AD =10cm ,点E 、F 在矩形ABCD 的边AB 、AD 上运动,将△AEF 沿EF 折叠,使点A′在BC 边上,当折痕EF 移动时,点A′在BC 边上也随之移动.则A′C 的取值范围为_____.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.15.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.【答案】5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD 内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4.设AM =MN =x ,∵MD =5﹣x ,MC =4+x ,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(5﹣x )5=(4+x )5,解得x =3;当∠BNC =90°,N 在矩形ABCD 外部时,如图5.∵∠BNC =∠MNB =90°,∴M 、C 、N 三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4,设AM =MN =y ,∵MD =y ﹣5,MC =y ﹣4,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(y ﹣5)5=(y ﹣4)5,解得y =9,则所有符合条件的M 点所对应的AM 和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.16.当x_____时,|x ﹣2|=2﹣x .【答案】≤2【分析】由题意可知x ﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x ﹣2|=2﹣x ,可得20x -≤,解得:2x ≤.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.17.在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE =________时,以A 、D 、E 为顶点的三角形与 ABC 相似. 【答案】51235或 【解析】当AE AB AD AC =时, ∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC =时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 18.如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km ,则两点间的距离为______km.【答案】1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km .【详解】∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=AB=AM=1.1(km).故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.三、解答题(本题包括8个小题)19.已知:如图,将△ADE 绕点A 顺时针旋转得到△ABC ,点E 对应点C 恰在D 的延长线上,若BC ∥AE .求证:△ABD 为等边三角形.【答案】证明见解析.【分析】由旋转的性质可得ACB E ∠=∠,AC AE =,可得E ACE ∠=∠,由平行线的性质可得180BCE E ∠+∠=︒,可得60E ∠=︒,则可求60BAD ∠=︒,可得结论.【详解】解:由旋转知:△ADE ≌△ABC ,∴∠ACB =∠E ,AC =AE ,∴∠E =∠ACE ,又BC ∥AE ,∴∠BCE+∠E =180°,即∠ACB+∠ACE+∠E =180°,∴∠E =60°,又AC =AE ,∴△ACE 为等边三角形,∴∠CAE =60°又∠BAC =∠DAE∴∠BAD =∠CAE =60°又AB =AD∴△ABD 为等边三角形.【点睛】本题考查了旋转的性质,等边三角形的性质,平行线的性质等知识,求出60CAE ∠=︒是本题的关键. 20.一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点.求这个二次函数的解析式并写出图象的顶点.【答案】二次函数为222y x x -=-,顶点(1,-3).【分析】先设该二次函数的解析式为y=ax 2+bx+c (a ≠0),利用待定系数法求a ,b ,c 的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标.【详解】解:∵二次函数的图象经过(0,-2),可设所求二次函数为22y ax bx =+-, 由已知,函数的图象不经过(3,1),(-2,6)两点,可得关于a 、b 的二元一次方程组9321,422 6.a b a b +-=⎧⎨--=⎩解这个方程,得1,2.a b =⎧⎨=-⎩∴二次函数为:222y x x -=-;化为顶点式得:2(1)3y x =--∴顶点为:(1,3)-.【点睛】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法以及顶点公式求法等知识,难度不大.21.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 22.如图所示的双曲线是函数3(m y m x-=为常数,0x >)图象的一支若该函数的图象与一次函数1y x =+的图象在第一象限的交点为()2,A n ,求点A 的坐标及反比例函数的表达式.【答案】点A 的坐标为()2,3;反比例函数的表达式为6y x=. 【分析】先将x=2代入一次函数1y x =+中可得,点A 的坐标为()2,3,再将点A 的坐标代入3m y x -=可得反比例函数的解析式.【详解】解:点()2,A n 在一次函数1y x =+的图象上,213,n ∴=+=∴点A 的坐标为()2,3.又点A 在反比例函数3(m y m x-=为常数,0x >)的图象上,3236,m ∴-=⨯=∴反比例函数的表达式为6y x=. 【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.23.解下列方程:210252(5)x x x -+=-【答案】x 1=5,x 2=1.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2-10x+25=2(x-5),(x-5)2-2(x-5)=0,(x-5)(x-5-2)=0,x-5=0,x-5-2=0,x 1=5,x 2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.24.如图,抛物线y=ax 2 +bx+ 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.【答案】(1)2142y x x =--+顶点D 的坐标为(-1,92) (2)H (34,158) (2)K (-32,358) 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D 的坐标;(2)根据抛物线的解析式可求出C 点的坐标,由于CD 是定长,若△CDH 的周长最小,那么CH+DH 的值最小,由于EF 垂直平分线段BC ,那么B 、C 关于直线EF 对称,所以BD 与EF 的交点即为所求的H 点;易求得直线BC 的解析式,关键是求出直线EF 的解析式;由于E 是BC 的中点,根据B 、C 的坐标即可求出E 点的坐标;可证△CEG ∽△COB ,根据相似三角形所得的比例线段即可求出CG 、OG 的长,由此可求出G 点坐标,进而可用待定系数法求出直线EF 的解析式,由此得解;(2)过K 作x 轴的垂线,交直线EF 于N ;设出K 点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K 、N 的纵坐标,也就能得到KN 的长,以KN 为底,F 、E 横坐标差的绝对值为高,可求出△KEF 的面积,由此可得到关于△KEF 的面积与K 点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K 点坐标.【详解】(1)由题意,得164404240a b a b -+=⎧⎨++=⎩解得12a =-,b=-1. 所以抛物线的解析式为2142y x x =--+,顶点D 的坐标为(-1,92). (2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH+CH 最小,即最小为=2CD ==. ∴△CDH 的周长最小值为CD+DR+CH=2. 设直线BD 的解析式为y=k 1x+b ,则11112092k b k b +=⎧⎪⎨-+=⎪⎩解得132k =-,b 1= 2. 所以直线BD 的解析式为y=32-x+ 2. 由于Rt △CEG ∽△COB ,得CE:CO=CG:CB ,所以CG= 2.3,GO= 1.3.G (0,1.3).同理可求得直线EF 的解析式为y=12x+32. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (34,158). (2)设K (t ,2142t t --+),x F <t <x E .过K 作x 轴的垂线交EF 于N . 则KN=y K -y N =2142t t --+-(12t+32)=2135222t t --+.所以S △EFK =S △KFN +S △KNE =12KN (t+ 2)+12KN (1-t )= 2KN= -t 2-2t+ 3 =-(t+32)2+294. 即当t=-32时,△EFK 的面积最大,最大面积为294,此时K (-32,358). 【点睛】 本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.25.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()4,2A -, ()3,1B -,()1,2C -. (1)请画出ABC ∆关于x 轴对称的111A B C ∆;(2)以点O 为位似中心,相似比为1:2,在y 轴右侧,画出111A B C ∆放大后的222A B C ∆;【答案】(1)见解析;(2)见解析.【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出ABC ∆轴对称的111A B C ∆.画出111A B C ∆放大后的位似222A B C ∆.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.26.解方程:(1)2x 2+3x ﹣1=0(2)1122 xx x-=+-【答案】(1)x1=3174-+,x2=3174--;(2)x=23【分析】(1)将方程化为一般形式a x2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=-b-317=±∆±,∴x1=3174-+,x2=3174--;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=23,检验:当x=23时,(x+2)(x﹣2)≠0,所以x=23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.27.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=8(05)510(515) x xx x⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?【答案】(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x+10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m =40当5<x≤15时,设m =kx+b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩∴2k =且b=30∴m =2x+30①当0≤x≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x≤15时w =(62﹣2x ﹣30)(5x+10)=﹣10x 2+140x+320∴当x =7时,w 最大为810∵880>810∴当x =5时,w 取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .【答案】B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.2.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0,而抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x <1时,y <0,符合题意; (3)﹣1<x 1<0,3<x 1<4时,x 1离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.4.点P(-6,1)在双曲线ky x=上,则k 的值为( ) A .-6 B .6C .16-D .16【答案】A【分析】根据反比例函数图象上点的坐标特征可直接得到答案. 【详解】解:∵点P (61-,)在双曲线ky x=上, ∴616k =-⨯=-; 故选:A. 【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 5.下列各组图形中,两个图形不一定是相似形的是( ) A .两个等边三角形 B .有一个角是100︒的两个等腰三角形 C .两个矩形 D .两个正方形【答案】C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A 、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A 正确; B 、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B 正确;C 、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C 错误;D 、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D 正确. 故选:C . 【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.6.如图,PA 是⊙O 的切线,OP 交⊙O 于点B ,如果1sin 2P =,OB=1,那么BP 的长是( )A .4B .2C .1D .3【答案】C【分析】根据题意连接OA 由切线定义可知OA 垂直AP 且OA 为半径,以此进行分析求解即可. 【详解】解:连接OA ,已知PA 是⊙O 的切线,OP 交⊙O 于点B ,可知OA 垂直AP 且OA 为半径,所以三角形OAP 为直角三角形,∵1sin 2P =,OB=1, ∴1sin 2OA P OP ==,OA=OB=1, ∴OP=2,BP=OP-OB=2-1=1. 故选C. 【点睛】本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.7.已知函数ky x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限 C .当x<0时,必y<0 D .点(-2, -3)不在此函数的图象上【答案】C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C . 8.若角αβ,都是锐角,以下结论:①若αβ<,则sin sin αβ<;②若αβ<,则cos cos αβ<;③若αβ<,则tan tan αβ<;④若90αβ+=,则sin cos αβ=.其中正确的是( ) A .①② B .①②③C .①③④D .①②③④【答案】C【分析】根据锐角范围内sin α 、cos α 、tan α 的增减性以及互余两锐角的正余弦函数间的关系可得. 【详解】①∵sin α随α 的增大而增大,正确; ②∵cos α随α 的增大而减小,错误; ③∵tan α随α 的增大而增大,正确;④若90αβ+=,根据互余两锐角的正余弦函数间的关系可得sin cos αβ=,正确; 综上所述,①③④正确 故答案为:C . 【点睛】本题考查了锐角的正余弦函数,掌握锐角的正余弦函数的增减性以及互余锐角的正余弦函数间的关系是解题的关键.9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( ) A .(2,-3) B .(-3,3)C .(2,3)D .(-4,6)【答案】A【分析】设反比例函数y=kx(k 为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断. 【详解】设反比例函数y=kx(k 为常数,k≠0), ∵反比例函数的图象经过点(-2,3), ∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24, ∴点(2,-3)在反比例函数y=-6x的图象上. 故选A . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AEBC AC=的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D【解析】根据相似三角形的判定和性质,即可得到答案. 【详解】解:∵//DE BC , ∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D. 【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB=60°,则∠BDC 的度数是( )A .20°B .25°C .30°D .40°【答案】C【详解】∵AB BC =,∠AOB=60°, ∴∠BDC=12∠AOB=30°. 故选C .12.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5 B .6C .7D .8【答案】B【分析】设白球的个数为x ,利用概率公式即可求得. 【详解】设白球的个数为x ,由题意得,从14个红球和x 个白球中,随机摸出一个球是白球的概率为0.3, 则利用概率公式得:0.314xx=+,解得:6x =,经检验,x=6是原方程的根, 故选:B. 【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.二、填空题(本题包括8个小题)13.用一个圆心角为120︒的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为_____. 【答案】12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可. 【详解】设这个圆锥的母线长为l , 依题意,有:12024180lππ⨯⨯=, 解得:12l =, 故答案为:12. 【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14.若12y x =,则y x x +=___________.【答案】32【分析】把所求比例形式进行变形,然后整体代入求值即可. 【详解】=1y x y x x ++,12y x =,13=+1=22y x x +∴;故答案为32. 【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.15.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 【答案】y=x 1+1【解析】分析:先确定二次函数y=x 1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x 1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x 1+1. 故答案为y=x 1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16.点A ()12,y -,B ()21,y -都在反比例函数3y x=-图象上,则1y _____2y .(填写<,>,=号) 【答案】<.【分析】根据反比例函数的增减性即可得出结论.。
<合集试卷3套>2018年上海市金山区九年级上学期数学期末统考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知一次函数y=kx-2 的图象与x 轴、y 轴分别交于A,B 两点,与反比例函数4(0) y xx=>的图象交于点C,且AB=AC,则k 的值为( )A.1 B.2 C.3 D.4【答案】B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=2k,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=2k,∴BO=CD=2,OA=AD=2k,∴OD=224 k k k +=∴点C(4k,2),∵点C在反比例函数4(0)y xx=>的图象上,∴424k⨯=,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C 点的坐标是解题的关键.2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A .B .C .D .【答案】D【解析】试题分析:根据三视图中,从左边看得到的图形是左视图,因此从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D考点:简单组合体的三视图3.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为x ,则下面所列方程正确的是( )A .()350015300x +=B .()530013500x +=C .()2530013500x +=D .()2350015300x += 【答案】D【分析】由题意设每年的增长率为x ,那么第一年的产值为3500(1+x )万元,第二年的产值3500(1+x )(1+x )万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x ,依题意得3500(1+x )(1+x )=5300,即()2350015300x +=.故选:D .【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x ”的含义以及找到题目中的等量关系.4.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC=2,则OF 的长为 ( )A.12B.34C.1 D.2【答案】C【详解】解:∵OD⊥AC,∴AD=12AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故选C.【点睛】本题考查1.全等三角形的判定与性质;2.垂径定理,掌握相关性质定理正确推理论证是解题关键.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1 个B.2 个C.1 个D.4 个【答案】C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.6.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形【答案】D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.7.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为()A.94B.4 C.92D.152【答案】C【分析】由a b c∥∥,利用平行线分线段成比例可得DE与EF之比,再根据DF=12,可得答案.【详解】a b c,AB DEBC EF∴=,35AB BC==∵,,DE3=EF5∴,12DF=,39=82DE DF =∴, 故选C. 【点睛】 本题考查了平行线分线段成比例,牢记平行线分线段成比例定理及推论是解题的关键. 8.如图,123////l l l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,若54AB BC =,则EF DE的值为( )A .54B .49C .45D .59【答案】C【分析】直接利用平行线分线段成比例定理即可得出结论.【详解】∵l 1∥l 2∥l 3,∴AB DE BC EF=, ∵54AB BC =, ∴45EF DE =. 故选:C .【点睛】本题考查了平行线分线段成比例定理,得出AB DE BC EF=是解答本题的关键. 9.下列航空公司的标志中,是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形,不合题意; B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意;故选:C .【点睛】本题考查的是轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.在ABC ∆中,90C ∠=︒,4sin 5A =,则cos B 的值为( ) A .43 B .34 C .35 D .45【答案】D【分析】在Rt △ABC 中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt △ABC 中,∠C=90°,∠A+∠B=90°,则cosB=sinA=45. 故选:D .【点睛】 本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等. 11.如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.则△CMN 与△CAB 的面积之比是( )A .1:2B .1:3C .1:4D .1:9【答案】C 【解析】由M 、N 分别为AC 、BC 的中点可得出MN ∥AB ,AB =2MN ,进而可得出△ABC ∽△MNC ,根据相似三角形的性质即可得到结论.【详解】∵M 、N 分别为AC 、BC 的中点,∴MN ∥AB ,且AB =2MN ,∴△ABC ∽△MNC ,∴MNC ABC S S=(MN AB )2=14. 故选C .【点睛】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC ∽△MNC 是解题的关键.12.正六边形的半径为4,则该正六边形的边心距是( )A .4B .2C .3D .33【答案】C【分析】分析出正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为4的正三角形的高,从而构造直角三角形即可解.【详解】解:半径为4的正六边形可以分成六个边长为4的正三角形,而正多边形的边心距即为每个边长为4的正三角形的高,∴正六多边形的边心距=2242-=23.故选C.【点睛】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.二、填空题(本题包括8个小题)13.方程x 2﹣2x+1=0的根是_____.【答案】x 1=x 2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x ﹣1)2=0,解得:x 1=x 2=1.故答案是:x 1=x 2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.【答案】1【分析】首先根据二次函数25(0)y ax bx a =-+≠的图象经过点(2,2)得到243b a -=,再整体代值计算即可.【详解】解:∵二次函数25(0)y ax bx a =-+≠的图象经过点(2,2),∴4252a b -+=,∴243b a -=,∴242017b a -+=32017+=1,故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.15.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是______.【答案】x>1 2【详解】解:把(﹣1,0),(1,﹣2)代入二次函数y=x2+bx+c中,得:1012b cb c-+=⎧⎨++=-⎩,解得:12bc=-⎧⎨=-⎩,那么二次函数的解析式是:2y x x2=--,函数的对称轴是:12x=,因而当y随x的增大而增大时,x的取值范围是:12x>.故答案为12x>.【点睛】本题考查待定系数法求二次函数解析式;二次函数的图象性质,利用数形结合思想解题是关键.16.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .【答案】3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,2233+322211+2,所以,BO=1222,CO=1322⨯=322,所以,tan∠DBC=COBO3222.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.17.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.【答案】70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.18.如图,在正方形ABCD 的外侧,作等边△ABE ,则∠BFC =_________°【答案】1【解析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC ,证,可得∠BFC=∠DFC .【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC , =45°又∵△ABE是等边三角形,∴AE=AB=BE,∠BAE=1°∴AD=AE∴∠ADE=∠AED,∠DAE=90°+1°=150°∴∠ADE=(180°-150°)÷2=15°又∵∠DAC=45°∴∠DFC=45°+15°=1°在和中∴∴∠BFC=∠DFC=1°故答案为:1.【点睛】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.三、解答题(本题包括8个小题)19.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【答案】(1)12;(2)13【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 ;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.20.今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【答案】(1)y=﹣2x+340(20≤x≤40);(2)5200【解析】试题分析:(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.考点:二次函数的应用21.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【答案】(1)13;(2)23.【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为13;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为42 63 =.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.解方程:4x2﹣2x﹣1=1.【答案】115x+=,21-5x=【分析】根据一元二次方程的解法,配方法或者公式法解答即可. 【详解】解:由题意可知:a=4,b=﹣2,c=﹣1,∴△=4+16=21,∴x=2201584±±=;【点睛】本题主要考查解一元二次方程,熟练掌握方程各种解法是解答关键.23.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C,(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【答案】(1)证明见解析;(1)BC=1.【解析】试题分析:(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(1)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.试题解析:(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(1)解:∵⊙O的半径为2,∴2,2,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC=,OB OP42=,822∴BC=1.考点:切线的判定24.计算:(1)()20136032π-⎛⎫︒-- ⎪⎝⎭; (2)解方程:2320x x -+=.【答案】(1)6;(2)x 1=1,x 2=2【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可;(2)用分解因式的方法求解即可.【详解】解:(1)原式=4331=4+3-1=6(2)将原方程因式分解可得:(x-1)(x-2)=0,即x-1=0或x-2=0解得,x=1或x=2,所以方程的解为:11x =,22x =.【点睛】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.25.如图,在平面直角坐标系中,抛物线y =ax 2+bx+c 与两坐标轴分别交于点A 、B 、C ,直线y =﹣45x+4经过点B ,与y 轴交点为D ,M (3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N 在对称轴上,且AN+DN 的值最小.求点N 的坐标.(3)在(2)的条件下,若点E 与点C 关于对称轴对称,请你画出△EMN 并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P ,使以A 、B 、N 、P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣6x+5;(2)N(3,85);(3)画图见解析,S△EMN=425;(4)存在,满足条件的点P的坐标为(3,﹣85)或(7,85)或(﹣1,85).【分析】(1)先确定出点B坐标,最后用待定系数法即可得出结论;(2)先判断出点N是直线BC与对称轴的交点,即可得出结论;(3)先求出点E坐标,最后用三角形面积公式计算即可得出结论;(4)设出点P坐标,分三种情况利用用平行四边形的两条对角线互相平分和中点坐标公式求解即可得出结论.【详解】解:(1)针对于直线y=﹣45x+4,令y=0,则0=﹣45x+4,∴x=5,∴B(5,0),∵M(3,﹣4)是抛物线的顶点,∴设抛物线的解析式为y=a(x﹣3)2﹣4,∵点B(5,0)在抛物线上,∴a(5﹣3)2﹣4=0,∴a=1,∴抛物线的解析式为y=(x﹣3)2﹣4=x2﹣6x+5;(2)由(1)知,抛物线的解析式为y=(x﹣3)2﹣4,∴抛物线的对称轴为x=3,∵点A,B关于抛物线对称轴对称,∴直线y=﹣45x+4与对称轴x=3的交点就是满足条件的点N,∴当x=3时,y=﹣45×3+4=85,∴N(3,85);(3)∵点C是抛物线y=x2﹣6x+5与y轴的交点,∴C(0,5),∵点E与点C关于对称轴x=3对称,∴E (6,5),由(2)知,N (3,85), ∵M (3,﹣4),∴MN =85﹣(﹣4)=285, ∴S △EMN =12MN•|x E ﹣x M |=12×285×3=425; (4)设P (m ,n ),∵A (1,0),B (5,0),N (3,85), 当AB 为对角线时,AB 与NP 互相平分, ∴12(1+5)=12(3+m ),12(0+0)=12(85+n ), ∴m =3,n =﹣85, ∴P (3,﹣85); 当BN 为对角线时,12(1+m )=12((3+5),12(0+n )=12(0+85), ∴m =7,n =85, ∴P (7,85); 当AN 为对角线时,12(1+3)=12(5+m ),12(0+85)=12(0+n ), ∴m =﹣1,n =85, ∴P (﹣1,85), 即:满足条件的点P 的坐标为(3,﹣85)或(7,85)或(﹣1,85). 【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积公式,对称性,平行四边形的性质,用方程的思想解决问题是解本题的关键.26.用适当的方法解下列方程:(1)x 2-6x +1=0(2)x 2-4=2x +4【答案】(1)x 1=3+,x 2=3- ;(2)x 1=-2,x 2=4【分析】(1)利用配方法进行求解一元二次方程即可;(2)根据十字相乘法进行求解一元二次方程即可.【详解】解:(1)2610x x -+=2698x x +-=,()238x -=, 解得:12322,322x x =+=-;(2)2424x x -=+2280x x --=,()()240x x +-=,解得:122,4x x =-=.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.27.如图,已知抛物线2y x 2x 3=-++.(1)用配方法将2y x 2x 3=-++化成()2y a x h k =-+的形式,并写出其顶点坐标;(2)直接写出该抛物线与x 轴的交点坐标.【答案】(1)()214y x =--+,顶点坐标为()1,4;(2)()1,0-,()3,0, 【分析】(1)利用配方法将二次函数的一般式转化为顶点式,从而求出抛物线的顶点坐标; (2)将y=0代入解析式中即可求出结论.【详解】解:(1)()222314y x x x =-++=--+,顶点坐标为()1,4;(2)将y=0代入解析式中,得2230x x -++=解得:121,3x x =-=∴抛物线与x 轴的交点坐标为()1,0-,()3,0,【点睛】此题考查的是求抛物线的顶点坐标和求抛物线与x 轴的交点坐标,掌握将二次函数的一般式转化为顶点式和一元二次方程的解法是解决此题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列是电视台的台标,属于中心对称图形的是( )A .B .C .D . 【答案】C【解析】根据中心对称图形的概念即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误.故选:C .【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.如果α、β是一元二次方程2310x x +-=的两根,则22ααβ+-的值是( ) A .3B .4C .5D .6【答案】B【解析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【详解】由韦达定理可得α+β=-3,又22ααβ+-=2α+3 α- α- β=23αααβ+-+()=1+3=4,所以答案选择B 项.【点睛】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键. 3.函数1-=x y x 中,自变量x 的取值范围是( ) A .1x ≥B .1x ≤C .0x ≠D .x ≤1或x ≠0【答案】D【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】根据题意得,10x -≥且0x ≠,解得:1x ≤且0x ≠.故选:D .【点睛】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.4.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( )A .12B .1C .5D .5【答案】B【解析】根据根与系数的关系得到x 1+x 2=-1,x 1•x 2=-1,然后把1211x x +进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x 1+x 2=-1,x 1•x 2=-1,所以1211x x +=121211x x x x +-=-=1, 故选B .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a. 5.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( )A .抛物线开口向下B .抛物线与x 轴有两个交点C .抛物线的对称轴是直线x =1D .抛物线经过点(2,3) 【答案】B【详解】A 、a=2,则抛物线y=2x 2-3的开口向上,所以A 选项错误;B 、当y=0时,2x 2-3=0,此方程有两个不相等的实数解,即抛物线与x 轴有两个交点,所以B 选项正确;C 、抛物线的对称轴为直线x=0,所以C 选项错误;D 、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以D 选项错误,故选B .6.如图,已知⊙O 的直径为4,∠ACB =45°,则AB 的长为( )A .4B .2C .2D .2【答案】D 【分析】连接OA 、OB ,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB =90°,再根据等腰直角三角形的性质即可求出AB 的长.【详解】连接OA 、OB ,如图,∵∠AOB =2∠ACB =2×45°=90°,∴△AOB 为等腰直角三角形,∴AB =2OA =22.故选:D .【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.7.下列函数属于二次函数的是( )A .y =x ﹣1x B .y =(x ﹣3)2﹣x 2 C .y =21x ﹣x D .y =2(x+1)2﹣1 【答案】D【分析】由二次函数的定义:形如()20y ax bx c a =++≠,则y 是x 的二次函数,从而可得答案.【详解】解:A .自变量x 的次数不是2,故A 错误;B .()223y x x =--整理后得到69y x =-+,是一次函数,故B 错误C .由221y x x x x-=-=-可知,自变量x 的次数不是2,故C 错误; D .()2211y x =+-是二次函数的顶点式解析式,故D 正确.故选:D .【点睛】 本题考查的是二次函数的定义,掌握二次根式的定义是解题的关键.8.下列二次函数的开口方向一定向上的是( ) A .y=-3x 2-1B .y=-13x 2+1C .y=12x 2+3D .y=-x 2-5 【答案】C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可.【详解】解: A. y=-3x 2-1中,﹣3<0, 二次函数图象的开口向下,故A 不符合题意;B. y=-13x 2+1中, -13<0, 二次函数图象的开口向下,故B 不符合题意;C. y=12x 2+3中, 12>0, 二次函数图象的开口向上,故C 符合题意; D. y=-x 2-5中, -1<0, 二次函数图象的开口向下,故D 不符合题意; 故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.9.我们定义一种新函数:形如2y ax bx c ++=(a ≠0,b 2﹣4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2﹣2x ﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当﹣1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =﹣1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4,A .4B .3C .2D .1【答案】A 【分析】由(-1,0),(3,0)和(0,3)坐标都满足函数223y x x =--,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线1x = ,②也是正确的;根据函数的图象和性质,发现当11x -≤≤或3x ≥ 时,函数值y 随x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与x 轴的两个交点,根据0y =,求出相应的的值为1x =-或3x =,因此④也是正确的;从图象上看,存在函数值大于当1x =时的223=4y x x =--,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数223y x x =--,∴①是正确的; ②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线1x =,因此②也是正确的;③根据函数的图象和性质,发现当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x 轴的两个交点,根据y =0,求出相应的x 的值为1x =-或3x =,因此④也是正确的;⑤从图象上看,存在函数值要大于当1x =时的223=4y x x =--,因此⑤是不正确的;故选A【点睛】 理解“鹊桥”函数2y ax bx c ++=的意义,掌握“鹊桥”函数与2y ax bx c ++=与二次函数2y ax bx c ++=之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数2y ax bx c ++=与x 轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.10.已知点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)在反比例函数y=-5x 的图象上,当x 1<x 2<0<x 3时,y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 1 【答案】C【分析】根据反比例函数为y=-5x,可得函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大,进而得到y 1,y 2,y 3的大小关系. 【详解】解:∵反比例函数为y=-5x , ∴函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大,又∵x 1<x 2<0<x 3,∴y 1>0,y 2>0,y 3<0,且y 1<y 2,∴y 3<y 1<y 2,故选:C .【点睛】本题主要考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.11.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m【答案】D 【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴DC CE AB AE=, 即1.50.52AB =, 解得:AB =6,故选D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 12.下列说法错误的是( )A .将数65800000用科学记数法表示为76.5810⨯B .9的平方根为3±C .无限小数是无理数D .54更大,比5更小【答案】C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:93±=±,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.2520=,因为162025<<,所以4205<<,即4255<<,故本选项正确.故选:C .【点睛】本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.二、填空题(本题包括8个小题)13.如图,将Rt ABC ∆绕直角顶点A 顺时针旋转90︒,得到AB C ''∆,连结BB ',若125∠=︒,则C ∠的度数是____.【答案】70︒【分析】先根据旋转的性质得出'',''90,'C AC B C AB CAB AB AB ∠=∠∠=∠=︒=,然后得出'45AB B ∠=︒,进而求出'AB C ∠的度数,再利用'90'C ACB AB C ∠=∠=︒-∠即可求出答案.【详解】∵Rt ABC ∆绕直角顶点A 顺时针旋转90︒,得到AB C ''∆'',''90,'C AC B C AB CAB AB AB ∴∠=∠∠=∠=︒='45AB B ∴∠=︒∵125∠=︒''1452520AB C AB B ∴∠=∠-∠=︒-︒=︒''90AB C ACB ∠+∠=︒'90'902070C ACB AB C ∴∠=∠=︒-∠=︒-︒=︒故答案为:70°.【点睛】本题主要考查旋转的性质,直角三角形两锐角互余,掌握旋转的性质是解题的关键.14.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.【答案】 (-1010,10102)【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2019的坐标.【详解】∵A 点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.15.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为______.【答案】6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案. 【详解】解:连接AD,∵⊙O的直径AB垂直于弦CD,垂足为E,∴AD=AC,∵∠B=60°,∴△ACD是等边三角形,∵AC=6,∴CD=AC=6.。
上海市金山区2018年九年级数学上学期期末质量检测试题(答案不全)

上海市金山区2018年九年级数学上学期期末质量检测(时间:100分钟,满分:150分)(2019.1)考生注意:1. 本试卷含三个大题,共25题2. 务必按答题要求在答题纸规定位置上作答,在草稿纸、本试卷上答题一律无效3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂的答题纸的相应位置上】1.下列函数是二次函数的是( ).(A) y x =; (B) 1y x =; (C) 22y x x =-+; (D) 21y x=. 2.在Rt △ABC 中,∠C=90°,那么sin ∠B 等于( ).(A)ACAB; (B)BCAB; (C)ACBC; (D)BCAC. 3.如图,已知BD 与CE 相交于点A ,ED ∥BC ,AB=8,AC=12,AD=6,那么AE 的长等于( ).(A) 4; (B) 9; (C) 12;(D) 16.4.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ).(A) a e a =; (B) e b b =; (C)1a e a =; (D) 11ab a b=.5.已知抛物线2(0)y ax bx c a =++≠如图所示,那么a 、b 、c 的取值范围是( ). (A) 000a b c <>>,,; (B)000a b c <<>,,;(C) 000a b c <><,,;(D)000a b c <<<,,.第3题图 第5题图 第6题图 6.如图,在Rt △ABC 中,∠C=90°,BC=2,∠B=60°,A 的半径为3,那么下列说法正确的是( ). (A)点B 、点C 都在A 内;(B)点C 在A 内,点B 在A 外;(C)点B 在A 内,点C 在A 外;(D)点B 、点C 都在A 外.ACBCBADE二、填空题(本大题共12 题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】7.已知二次函数()231f x x x =-+,那么()2f = _________. 8.已知抛物线2112y x =-,那么抛物线在y 轴右侧部分是 ________(填“上升的”或“下降的”). 9.已知52x y =,那么x yy+= _________. 10.已知α是锐角,1sin 2α=,那么cos α=_________. 11.一个正n 边形的中心角等于18°,那么n=_________.12.已知点P 是线段AB 上的黄金分割点,AP >BP ,AB=4,那么AP=_________.13.如图,为了测量铁塔AB 的高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=_________米.14.已知1O 、2O 的半径分别为2和5,圆心距为d ,若1O 和2O 相交,那么d 的取值范围是_________.15.如图,已知O 为△ABC 内一点,点D 、E 分别在边AB 和AC 上,且25AD AB =,DE ∥BC ,设OB b =,OC c =,那么DE =_________.(用b 、c 表示)第13题 第15题16.如图,已知1O 和2O 相交于A 、B 两点,延长连心线12O O 交2O 于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么2O 的半径等于_________.17.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,4cos =5C ∠,那么GE=__________ .18.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,在边AB 上取一点O ,使BO=BC ,以点O 为旋转中心,把△ABC 逆时针旋转90°,得到△A ′B ′C ′(点A 、B 、C 的对应点分别是点A ′、B ′、C ′),那么△ABC 与△A ′B ′C ′的重叠部分的面积是 .EDOC BABAC第16题 第17题 第18题三、解答题(19~22题,每题10分,23~24每题12分,25题14分,共78分) 19.计算:22cot30cos 45tan 60cot 45sin302sin 60︒︒-+︒-︒︒︒.20.已知二次函数245y x x =--,与y 轴的交点为P ,与x 轴交于A 、B 两点.(点B 在点A 的右侧)(1) 当y=0时,求x 的值;(2) 点M (6,m )在二次函数245y x x =--线MP 与x 轴交于点C ,求cot MCB ∠的值.20题21. 如图,已知某水库大坝的横截面是梯形ABCD ,坝顶宽AD 是6米,坝高24米,背水坡AB 的坡度为1:3,迎水坡CD 的坡度为1:2.求(1)背水坡AB 的长度. (2)坝底BC 的长度.G EDCBA1:21:3CBDA第21题图22.如图.已知AB 是O 的直径,C 为圆上一点,D 是BC 的中点,CH ⊥AB 于H ,垂足为H .联结OD 交弦BC 于E ,交CH 于F ,联结EH . (1)求证: △BHE ∽△BCO . (2)若OC=4,BH=1,求EH 的长.第22题图23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:2AM MF MH =⋅.(2)若2BC BD DM =⋅求证,∠AMB =∠ADC .第23题图24.已知抛物线2y x bx c =++经过点A (0,6),点B (1,3),直线l 1:y kx =(0k ≠),直线l 2::2y x =--,直线l 1经过抛物线2y x bx c =++的顶点P ,且l 1与l 2相交于点C ,直线l 2与x 轴、y 轴分别交于点D 、E ,若把抛物线上下平移,使抛物线的顶点在直线l 2上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线l 1上(此时抛物线的顶点记为N ).AFHMDCBA(1)求抛物线2=++的解析式.y x bx c(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求F、H的坐标(直接写出结果).Array第24题图25.已知多边形ABCDEF是⊙O的内接正六边形,联结AC、FD,点H是射线AF上的一个动点,联结CH,直线CH交射线DF于点G,作MH⊥CH交CD的延长线于点M,设⊙O的半径为r(r>0).(1)求证:四边形ACDF是矩形.(2)当CH经过点E时,⊙M与⊙O外切,求⊙M的半径(用r的代数式表示).(3)当∠HCD=α(0<α<90°),求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).第25题图 备用图参考答案一、选择题 1、C2、A3、B4、B5、D6、D二、填空题BB7、1- 8、上升的 9、7210 11、2012、2 13、14、37d <<15、2255b c -+16、1718、14425三、解答题 19、220、(1)15x =,21x =- (1)1cot 2MCB ∠=21、(1) (2)126米22、(1)证明略 (2)EH =23、(1)证明略(2)证明略 24、(1)246y x x =-+(2)相离(3)()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --25、(1)证明略(2))1r(3)2S =或2S =。
∥3套精选试卷∥2018年上海市金山区九年级上学期数学期末复习检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形; 中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 选项:是中心对称图形但不是轴对称图形,故本选项符合题意;B 选项:是中心对称图形,也是轴对称图形,故本选项不符合题意;C 选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D 选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.将抛物线21y x =+先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为( ) A .()224y x =++B .()222y x =--C .()224y x =-+D .()222y x =+- 【答案】D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为()()2222132x x y =++-+=-故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.3.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【答案】D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.4.如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()A.130°B.50°C.65°D.100°【答案】D【解析】根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选D.【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【答案】B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.6.对于函数y =1x,下列说法错误的是( ) A .它的图像分布在第一、三象限 B .它的图像与直线y =-x 无交点C .当x>0时,y 的值随x 的增大而增大D .当x<0时,y 的值随x 的增大而减小 【答案】C【解析】A. k=1>0,图象位于一、三象限,正确;B. ∵y=−x 经过二、四象限,故与反比例函数没有交点,正确;C. 当x>0时,y 的值随x 的增大而增大,错误;D. 当x<0时,y 的值随x 的增大而减小,正确,故选C.7.若将抛物线y=-12x 2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是( )A .21(3)22y x =-+-B .21(3)22y x =---C .2(3)2y x =+-D .21(3)22y x =-++ 【答案】A【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】∵ 将抛物线先向左平移3个单位,再向下平移2个单位,∴y=-12(x+3)2-2. 故答案为A.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a ,b ,c 为常数,a≠0),确定其顶点坐标(h ,k),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”. 8.如图,AB 是O 的直径,点F C 、是O 上两点,且AF FC CB ==,连接AC AF 、,过点C 作CD AF ⊥,交AF 的延长线于点D ,垂足为D ,若CD =O 的半径为( )A .33B .63C .3D .6【答案】D【分析】根据已知条件可知Rt ACD 、Rt ABC 都是含30角的直角三角形,先利用含30角的直角三角形的性质求得AC ,再结合勾股定理即可求得答案.【详解】解:连接BC 、OC ,如图:∵AF FC CB ==∴60BOC ∠=︒∴30DAC BAC ∠=∠=︒∴在Rt ACD 中,263AC CD ==∵AB 是O 的直径∴90ACB ∠=︒∴在Rt ABC 中,222BC AC AB +=,即()2222BC AC BC +=∴(()22232BC BC += ∴6BC =∴212AB BC ==∴O 的半径为162OA OB AB ===. 故选:D【点睛】本题考查了圆的一些基本性质、含30角的直角三角形的性质以及勾股定理,添加适当的辅助线可以更顺利地解决问题.9.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=3【答案】A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.10.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上B.直线y=﹣x上C.x轴上D.y轴上【答案】B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点11.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高B E D在同一条直线上).已知小明身高EF是1.6m,则楼高AB===(点,,CD m DE m BD m1.2,0.6,30为()A.20m B.21.2m C.31.2m D.31m【答案】B∽,从而得出【分析】过点C作CN⊥AB,可得四边形CDME、ACDN是矩形,即可证明CFM CANAN,进而求得AB的长.【详解】过点C 作CN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDEM 、BDCN 是矩形,∴ 1.2300.6BN ME CD m CN BD m CM DE m =======,,,∴ 1.6 1.20.4MF EF ME m =-=-=,依题意知,EF ∥AB ,∴CFM CAN ∽, ∴CM FM CN AN=,即:0.60.430AN=, ∴AN=20,20 1.221.2AB AN BN =+=+=(米), 答:楼高为21.2米.故选:B .【点睛】 本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.12.如图,在△ABC 中,EF ∥BC ,AE 1EB 2=,S 四边形BCFE =8,则S △ABC =( )A .9B .10C .12D .13【答案】A 【分析】由在△ABC 中,EF ∥BC ,即可判定△AEF ∽△ABC ,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵AE 1EB 2=, ∴AE AE 11==AB AE+EB 1+23=. 又∵EF ∥BC ,∴△AEF ∽△ABC .∴2AEF ABC S 11=S 39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.二、填空题(本题包括8个小题)13.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.【答案】0<x<1.【解析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【详解】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为0<x<1.【点睛】此题主要考查了二次函数与一次函数,正确得出两函数的交点横坐标是解题关键.14.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4 整除的概率是__________.【答案】1 5【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【详解】解:小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:21 105=.故答案为:15.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x,根据题意可列方程为______.【答案】()28100112500x +=【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:()28100112500x +=.故答案为:()28100112500x +=.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.16.某校棋艺社开展围棋比赛,共m 位学生参赛.比赛为单循环制,所有参赛学生彼此恰好比赛一场.记分规则为:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,若所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的13,则m =__________. 【答案】1【分析】设分出胜负的有x 场,平局y 场,根据所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的13列出方程与不等式,根据x ,y 为非负整数,得到一组解,根据m 为正整数,且(1)2m m x y -=+判断出最终的解.【详解】设分出胜负的有x 场,平局y 场, 由题意知,3761()3x y y x y +=⎧⎪⎨≤+⎪⎩, 解得,5217x ≥,∵x ,y 为非负整数,∴满足条件的解为:2210x y =⎧⎨=⎩,237x y =⎧⎨=⎩,244x y =⎧⎨=⎩,251x y =⎧⎨=⎩, ∵(1)2m m x y -=+, 此时使m 为正整数的解只有244x y =⎧⎨=⎩,即8m =, 故答案为:1.【点睛】本题考查了二元一次方程,一元一次不等式,一元二次方程的综合应用,本题注意隐含的条件,参赛学生,胜利的场数,平局场数都为非负整数.17.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.【答案】2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故答案为:2020.【点睛】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键. 18.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为_______. 【答案】13或24【解析】解方程x 2-4x+3=0得,x 1=1,x 2=3,①当3是直角边时,∵△ABC 最小的角为A ,∴tanA=13; ②当3是斜边时,根据勾股定理,∠A 的邻边=223122-=,∴tanA=222=; 所以tanA 的值为13或24. 三、解答题(本题包括8个小题)19.如图,在ABC ∆中,90C ∠=︒,6AC =,8BC =,点O 在AC 上,2OA =,以OA 为半径的O交AB 于点D ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)求证:直线DE 是O 的切线;(2)求线段DE 的长. 【答案】(1)见解析;(2) 4.75DE =.【分析】(1)连接OD ,利用垂直平分线的性质及等腰三角形的性质通过等量代换可得出90EDB ODA ∠+∠=︒,即90ODE ∠=︒,则OD DE ⊥,则结论可证;(2)连接OE ,设DE BE x ==,8CE x =-,利用勾股定理即可求出x 的值.【详解】(1)证明:连接OD ,∵EF 垂直平分BD , ∴EB ED =,∴B EDB ∠=∠, ∵OA OD =,∴ODA A ∠=∠, ∵90C ∠=︒,∴90A B ∠+∠=︒,∴90EDB ODA ∠+∠=︒, ∴90ODE ∠=︒, ∴OD DE ⊥,∴DE 是O 的切线. (2)解:连接OE ,OD,设DE BE x ==,8CE x =-,∵22222OE DE OD EC OC =+=+,∴22224(8)2x x +-=+,解得 4.75x =,∴ 4.75DE =.【点睛】本题主要考查切线的判定及勾股定理,掌握切线的判定方法及勾股定理是解题的关键.20.如图所示,CD 是O 的直径,AB 为弦,CD 交AB 于点E .若30BAO ∠=︒, //AO BC ,2OA =.(1)求AOD ∠的度数;(2)求CE 的长度.【答案】(1)120°;(2)1.【分析】(1)首先根据∠BAO=30°,AO ∥BC 利用两直线平行,内错角相等求得∠CBA 的度数,然后利用圆周角定理求得∠AOC 的度数,从而利用邻补角的定义求得∠AOD 的度数.(2)首先根据30BAO ∠=︒,60AOC ∠=︒求得90AEO ∠=︒,在Rt AEO ∆中,求得OE 的值,将OE,OC 的值代入CE OC OE =-即可得出.【详解】解:(1)30BAO ∠=︒,//AO BC ,30CBA ∴∠=︒,60AOC ∴∠=︒,180120AOD AOC ∴∠=︒-∠=︒.(2)30BAO ∠=︒,60AOC ∠=︒,90AEO ∴∠=︒.在Rt AEO ∆中,sin301OE OA =⋅︒=.2OC OA ==,1CE OC OE ∴=-=.【点睛】本题考查了解直角三角形及圆周角定理,构造直角三角形是解题的关键.21.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)3240y x =-+;(2)233609600w x x =-+-,5055x ;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【分析】(1)根据题意找到平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)根据题意找到平均每天销售利润W (元)与销售价x (元/箱)之间的函数关系式;(3)根据二次函数解析式求最值【详解】解:(1)由题意,得()90350y x =--,化简,得3240y x =-+.(2)由题意,得()()240324033609600w x x x x =--+=-+-,5055x . (3)233609600w x x =-+-.∵0a <,∴抛物线开口向下.当60x =时,w 有最大值.又当5055x 时,w 随x 的增大而增大,∴当55x =元时,w 的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【点睛】本题考查了二次函数的实际应用和求最值,其中:利润=(售价-进价)×销量22.某学校自主开发了A 书法、B 阅读,C 绘画,D 器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)若学生小玲计划选修两门课程,请写出她所有可能的选法;(2)若学生小强和小明各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?【答案】(1)共有6种等可能的结果数,它们是:AB 、AC 、AD 、BC 、BD 、CD ;(2)他们两人恰好选修同一门课程的概率为14. 【解析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】(1)共有6种等可能的结果数,它们是:AB 、AC 、AD 、BC 、BD 、CD ;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.23.如图,已知抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方 向 以1个单位/秒的速度向终点A 匀速运动,同时, 动点F 从A 点出发,沿着AB 方向以2个单位/ 秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形? (3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】(1)抛物线的解析式为y=﹣x 2+2x+3,直线AB 的解析式为y=﹣x+3;(2)t=15(532)7-或9(523)41-;(3)存在面积最大,最大值是278,此时点P (32,154). 【分析】(1)将A (3,0),B (0,3)两点代入y=﹣x 2+bx+c ,求出b 及c 即可得到抛物线的解析式,设直线AB 的解析式为y=kx+n ,将A 、B 两点坐标代入即可求出解析式;(2)由题意得OE=t ,2t ,AE=OA ﹣OE=3﹣t ,分两种情况:①若∠AEF=∠AOB=90°时,证明△AOB ∽△AEF得到AF AB=AE OA ,求出t 值;②若∠AFE ∠AOB=90°时,证明△AOB ∽△AFE ,得到OA AF =AB AE 求出t 的值; (3)如图,存在,连接OP ,设点P 的坐标为(x ,﹣x 2+2x+3),根据ABP OBP AOP AOB S S S S =+-,得到233(22)827ABP S x -+=-,由此得到当x=32时△ABP 的面积有最大值,最大值是278,并求出点P 的坐标.【详解】(1)∵抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点,∴9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴抛物线的解析式为y=﹣x 2+2x+3,设直线AB 的解析式为y=kx+n ,∴ 303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩, ∴直线AB 的解析式为y=﹣x+3;(2)由题意得,OE=t ,,∴AE=OA ﹣OE=3﹣t ,∵△AEF 为直角三角形,∴①若∠AEF=∠AOB=90°时,∵∠BAO=∠EAF ,∴△AOB ∽△AEF ∴AF AB =AE OA,33t -=,∴t=15(57-. ②若∠AFE ∠AOB=90°时,∵∠BAO=∠EAF ,∴△AOB ∽△AFE , ∴OA AF =AB AE, 53t=-,∴t=3)41-;综上所述,t=15(57-或3)41;(3)如图,存在,连接OP ,设点P 的坐标为(x ,﹣x 2+2x+3),∵ABP OBP AOP AOB SS S S =+-, ∴111222ABP P P S OB x OA y OA OB =⋅+⋅-⋅ =211133(2223)332x x x ++⨯+⨯-⨯⨯﹣ =23922x x -+ =23327()228x --+, ∵32a =-<0, ∴当x=32时△ABP 的面积有最大值,最大值是278, 此时点P (32,154).【点睛】此题是二次函数与一次函数的综合题,考查了待定系数法求函数解析式,相似三角形的判定及性质,函数与动点问题,函数图象与几何图形面积问题.24.已知关于x 的方程()22120mx m x m --+-=; (1)当m 为何值时,方程有两个不相等的实数根;(2)若m 为满足(1)的最小正整数,求此时方程的两个根1x ,2x .【答案】(1)14m >-且0m ≠;(2)1152x +=,2152x -=. 【分析】(1)由方程有两个不相等的实数根,可得△=b 2-4ac >0,继而求得m 的取值范围;(2)因为最小正整数为1,所以把m=1代入方程。
{3套试卷汇总}2018年上海市金山区九年级上学期数学期末达标测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若整数a使关于x的不等式组125 26 52 xxx a++⎧≤⎪⎨⎪->-⎩至少有4个整数解,且使关于x的分式方程1223axx-=+有整数解,那么所有满足条件的a的和是()A.13-B.15-C.17-D.20-【答案】A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组1252652x xx a++⎧≤⎪⎨⎪->-⎩得:225-<≤ax∵至少有4个整数解∴215-<-a,解得3a<-分式方程去分母得()1223-=+ax x解得:62xa=+∵分式方程有整数解,a为整数∴21a+=±、2±、3±、6±∴=1a、3-、0、4-、1、5-、4、8-∵632=≠-+xa,∴4a≠-又∵3a<-∴=5-a或=8-a满足条件的a的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.2.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.3.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20°B.30°C.40°D.50°【答案】A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.4.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于()A.50°B.49°C.48°D.47°【答案】A【解析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.如图,AB是⊙O的直径,CD是⊙O的弦. 若∠BAD=24°,则C的度数为()A.24°B.56°C.66°D.76°【答案】C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB 是⊙O 的直径∴90BDA ∠=︒∵ ∠BAD=24°∴180902466ABD ∠=︒-︒-︒=︒又 ∵AD AD =∴C BAD ∠=∠=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°6.下列运算正确的是( )A .x 6÷x 3=x 2B .(x 3)2=x 5C 2=±D 2=-【答案】D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A .x 6÷x 3=x 3,故本选项不合题意;B .(x 3)2=x 6,故本选项不合题意;2=,故本选项不合题意;2=-,正确,故本选项符合题意.故选:D .【点睛】本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.7x 的取值范围是( )A .0x >B .1x -C .1xD .1x ≤ 【答案】C【分析】根据二次根式有意义的条件进行求解即可.【详解】由题意得:x-1≥0,解得:x ≥1,故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.8.近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用...的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:下面有四个推断:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;③估计全校仅使用B支付的学生人数为200人;④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.其中合理推断的序号是()A.①②B.①③C.①④D.②③【答案】B【分析】先把样本中的仅使用A支付的概率,A,B两种支付方式都使用的概率分别算出,再来估计总体该项的概率逐一进行判断即可.【详解】解:∵样本中仅使用A支付的概率=1893=0.3100++,∴总体中仅使用A支付的概率为0.3. 故①正确.∵样本中两种支付都使用的概率=10053025100---=0.4∴从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.4;故②错误.估计全校仅使用B支付的学生人数为:80025100⨯ =200(人)故③正确.根据中位数的定义可知,仅用A支付和仅用B支付的中位数应在0至500之间,故④错误.故选B.【点睛】本题考查了用样本来估计总体的统计思想,理解样本中各项所占百分比与总体中各项所占百分比相同是解题的关键.9.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=512-AB,②AC=352AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个【答案】C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=51-AB,故①正确;由AC=512-AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为51-是解题的关键.10.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为()A.42°B.48°C.52°D.58°【答案】B【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=48°.【详解】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故选:B.【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.11.如果某人沿坡度为3 : 4的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m【答案】A【解析】设斜坡的铅直高度为3x ,水平距离为4x ,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x ,水平距离为4x ,由勾股定理得9x 2+16x 2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i l α==. 12.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <﹣2B .k <2C .k >2D .k <2且k ≠1【答案】D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于k 的不等式组,求出不等式组的解集即可得到k 的取值范围.【详解】根据题意得:()24441840b ac k k ∆=-=--=->,且10k -≠, 解得:2k <,且1k ≠.故选:D .【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于k 的不等式组是解决问题的关键.二、填空题(本题包括8个小题)13.如图,在矩形ABCD 中,ABC ∠的角平分线BE 与AD 交于点E ,BED ∠的角平分线EF 与DC 交于点F ,若8AB =,3DF FC =,则BC =_______.【答案】262+【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据EFD GFC △∽△ ,得出CG 与 DE 的倍数关系,并根据BG BC CG =+ 进行计算即可.【详解】延长EF 和BC 交于点G∵矩形ABCD 中,∠B 的角平分线BE 与AD 交 于点E∴ 45ABE AEB ==︒∠∠∴ 8AB AE ==∴直角三角形 ABE 中,228882BE =+= 又∵∠BED 的角平分线EF 与DC 交于点F∴ BEG DEF =∠∠∵ // AD BC∴ G DEF =∠∠∴BEG G =∠∠∴ 82BG BE ==由G DEF =∠∠ ,EFD GFC =∠∠ ,可得EFD GFC △∽△∴133CG CF CF DE DF CF === 设CG x = ,3DE x = ,则83AD x BC =+=∴BG BC CG =+∴8283x x =++解得222x =-∴()83222622BC =+-=+故答案为:2+62 .【点睛】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.14.一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m 个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为______.【答案】1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】根据题意,得:m 0.2100=, 解得:m 20=,故答案为:1. 【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比. 15.反比例函数m y x=(0m ≠)的图象如图所示,点A 为图象上的一点,过点A 作AB x ⊥轴,AC y ⊥轴,若四边形ACOB 的面积为4,则m 的值为______.【答案】4【分析】根据反比例函数的性质得出4m =,再结合图象即可得出答案.【详解】m 表示的是x 与y 的坐标形成的矩形的面积4m ∴=反比例函数m y x=(0m ≠)的图象在第一象限 0m ∴>4m ∴=故答案为:4.【点睛】本题考查了反比例函数的性质,反比例函数k y x=中,k 的绝对值表示的是x 与y 的坐标形成的矩形的面积.16.二次函数22(1)1y a x x a =+-+-的图像经过原点,则a 的值是______.【答案】1【分析】根据题意将(0,0)代入二次函数22(1)1y a x x a =+-+-,即可得出a 的值. 【详解】解:∵二次函数22(1)1y a x x a =+-+-的图象经过原点,∴21a -=0,∴a=±1,∵a+1≠0,∴a ≠-1,∴a 的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.17.写出一个对称轴是直线1x =,且经过原点的抛物线的表达式______.【答案】答案不唯一(如22y x x =-)【分析】抛物线的对称轴即为顶点横坐标的值,根据顶点式写出对称轴是直线1x =的抛物线表达式,再化为一般式,再由经过原点即为常数项c 为0,即可得到答案.【详解】解:∵对称轴是直线1x =的抛物线可为:22(1)21y x x x =-=-+又∵抛物线经过原点,即C=0,∴对称轴是直线1x =,且经过原点的抛物线的表达式可以为:22y x x =-,故本题答案为:22y x x =-(答案不唯一).【点睛】本题考查了抛物线的对称轴与抛物线解析式的关系.关键是明确对称轴的值与顶点横坐标相同.18=_____.【答案】x 1=2,x 2=﹣1【解析】解:方程两边平方得,x 2﹣x=2,整理得:x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1.经检验,x 1=2,x 2=﹣1都是原方程的解,所以方程的解是x 1=2,x 2=﹣1.故答案为:x 1=2,x 2=﹣1.三、解答题(本题包括8个小题)19.解方程:2x 2+3x ﹣1=1.【答案】34-. 【分析】找出a ,b ,c 的值,代入求根公式即可求出解.【详解】解:这里a=2,b=3,c=﹣1,∵△=9+8=17,∴ 考点:解一元二次方程-公式法.20.在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B (0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.【答案】(2)m="2,A(-3点E′的坐标是(2,2),③点E′的坐标是(67,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2 当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′ =" B E" = 2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B + B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为24y x=-+.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,241x-+=.解得3x=±∴A3②如图,连接EE′.由题设知AA′=n (0<n <2),则A′O=2-n .在Rt △A′BO 中,由A′B 2=A′O 2+BO 2,得A′B 2=(2–n)2+42=n 2-4n+3.∵△A′E′O′是△AEO 沿x 轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n .又BE=OB-OE=2.∴在Rt △BE′E 中,BE′2=E′E 2+BE 2=n 2+9,∴A′B 2+BE′2=2n 2-4n+29=2(n –2)2+4.当n=2时,A′B 2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A 作AB′⊥x 轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B ,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′, ∴''3'4AA AB A O OB ==, ∴AA′=36277⨯= ∴EE′=AA′=67, ∴点E′的坐标是(67,2). 考点:2.二次函数综合题;2.平移.【详解】21.解方程(1)2213x x +=(用配方法)(2)()()223240x x ----=(3()1013tan 3042π-⎛⎫︒+-+- ⎪⎝⎭【答案】(1)11x =,212x =;(2)11x =,26x =;(31 【分析】(1)方程整理配方后,开方即可求出解;(2)把方程左边进行因式分解,求方程的解;(3)根据二次根式、特殊角的三角函数值、0次幂、负整数指数幂的运算法则计算即可.【详解】(1)2213x x +=, 方程整理得:23122x x -=-, 配方得:23919216216x x -+=-+, 即231416x ⎛⎫-= ⎪⎝⎭, 开方得:3144x -=±, 解得:11x =,212x =; (2)()()223240x x ----=,()()21240x x -+--=,即()()160x x --=,∴10x -=或60x -=,解得:11x =, 26x =;(3()1013tan 3042π-⎛⎫︒+-+- ⎪⎝⎭()3123=⨯++-1=1=.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法以及实数的混合运算,特殊角的三角函数值,熟练掌握一元二次方程的各种解法以及熟记特殊角的三角函数值是解题的关键.22.计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.【答案】1-3【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可. 【详解】解:原式=112311322-+--=-. 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键. 23.如图,在ABC ∆中,D 、E 分别为BC 、AC 上的点.若23CE CD BC AC ==,AB =8cm ,求DE 的长.【答案】163cm 【分析】根据两边成比例且夹角相等证△CDE ∽△CAB ,由相似性质得对应边成比例求解.【详解】解:在△CDE 和△CAB 中,∵23CE CD BC AC ==,∠DCE=∠ACB , ∴△CDE ∽△CAB ,∴23DE CE AB BC , ∴283DE , ∴DE=163 . 【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.24.已知关于x 的方程()22120mx m x m --+-=. (1)当m 取何值时,方程有两个不相等的实数根;(2)若1x 、2x 为方程的两个不等实数根,且满足2212122x x x x +-=,求m 的值.【答案】(1)当14m >-且0m ≠时,方程有两个不相等的实数根;(221 【分析】(1)由方程有两个不相等的实数根,可得24b ac =-⊿>0,继而求得m 的取值范围; (2)由根与系数的关系,可得12x x +和12x x ,再根据已知得到方程并解方程即可得到答案.【详解】(1)关于x 的方程()22120mx m x m --+-= a m =,()21b m =--,2c m =-,∵方程有两个不相等的实数根,∴()()2242142b ac m m m ⎡⎤=-=----⎣⎦⊿>0, 解得:14m >-, ∵二次项系数0a ≠,∴0m ≠, ∴当14m >-且0m ≠时,方程有两个不相等的实数根; (2)∵12x x 、为方程的两个不等实数根, ∴122m 1b x x a m -+=-=,122c m x x a m-==, ∴()()222212121212322m 132m x x x x x x x x m m --⎛⎫+-=+-=-= ⎪⎝⎭,解得:11m =,21m =(不合题意,舍去),∴1m =.【点睛】本题考查了根的判别式以及根与系数的关系.注意当24b ac =-⊿>0时,方程有两个不相等的两个实数根;注意若12x x 、是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=-,12c x x a =. 25.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):(1)该校这10天用电量的众数是 度,中位数是 度;(2)估计该校这个月的用电量(用30天计算).【答案】(1)113;113;(2)3240度.【分析】(1)分别利用众数、中位数的定义求解即可;(2)根据平均数的计算方法计算出平均用电量,再乘以总用电天数即可得解.【详解】解:(1)113度出现了3此,出现的次数最多,故众数为113度;将数据按从小到大的顺序排列,共10个数据,位于第5,6的数均为113,故中位数为113度; (2)130(9093204339114240)324010⨯+++++=(度). 答:估计该校该月的用电量为3240度.【点睛】本题考查的知识点是中位数、众数的概念定义以及算数平均线的计算方法,属于基础题目,易于理解掌握. 26.(1)2y 2+4y =y+2(用因式分解法)(2)x 2﹣7x ﹣18=0(用公式法)(3)4x 2﹣8x ﹣3=0(用配方法)【答案】(1)y 1=﹣2,y 2=12;(2)x 1=9,x 2=﹣2;(3)x 1=,x 2=1. 【分析】(1)先变形为2y (y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先计算出判别式的值,然后利用求根公式法解方程;(3)先把二次项系数化为1,再两边加上一次项系数一半的平方,配方法得到(x ﹣1)2=74,然后利用直接开平方法解方程.【详解】解:(1)2y (y+2)﹣(y+2)=0,∴(y+2)(2y ﹣1)=0,∴y+2=0或2y ﹣1=0,所以y 1=﹣2,y 2=12; (2)a =1,b =﹣7,c =﹣18,∴△=(﹣7)2﹣4×(﹣18)=121,∴x =71121±⨯, ∴x 1=9,x 2=﹣2;(3)x 2﹣2x =34, ∴x 2﹣2x+1=34+1, ∴(x ﹣1)2=74,∴x ﹣1=∴x 1=,x 2=1 【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法.27.一位橄榄球选手掷球时,橄榄球从出手开始行进的高度()y m 与水平距离()x m 之间的关系如图所示,已知橄榄球在距离原点6m 时,达到最大高度7m ,橄榄球在距离原点13米处落地,请根据所给条件解决下面问题:(1)求出y 与x 之间的函数关系式;(2)求运动员出手时橄榄球的高度.【答案】(1)21(6)7,7y x =--+(2)13.7m 【分析】(1)由题意知:抛物线的顶点坐标(6,7),设二次函数的解析式为2(6)7,y a x =-+把(13,0)代入即可得到答案,(2)令0,x =求解y 的值即可.【详解】解:(1)由题意知:抛物线的顶点为:(6,7),设二次函数的解析式为2(6)7,y a x =-+把(13,0)代入2(6)7,y a x =-+解得:1,7a =- 则二次函数的解析式为:21(6)7,7y x =--+ (2)由题意可得:当0,x =21364913(06)7,7777y =--+=-+= ∴ 运动员出手时橄榄球的高度137米. 【点睛】本题主要考查了二次函数的应用,熟练掌握顶点式法求函数解析式是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc >1;②b 2﹣4ac >1;③9a ﹣3b+c=1;④若点(﹣1.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <1.其中正确的个数有( )A .2B .3C .4D .5【答案】B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-2ba =-1,a+b+c=1,∴b=2a ,c=-3a ,∵a >1,∴b >1,c <1,∴abc <1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x 轴还有另外一个交点(-3,1)∴抛物线与x 轴有两个交点,∴b 2-4ac >1,故②正确,∵抛物线与x 轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y 1),(-2,y 2)均在抛物线上,(-1.5,y 1)关于对称轴的对称点为(-1.5,y 1)(-1.5,y 1),(-2,y 2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y 1<y 2;故④错误,∵5a-2b+c=5a-4a-3a=-2a <1,故⑤正确,故选B .【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x =-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 【答案】D【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键. 3.如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A .5B .6C .2D .3 【答案】C【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,22AD DH -,∴HB=AB ﹣AH=8,在Rt △BDH 中,2285+=DH BH设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴=OAOFBD BH , ∴0885=F,∴5故选C .考点:1.切线的性质;2.菱形的性质.4.下列关于x 的方程是一元二次方程的有( )①ax 2+bx+c=0 ②x 2=0 ③21110234x x +-= ④21x x =A .②和③B .①和②C .③和④D .①和④【答案】A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax 2+bx+c=0,当a=0时,该方程不是一元二次方程;②x 2=0符合一元二次方程的定义; ③21110234x x +-=符合一元二次方程的定义;④21x x =是分式方程. 综上所述,其中一元二次方程的是②和③.故选A .【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.5.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)【答案】D【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解. 【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .6.如图,在平面直角坐标系中,直线OA 过点(4,2),则tan α的值是( )A .12B .5C .5D .2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD ⊥x 轴交OA 于点C ,交x 轴于点D ,∵在平面直角坐标系中,直线OA 过点(4,2),∴OD=4,CD=2,∴tanα=CD OD =24=12, 故选A .本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.7.在一个不透明的袋中装有50个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在0.2左右,则袋中红球大约有( )A .10个B .20个C .30个D .40个 【答案】A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】设袋中有红球x 个,由题意得0.250x 解得x =10,故选:A .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.8.已知两圆半径分别为6.5cm 和3cm ,圆心距为3.5cm ,则两圆的位置关系是( )A .相交B .外切C .内切D .内含 【答案】C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm 和3cm ,圆心距为3.5cm ,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C .【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R 和r ,且R≥r ,圆心距为d :外离d >R+r ;外切d =R+r ;相交R ﹣r <d <R+r ;内切d =R ﹣r ;内含d <R ﹣r .9.如图,在平面直角坐标系内,四边形ABCD 为菱形,点A ,B 的坐标分别为(﹣2,0),(0,﹣1),点C ,D 分别在坐标轴上,则菱形ABCD 的周长等于( )A 5B .3C .5D .20【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A,B的坐标分别为(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴AB==∴菱形ABCD的周长等于4AB=故选:C.【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.10.在平面直角坐标系中,将抛物线y=2(x﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+4【答案】A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.11.下列几何图形不是中心对称图形的是()A.平行四边形B.正五边形C.正方形D.正六边形【答案】B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A. 平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B. 正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C. 正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D. 正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.12.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(32,3),(23-,4)B.(74,72),(23-,4)C.(32,3),(12-,4)D.(74,72),(12-,4)【答案】C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,EC AEAF OF∴=,3EC,2∴=∴点C坐标1,42⎛⎫- ⎪⎝⎭,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,3OM EC 2==, ∴点B 坐标3,32⎛⎫ ⎪⎝⎭,故选C .【点睛】 本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.二、填空题(本题包括8个小题)13.用长24m 的铁丝做一个长方形框架,设长方形的长为x ,面积为y ,则y 关于x 的函数关系式为__________.【答案】12y x x =-()或212y x x =-+【分析】易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.【详解】由题意得:矩形的另一边长=24÷2−x=12−x ,则y=x(12−x)=−x 2+12x. 故答案为12y x x =-()或212y x x =-+【点睛】本题考查了二次函数的应用,掌握矩形周长与面积的关系是解题的关键.14.如图,二次函数()(202)y x x x =-≤≤的图象记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;……如此进行下去,得到一条“波浪线”.若(2020,)P m 在这条“波浪线”上,则m =____.【答案】1【分析】根据抛物线与x 轴的交点问题,得到图象C 1与x 轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C 2与x 轴交点坐标为:(2,1),(4,1),则抛物线C 2:y=(x-2)(x-4)(2≤x ≤4),于是可推出横坐标x 为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题.【详解】解:∵一段抛物线C 1:y=-x (x-2)(1≤x ≤2),∴图象C 1与x 轴交点坐标为:(1,1),(2,1),∵将C 1绕点A 1旋转181°得C 2,交x 轴于点A 2;,∴抛物线C 2:y=(x-2)(x-4)(2≤x ≤4),。
【精选3份合集】2017-2018年上海市金山区九年级上学期期末监测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若函数y =3m x -的图象在第一、三象限内,则m 的取值范围是( ) A .m >﹣3B .m <﹣3C .m >3D .m <3 【答案】C【分析】根据反比例函数的性质得m ﹣1>0,然后解不等式即可.【详解】解:根据题意得m ﹣1>0,解得m >1.故选:C .【点睛】本题主要考查的是反比例函数的性质,当k >0时,图像在第一、三象限内,根据这个性质即可解出答案. 2.关于x 的一元二次方程x 2+4x+k =0有两个相等的实数根,则k 的值为( )A .k =4B .k =﹣4C .k≥﹣4D .k≥4 【答案】A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的一元一次方程,解之即可得出结论.【详解】解:∵关于x 的一元二次方程x 2+1x+k =0有两个相等的实数根,∴△=12﹣1k =16﹣1k =0,解得:k =1.故选:A .【点睛】本题考查了根的判别式以及解一元一次方程,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.3.若32x y=,则下列等式一定成立的是( ) A .32x y =B .6xy =C .23x y =D .23y x = 【答案】D 【分析】根据比例的性质a c b d=,则ad=bc ,逐个判断可得答案. 【详解】解:由32x y=可得:2x=3y A. 32x y =,此选项不符合题意B. 6xy=,此选项不符合题意C.23xy=,则3x=2y,此选项不符合题意D.23yx=,则2x=3y,正确故选:D 【点睛】本题考查比例的性质,解题关键在于掌握a cb d=,则ad=bc.4.如图,AB是O的直径,AB=4,C为AB的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B7C.23D3+1【答案】D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为AB的三等分点,∴AC的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=1121 22OC,由勾股定理可得,3, ∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=1121 22OA=⨯=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为3+1.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.5.已知反比例函数y=kx的图象如图所示,则二次函数y=k2x2+x﹣2k的图象大致为()A.B.C.D.【答案】A【分析】先根据已知图象确定反比例函数的系数k的正负,然后再依次确定二次函数的开口方向、对称轴、与y轴的交点坐标确定出合适图象即可.【详解】解:∵反比例函数图象位于第一三象限,∴k>0,∴k2>0,﹣2k<0,∴抛物线与y轴的交点(0,-2k)在y轴负半轴,∵k 2>0,∴二次函数图象开口向上,∵对称轴为直线x =212k<0,∴对称轴在y 轴左边, 纵观各选项,只有A 选项符合.故选:A .【点睛】本题考查了二次函数和反比例函数的图象特征,根据反比例函数图象确定k 的正负、熟知二次函数的性质是解题的关键.6.抛物线y =(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(﹣1,3)C .(1,﹣3)D .(3,﹣1)【答案】A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y =(x ﹣1)2+3的顶点坐标是(1,3).故选:A .【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.7.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )A .②③B .①③④C .①②④D .①②③④ 【答案】D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.8.如图为二次函数y =ax 2+bx+c 的图象,在下列说法中①ac >0;②方程ax 2+bx+c =0的根是x 1=﹣1,x 2=3;③a+b+c <0;④当x >1时,y 随x 的增大而增大,正确的是( )A .①③B .②④C .①②④D .②③④【答案】D 【分析】①依据抛物线开口方向可确定a 的符号、与y 轴交点确定c 的符号进而确定ac 的符号;②由抛物线与x 轴交点的坐标可得出一元二次方程ax 2+bx+c=0的根;③由当x=1时y <0,可得出a+b+c <0;④观察函数图象并计算出对称轴的位置,即可得出当x >1时,y 随x 的增大而增大.【详解】①由图可知:0a >,0c <,0ac ∴<,故①错误;②由抛物线与x 轴的交点的横坐标为1-与3,∴方程20ax bx c ++=的根是11x =-,23x =,故②正确;③由图可知:1x =时,0y <,0a b c ∴++<,故③正确;④由图象可知:对称轴为:1312x -+==, 1x ∴>时,y 随着x 的增大而增大,故④正确;故选D .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.9.用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C .椭圆D .三角形【答案】B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A 可能;截面不可能是矩形,故B 符合题意;斜截且与底面不相交的截面是椭圆,故C 可能;过圆锥的顶点的截面是三角形,故D 可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.10.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠【答案】A 【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题. 11.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是BE 的中点,则下列结论:①OC ∥AE ;②EC =BC ;③∠DAE =∠ABE ;④AC ⊥OE ,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为BE的中点,即=BC CE,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为AC中点,故E不一定是AC中点,选项④错误,则结论成立的是①②③,故选:C.【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.12.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么CDAB等于()A.tanαB.sina C.cosαD.1 tan【答案】C【分析】连接BD 得到∠ADB 是直角,再利用两三角形相似对应边成比例即可求解. 【详解】连接BD,由AB 是直径得,∠ADB=90︒.∵∠C=∠A ,∠CPD=∠APB ,∴△CPD ∽△APB ,∴CD:AB=PD:PB=cosα.故选C.二、填空题(本题包括8个小题)13.如图,ABC 内接于,30,2O C AB ∠==, 则O 的半径为__________.【答案】2【分析】连接OA 、OB ,求出∠AOB=60得到△ABC 是等边三角形,即可得到半径OA=AB=2.【详解】连接OA 、OB ,∵30C ∠=,∴∠AOB=60,∵OA=OB ,∴△ABC 是等边三角形,∴OA=AB=2,故答案为:2.【点睛】此题考查圆周角定理,同弧所对的圆周角等于圆心角的一半.14.在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________.【答案】45 【分析】先根据勾股定理求的BC 的长,再根据余弦的定义即可求得结果. 【详解】由题意得224BC AB AC =-=则4cos 5BC B AB == 故答案为:45 点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.15.小明向如图所示的ABC ∆区域内投掷飞镖,阴影部分时ABC ∆的内切圆,已知15AB =,9AC =,12BC =,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.【答案】6π 【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】15AB =,9AC =,12BC =,222AB AC BC ∴=+∴ABC 是直角三角形,90C ∠=︒设圆的半径为r ,利用三角形的面积有11()22AC BC AB r AC BC ++= 即11(91215)91222r ⨯++=⨯⨯ 解得3r =∴阴影部分的面积为29r ππ=∵三角形的面积为119125422AC BC =⨯⨯= ∴飞镖落在阴影部分的概率为9546ππ= 故答案为:6π. 【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.16.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球.小明和小东同时从袋中随机各摸出1个球,并计算这两球上的数字之和,当和小于9时小明获胜,反之小东获胜.则小东获胜的概率_______. 【答案】23【分析】根据题意画出树状图,再根据概率公式即可得出答案.【详解】根据题意画图如下:可以看出所有可能结果共有12种,其中数字之和大于等于9的有8种∴P (小东获胜)=812=23故答案为:23. 【点睛】 此题主要考查概率公式的应用,解题的关键是根据题意画出树状图表示所有情况.1721x -x 的取值范围是__________.【答案】12x ≥; 【分析】根据二次根式被开方数大于等于0,列出不等式即可求出取值范围.【详解】∵二次根式有意义的条件是被开方数大于等于0∴210x -≥ 解得12x ≥ 故答案为:12x ≥. 【点睛】本题考查二次根式有意义的条件,熟练掌握被开方数大于等于0是解题的关键.18.如图,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点P 是AB 上的任意一点,作PD AC ⊥于点D ,PE CB ⊥于点E ,连结DE ,则DE 的最小值为________.【答案】4.8【分析】连接CP ,根据矩形的性质可知:DE CP =,当DE 最小时,则CP 最小,根据垂线段最短可知当CP AB ⊥时,则CP 最小,再根据三角形的面积为定值即可求出CP 的长.【详解】Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,10AB ∴=,连接CP ,PD AC ⊥于点D ,PE CB ⊥于点E , ∴四边形DPEC 是矩形,DE CP ∴=,当DE 最小时,则CP 最小,根据垂线段最短可知当CP AB ⊥时,则CP 最小, 68 4.810DE CP ⨯∴===.故答案为:4.8.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE 的最小值转化为其相等线段CP 的最小值.三、解答题(本题包括8个小题)19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.【答案】树高为5.5 米【解析】根据两角相等的两个三角形相似,可得△DEF∽△DCB ,利用相似三角形的对边成比例,可得DE EFDC CB=,代入数据计算即得BC的长,由AB=AC+BC ,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴DE EF DC CB=,∵DE=0.4m,EF=0.2m,CD=8m,∴0.40.28CB=,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.20.在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.【答案】(1)A,B5(2)1922t-≤≤;(3)点Q在以点O为圆心,4为半径的圆上;或在以点O为圆心,23【分析】(1)由题意利用“和谐三角形”以及“和谐距离”的定义进行分析求解;(2)由题意可知以BD的中点为圆心,以BD为直径作圆此时可求点E的横坐标t的取值范围;(3)根据题意△OPQ是“和谐三角形”,且“和谐距离”是2,画出图像进行分析.【详解】解:(1)由题意可知当A(2,0),B(0,4)与O构成三角形时满足圆周角定理即能与点O组成“和谐三角形”,此时“和谐距离”为5;(2)根据题意作图,以BD的中点为圆心,以BD为直径作圆,可知当E在如图位置时求点E的横坐标t的取值范围,解得点E的横坐标t的取值范围为19 22t-≤≤;(3)如图当PQ为“和谐边”时,点Q在以点O为圆心,23为半径的圆上;当OQ为“和谐边”时,点Q在以点O为圆心,4为半径的圆上.【点睛】本题考查圆的综合问题,熟练掌握圆的相关性质以及理解题干定义是解题关键.21.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.⑴a=;b=;⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?⑶由图象可知,销售单价x在时,该种商品每天的销售利润不低于16元?【答案】(1)-1,20;(2)当x=10时,该商品的销售利润最大,最大利润是25元;(3)7≤x≤13【分析】(1)利用待定系数法求二次函数解析式得出即可;(2)利用配方法求出二次函数最值即可;(3)根据题意令y=16,解方程可得x 的值,结合图象可知x 的范围.【详解】解:(1)y=ax 2+bx-1图象过点(5,0)、(7,16),∴255750,4977516,a b a b +-=⎧⎨+-=⎩解得:1,20.a b =-⎧⎨=⎩故答案为-1,20⑵∵222075(10)25y x x x =-+-=--+∴当x=10时,该商品的销售利润最大,最大利润是25元.⑶根据题意,当y=16时,得:-x 2+20x-1=16,解得:x 1=7,x 2=13,即销售单价7≤x≤13时,该种商品每天的销售利润不低于16元.【点睛】此题主要考查了二次函数的应用以及待定系数法求二次函数解析式等知识,正确利用二次函数图象是解题关键.22.2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x 元/千克,日销售量为y 千克.(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.【答案】(1)y =200﹣2x ;(2)售价是68元/千克时,日销售利润最大,最大利润是1元【分析】(1)根据售价每上涨1元,则每天少售出2千克即可列出函数关系式;(2)根据(1)所得关系式,销售利润=每千克的利润×销售量列出二次函数关系式,再求出最值即可.【详解】解:(1)根据题意,得设猪肉进价为a 元/千克,(60﹣a )×80=1600,解得a =40,y =80﹣2(x ﹣60)=200﹣2x .答:y 与x 的函数解析式为:y =200﹣2x .(2)设售价为x 元时,日销售利润为w 元,根据题意,得w =(x ﹣40)(200﹣2x )=﹣2x 2+280x ﹣8000;=﹣2(x ﹣70)2+1800∵﹣2<0,当x <70时,w 随x 的增大而增大,∵物价管理部门规定猪肉价格不高于68元/千克,∴x =68时,w 有最大值,最大值为1.答:当售价是68元/千克时,日销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.23.如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:AD AC BE BC=.【答案】见解析.【分析】根据两角相等的两个三角形相似证明△ADC ∽△BEC 即可.【详解】证明:∵AD ,BE 分别是BC ,AC 上的高∴∠D=∠E=90°又 ∠ACD=∠BCE (对顶角相等)∴△ADC ∽△BEC∴AD AC BE BC=. 【点睛】本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的关键.①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.24.已知1y -与x 成反比例,当1x =时,5y =-,求y 与x 的函数表达式.【答案】61y x=-+ 【分析】根据反比例的定义,设1k y x -=,再将1,5x y ==-代入求出k ,即可求得. 【详解】由题意设1k y x-=, 将1,5x y ==-代入得 511k --=,。
〖汇总3套试卷〗上海市金山区2018年九年级上学期数学期末教学质量检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如下图:⊙O 的直径为10,弦AB 的长为8,点P 是弦AB 上的一个动点,使线段OP 的长度为整数的点P 有( )A .3 个B .4个C .5个D .6个【答案】A【分析】当P 为AB 的中点时OP 最短,利用垂径定理得到OP 垂直于AB ,在直角三角形AOP 中,由OA 与AP 的长,利用勾股定理求出OP 的长;当P 与A 或B 重合时,OP 最长,求出OP 的范围,由OP 为整数,即可得到OP 所有可能的长.【详解】当P 为AB 的中点时,由垂径定理得OP ⊥AB ,此时OP 最短, ∵AB=8, ∴AP=BP=4,在直角三角形AOP 中,OA=5,AP=4, 根据勾股定理得OP=3,即OP 的最小值为3; 当P 与A 或B 重合时,OP 最长,此时OP=5,∴35OP ≤≤,则使线段OP 的长度为整数的点P 有3,4,5,共3个. 故选A考点:1.垂径定理;2.勾股定理2.下列是电视台的台标,属于中心对称图形的是( ) A .B .C .D .【答案】C【解析】根据中心对称图形的概念即可求解. 【详解】A 、不是中心对称图形,故此选项错误; B 、不是中心对称图形,故此选项错误; C 、是中心对称图形,故此选项正确; D 、不是中心对称图形,故此选项错误. 故选:C . 【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或0【答案】C【分析】利用因式分解法求解可得.【详解】解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)【答案】D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.5.已知关于 x 的方程20x ax b ++=有一个根是(0)b b ≠,则 a b +的值是( )A .-1B .0C .12D .1【答案】A【分析】把b 代入方程得到关于a ,b 的式子进行求解即可; 【详解】把b 代入20x ax b ++=中,得到20b ab b ++=, ∵0b ≠,∴两边同时除以b 可得10b a ++=, ∴1a b +=-. 故答案选A . 【点睛】本题主要考查了一元二次方程的解,准确利用等式的性质是解题的关键. 6.用直角三角板检查半圆形的工件,下列工件合格的是( )A .B .C .D .【答案】C【分析】根据直径所对的圆周角是直角逐一判断即可.【详解】解:A 、直角未在工件上,故该工件不是半圆,不合格,故A 错误; B 、直角边未落在工件上,故该工件不是半圆,不合格,故B 错误; C 、直角及直角边均落在工件上,故该工件是半圆,合格,故C 正确; D 、直角边未落在工件上,故该工件不是半圆,不合格,故D 错误, 故答案为: C . 【点睛】本题考查了直径所对的圆周角是直角的实际应用,熟知直径所对的圆周角是直角是解题的关键. 7.如图,空地上(空地足够大)有一段长为10m 的旧墙MN ,小敏利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长100m ,矩形菜园ABCD 的面积为900m 1.若设AD =xm ,则可列方程( )A .(60﹣2x)x =900 B .(60﹣x )x =900 C .(50﹣x )x =900 D .(40﹣x )x =900【答案】B【分析】若AD =xm ,则AB =(60−x )m ,根据矩形面积公式列出方程. 【详解】解: AD =xm ,则AB =(100+10)÷1−x =(60−x )m , 由题意,得(60−x )x =2. 故选:B . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 8.用一个圆心角为120°,半径为6cm 的扇形做成一个圆锥的侧面,这个圆锥的高为( ) A 35B .42C .33D .5【答案】B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高. 【详解】解:设此圆锥的底面半径为r ,由题意得:12062r 180ππ⨯=,解得r=2cm ,22623242-==故选:B. 【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.9.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是( ) 抽取件数(件) 50 100 150 200 500 800 1000 合格频数 4898 144193489 784981A .12B .24C .1188D .1176【答案】B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02, 出售1200件衬衣,其中次品大约有1200×0.02=24(件),故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.5 2【答案】A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴12 AB DEBC EF==,又∵AB=2,∴BC=4,∴AC=AB+BC=1.故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.已知ab cd=,则下列各式不成立的是()A.a dc b=B.a cd b=C.a c d bc b++=D.1111a dc b++=++【答案】D【分析】利用比例的性质进行逐一变形,比较是否与题目一致,即可得出答案.【详解】A:因为a dc b=所以ab=cd,故A正确;B:因为a cd b=所以ab=cd,故B正确;C:因为a c d bc b++=所以(a+c)b=(d+b)c,化简得ab =cd,故选项C正确;D:因为1111a dc b++=++所以(a+1)(b+1)=(d+1)(c+1),化简得ab+a+b=cd+d+c,故选项D错误;故答案选择D. 【点睛】本题考查的是比例的性质,难度不大,需要熟练掌握相关基础知识,重点需要熟练掌握去括号法则. 12.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是( )A .B .C .D .【答案】C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A 、由图形顺时针旋转90°,可得出;故本选项不符合题意; B 、由图形逆时针旋转90°,可得出;故本选项不符合题意; C 、不能由如图图形经过旋转或平移得到;故本选项符合题意; D 、由图形顺时针旋转180°,而得出;故本选项不符合题意; 故选:C . 【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键. 二、填空题(本题包括8个小题)13.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______【答案】①②③⑤【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图象可知:抛物线开口方向向下,则a 0<, 对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为bx 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误; ⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤. 【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.14.如图,点P 是反比例函数y =xk(k ≠0)的图象上任意一点,过点P 作PM ⊥x 轴,垂足为M .若△POM 的面积等于2,则k 的值等于_【答案】-2【分析】利用反比例函数k 的几何意义得到12|k|=1,然后根据反比例函数所在的象限确定k 的值. 【详解】∵△POM 的面积等于1,∴12|k|=1. ∵反比例函数图象过第二象限,∴k <0,∴k=﹣2. 故答案为:﹣2. 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.15.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0 )→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是__________【答案】 (5,0)【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒. 故第35秒时跳蚤所在位置的坐标是(5,0).16.已知二次函数2246y x x =-++, 用配方法化为2()y a x m k =-+的形式为_________________,这个二次函数图像的顶点坐标为____________. 【答案】22(1)8y x =--+ (1,8)【分析】先利用配方法提出二次项的系数,再加上一次项系数的一半的平方来凑完全平方式,再根据顶点式即可得到顶点的坐标.【详解】222462()218y x x x x =-++=-++- 利用完全平方公式得:22(1)8y x =--+ 由此可得顶点坐标为(1,8). 【点睛】本题考查了用配方法将二次函数的一般式转化为顶点式、以及二次函数顶点坐标,熟练运用配方法是解题关键.17.如图,若直线L 与x 轴、y 轴分别交于点A 、B ,并且4OB =,30ABO =∠,一个半径为1的O ,圆心C 从点(0,1)开始沿y 轴向下运动,当C 与直线L 相切时,C 运动的距离是__________.【答案】3或1【解析】分圆运动到第一次与AB 相切,继续运算到第二次与AB 相切两种情况,画出图形进行求解即可得. 【详解】设第一次相切的切点为 E ,第二次相切的切点为 F ,连接EC ′,FC ″, 在 Rt△BEC ′中,∠ABC =30°,EC ′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为 3 或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.18.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.【答案】1 2【详解】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,∴落在白色扇形部分的概率为:48=12.故答案为12.考点:几何概率三、解答题(本题包括8个小题)19.如图,AB是O的直径,C点在O上,AD平分角BAC交O于D,过D作直线AC的垂线,交AC的延长线于E,连接,BD CD.(1)求证:BD CD =; (2)求证:直线DE 是O 的切线;(3)若3,4==DE AB ,求AD 的长.【答案】(1)见解析;(2)见解析;(3)23AD =.【分析】(1)根据在同圆中,相等的圆周角所对的弦也相等即可证明;(2)连接半径OD ,根据等边对等角和等量代换即可证出∠ODE=90°,根据切线的判定定理即可得出结论;(3)作DF AB ⊥于F ,根据角平分线的性质可得3==DF DE ,然后利用勾股定理依次求出OF 和AD 即可.【详解】证明:(1)∵在O 中,AD 平分角BAC ∠,∴CAD BAD ∠=∠, ∴BD CD =;(2)如图,连接半径OD ,有OD OA =,∴OAD ODA ∠=∠, ∵DE AC ⊥于E , ∴90EAD ADE ∠+∠=︒, 由(1)知EAD BAD ∠=∠, ∴90BAD ADE ∠+∠=︒, 即90ODA ADE ∠+∠=︒, ∴∠ODE=90° ∴DE 是O 的切线.(3)如图,连接OD ,作DF AB ⊥于F ,则3==DF DE 2OD =,在Rt ODF ∆中,221,OF OD DF =-=∴3AF AO OF =+=在Rt ADF ∆中,2223AD AF DE =+=【点睛】此题考查的是圆的基本性质、切线的判定、角平分线的性质和勾股定理,掌握在同圆中,相等的圆周角所对的弦也相等、切线的判定定理、角平分线的性质和用勾股定理解直角三角形是解决此题的关键. 20.求值:12sin 60cos 4522︒⨯︒+2sin30°-tan60°- tan 45° 3【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可. 解:原式=1322123122222⨯⨯+⨯- 31318=+ 732=1673-= 21.定义:有一组邻边相等的凸四边形叫做“准菱形”,利用该定义完成以下各题:(1)理解:如图1,在四边形ABCD 中,若__________(填一种情况),则四边形ABCD 是“准菱形”; (2)应用:证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明) (3)拓展:如图2,在Rt △ABC 中,∠ABC=90°,AB=2,BC=1,将Rt △ABC 沿∠ABC 的平分线BP 方向平移得到△DEF ,连接AD ,BF ,若平移后的四边形ABFD 是“准菱形”,求线段BE 的长.【答案】 (1)答案不唯一,如AB=BC.(2)见解析;(3) BE=2或5或2或1422.【解析】整体分析:(1)根据“准菱形”的定义解答,答案不唯一;(2)对角线相等且互相平分的四边形是矩形,矩形的邻边相等时即是正方形;(3)根据平移的性质和“准菱形”的定义,分四种情况画出图形,结合勾股定理求解. 解:(1)答案不唯一,如AB=BC.(2)已知:四边形ABCD是“准菱形”,AB=BC,对角线AC,BO交于点O,且AC=BD,OA=OC,OB=OD.求证:四边形ABCD是正方形.证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.∵AC=BD,∴平行四边形ABCD是矩形.∵四边形ABCD是“准菱形”,AB=BC,∴四边形ABCD是正方形.(3)由平移得BE=AD,DE=AB=2,EF=BC=1,DF=AC=5.由“准菱形”的定义有四种情况:①如图1,当AD=AB时,BE=AD=AB=2.②如图2,当AD=DF时,BE=AD=DF=5.③如图3,当BF=DF5FE交AB于点H,则FH⊥AB.∵BE平分∠ABC,∴∠ABE=12∠ABC=45°.∴∠BEH=∠ABE=45°.∴BE2BH.设EH =BH =x ,则FH =x +1,BE =2x. ∵在Rt △BFH 中,BH 2+FH 2=BF 2, ∴x 2+(x +1)2=(5)2,解得x 1=1,x 2=-2(不合题意,舍去), ∴BE =2x =2.④如图4,当BF =AB =2时,与③)同理得:BH 2+FH 2=BF 2.设EH =BH =x ,则x 2+(x +1)2=22,解得x 1=172-+,x 2=172--(不合题意,舍去), ∴BE =2x =1422-.综上所述,BE=2或5或2或142-. 22.如图,在△ABC 中,D 为BC 边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC 的长【答案】6AC =【分析】根据相似三角形的判定定理可得△CAD ∽△CBA ,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD +BD=6∵∠CAD=∠B ,∠C=∠C∴△CAD ∽△CBA∴AC DC BC AC= ∴26424AC BC CD =•=⨯=解得:26AC =或26-(舍去) 即26AC =.【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.【答案】(1)13(2)12 【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【详解】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=13; 故答案为:13 (2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率=61122=. 【点睛】本题考查1、列表法与树状图法;2、概率公式,难度不大,掌握公式正确计算是解题关键.24.已知双曲线m y (m 0)x =≠经过点B (2,1). (1)求双曲线的解析式;(2)若点()111,A x y 与点()222,A x y 都在双曲线m y (m 0)x =≠上,且120x x <<,直接写出1y 、2y 的大小关系.【答案】(1)2y x=;(2)12y y > 【分析】(1)把点B 的坐标代入m y x =可求得函数的解析式; (2)根据反比例函数1y x=,可知函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,进而得到1y ,2y 的大小关系.【详解】解:(1)将2B (,1)代入m y x =,得2m =,则双曲线的解析式为2y x = (2)∵反比例函数2y x=, ∴函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,又∵120x x <<∴12y y >故答案为:.12y y >.【点睛】本题考查了待定系数法求函数解析式、反比例函数的增减性,利用函数的性质比较函数值的大小,解题的关键是明确题意,掌握待定系数法求函数解析式、能利用反比例函数的性质解答.25.黄山景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件.物价部门规定:销售单价不低于6元,但不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件).(1)直接写出y 与x 的函数关系式.(2)求日销售利润w (元)与销售单价x (元)的函数关系式.并求当x 为何值时,日销售利润最大,最大利润是多少?【答案】(1)10280y x =-+;(2)()210171210w x =--+,x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,20010(8)10280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()2(6)(10280)10171210w x x x =--+=--+ 100,612x -<≤≤∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960 元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.26.如图,在正方形网格上有ABC 以及一条线段DE .请你以DE 为一条边.以正方形网格的格点为顶点画一个DEF ,使得ABC 与DEF 相似,并求出这两个三角形的相似比.【答案】图见解析,ABC 与DEF 的相似比是12. 【分析】可先选定BC 与DE 为对应边,对应边之比为1:2,据此来选定点F 的位置,相似比亦可得.【详解】解:如图,ABC 与DEF 相似.理由如下:由勾股定理可求得,2AB =,BC=2, 10AC =;22DF = ,DE=4,210EF =, ∴12AB BC AC DF DE EF ===, ∴ABC ∽DEF ,相似比是12. 【点睛】此题主要考查了相似三角形的判定与性质,利用网格得出三角形各边长度是解题关键.27.如图,在Rt △ABC 中,∠B=90°,∠A 的平分线交BC 于D ,E 为AB 上一点,DE=DC ,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【答案】(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知x ,y 满足2254440-+++=x x xy y ,则x y 的值是( ).A .16B .116C .8D .18【答案】A【分析】先把等式左边分组因式分解,化成非负数之和等于0形式,求出x,y 即可.【详解】由2254440-+++=x x xy y 得 ()()22244440xy y x x x +++-+=()()22220x x y +++=所以2x y +=0,2x +=0所以x=-2,y=-4所以x y =(-4)-2=16故选:A【点睛】考核知识点:因式分解运用.灵活拆项因式分解是关键.2.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )A .12B .13C .23D .14【答案】D【解析】试题分析:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m ,最后计算概率.同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=1÷4=14. 考点:概率的计算.3.如图,在线段AB 上有一点C,在AB 的同侧作等腰△ACD 和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD 与线段AE,线段CE 分别交于点F,G.对于下列结论:①△DCG ∽△BEG ;②△ACE ∽△DCB ;③GF·GB=GC·GE ;④若∠DAC=∠CEB=90°,则2AD 2=DF·DG.其中正确的是( )A.①②③④B.①②③C.①③④D.①②【答案】A【解析】利用三角形的内角和定理及两组角分别相等证明①正确;根据两组边成比例夹角相等判断②正确;利用③的相似三角形证得∠AEC=∠DBC,又对顶角相等,证得③正确;根据△ACE∽△DCB证得F、E、B、C 四点共圆,由此推出△DCF∽△DGC,列比例线段即可证得④正确.【详解】①正确;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180︒-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正确;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵AC DC EC BC=,∴△ACE∽△DCB;③正确;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正确;如图,连接CF, 由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四点共圆,∴∠CFB=∠CEB=90︒,∵∠ACD=∠ECB=45︒,∴∠DCE=90︒,∴△DCF∽△DGC∴DF DC DC DG,∴2DC DF DG,∵2DC AD,∴2AD2=DF·DG.故选:A.【点睛】此题考查相似三角形的判定及性质,等腰三角形的性质,③的证明可通过②的相似推出所需要的条件继而得到证明;④是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到∠CFB=∠CEB=90 是解本题关键.4.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x …﹣3 ﹣1 ﹣1 0 1 1 3 4 …y …11 5 0 ﹣3 ﹣4 ﹣3 0 5 …给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5.下列图形的主视图与左视图不相同的是( )A .B .C .D .【答案】D【解析】确定各个选项的主视图和左视图,即可解决问题. 【详解】A 选项,主视图:圆;左视图:圆;不符合题意; B 选项,主视图:矩形;左视图:矩形;不符合题意; C 选项,主视图:三角形;左视图:三角形;不符合题意; D 选项,主视图:矩形;左视图:三角形;符合题意; 故选D 【点睛】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键. 6.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s D .5 m/s【答案】C【解析】当y=5时,则21520x =,解之得10x =(负值舍去),故选C 7.某商品先涨价后降价,销售单价由原来100元最后调整到96元,涨价和降价的百分率都为x .根据题意可列方程为( ) A .()()1001196x x +-= B .()2100 196x += C .()()9611 100x x +-= D .()2961 100x +=【答案】A【分析】涨价和降价的百分率都为x ,根据增长率的定义即可列出方程. 【详解】涨价和降价的百分率都为r .根据题意可列方程()()1001196x x +-= 故选A . 【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列出方程.8.将一元二次方程2473x x +=化成一般式后,二次项系数和一次项系数分别为( ) A .4,3 B .4,7C .4,-3D .24 3x x【答案】C【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:2473x x +=化成一元二次方程一般形式是4x 2-1x+7=0,则它的二次项系数是4,一次项系数是-1. 故选:C . 【点睛】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 9.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A .抛一枚硬币,正面朝上的概率B .掷一枚正六面体的骰子,出现1点的概率C .转动如图所示的转盘,转到数字为奇数的概率D .从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率 【答案】D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A 、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意; B 、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意; C 、转动如图所示的转盘,转到数字为奇数的概率为23,故此选项不符合题意;D 、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率为13,故此选项符合题意.故选:D . 【点睛】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键. 10.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .32【答案】C【解析】根据∠DBC=∠A ,∠C=∠C ,判定△BCD ∽△ACB ,66=代入求值即可.【详解】∵∠DBC=∠A ,∠C=∠C , ∴△BCD ∽△ACB , ∴CD BCBC AC=, 636= ∴CD=2. 故选:C. 【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键. 11.方程x 2-2x=0的根是( ) A .x 1=x 2=0 B .x 1=x 2=2 C .x 1=0,x 2=2 D .x 1=0,x 2=-2 【答案】C【解析】根据因式分解法解一元二次方程的方法,提取公因式x 可得x (x-2)=0,然后按照ab=0的形式的方程解法,可得x=0或x-2=0,解得x 1=0,x 2=2. 故选C.点睛:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ). A .中国女排一定会夺冠B .中国女排一定不会夺冠C .中国女排夺冠的可能性比较大D .中国女排夺冠的可能性比较小【答案】C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%, ∴中国女排夺冠的可能性比较大 故选C. 【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义. 二、填空题(本题包括8个小题)13.某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x ,则满足x 的方程是______.【答案】2300(1)260x -=.【分析】根据降价后的售价=降价前的售价×(1-平均每次降价的百分率),可得降价一次后的售价是300(1)x -,降价一次后的售价是2300(1)x -,再根据经过连续两次降价后售价为260元即得方程.【详解】解:由题意可列方程为2300(1)260x -= 故答案为:2300(1)260x -=. 【点睛】本题考查一元二次方程的实际应用,增长率问题,解题的关键是读懂题意,找到等量关系,正确列出方程,要注意增长的基础.14.如图,⊙A 过点O(0,0),C(3,0),D(0,1),点B 是x 轴下方⊙A 上的一点,连接BO 、BD ,则∠OBD 的度数是_____.【答案】30°【解析】根据点的坐标得到OD ,OC 的长度,利用勾股定理求出CD 的长度,由此求出∠OCD 的度数;由于∠OBD 和∠OCD 是弧OD 所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD 的度数. 【详解】连接CD.。
上海市金山区2018届九年级数学上学期期末质量检测试题沪科版

9.如果两个相似三角形对应边上的高的比为 1 : 4,那么这两个三角形的周长比是_▲上海市金山区2018届九年级数学上学期期末质量检测试题(满分150分,考试时间100分钟)(2018. 1)、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应 位置上•】1.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是(▲)木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是 (▲)(B )40厘米、80厘米;(C ) 80厘米、120厘米;(D )90厘米、120厘米.6.在Rt △ ABC 中,/ ACB=0° , AC=2, BC=9, D 是AB 的中点,6是厶ABC 的重心,如果以点 D 为圆心DG 为半径的圆和以点 C 为圆心半径为r 的圆相交,那么r 的取值范围是( ▲)二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】&计算: 2sin 245° -tan45° = ▲ .7.计算:a 2a +b (C)—bAC =b , 4 a b 5(D )3 b 3AB=c ,下列各式中正确的是(▲)(A ) a 二 b cosA ;(B) c 二 a sinA(C ) a cot A 二 b ; (D) a tanA 二b .23.将抛物线y = —(x +1) +4平移,使平移后所得抛物线经过原点,那么平移的过程为(▲)(A )向下平移3个单位;(B ) 向上平移 3个单位;(C )向左平移4个单位;(D ) 向右平移 4个单位.4.如图 1,梯形 ABCDK AD// BC AB=DC DE// ABF 列各式正确的是(▲) (A ) AB =DC ;T T(C ) AB 二 ED ;(B )(D )5.—个三角形框架模型的三边长分别为 20厘米、30厘米、 40厘米,木工要以一根长为 60厘米的(A ) r :: 5 ;(B ) r 5;(C ) r ::10 ; (D) 5 :: r :: 10 ._(a _2b)二_▲图118•如图4,在矩形ABCD 中 E 是AD 上一点,把△ ABE 沿直线BE 翻折,点A 正好落在B C 边上的点F 处,如果四边形 CDEF 和矩形ABCDf 似,那么四边形 CDEF 和矩形ABC 爾积比是 ▲三、解答题:(本大题共7题,满分78 分)19. (本题满分10分)sin30 tan60 COS3° ®45cos60°20. (本题满分10分)如图,已知平行四边形 ABCD 点 M N 分别是边DC BC 的中点,设AB=a , AD=b ,II求向量M N 关于a 、b 的分解式.21 .(本题满分10分)110.在 Rt △ ABC 中,/ C=90° , sin A =_,那么 cos A= ▲2 ----------------------11. 已知一个斜坡的坡度i =1:J3,那么该斜坡的坡角为112. 如图2, E 是口ABC [的边AD 上一点,AE== ED2CE 与BD 相交于点F , BD=0,那么DF= ▲.13•抛物线y =2x 2 -1的顶点坐标是▲214•点(-1 , a )、(-2 , b )是抛物线y=x +2x —3上的两个点,那么a 和b 的大小关系是a ▲ b (填“ >”或“或“=”).15.如图 3, AB 是O O 的弦,/ OAB=0°. OCLOA 交 AB 于点 C,若OC=,贝U AB 的长等于 ▲.16•如果一个正多边形每一个内角都等于 144。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年金山区第一学期初三期末质量检测数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1. 已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A. ;B. ;C. ;D. .【答案】B【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.2. 在Rt△ABC中,,,,,下列各式中正确的是()A. ;B. ;C. ;D. .【答案】C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.3. 将抛物线平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.【答案】A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.4. 如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A. ;B. ;C. ;D. .【答案】D【解析】∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴,,∴选项A、C错误,选项D正确,选项B错误,故选D.5. 一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A. 30厘米、45厘米;B. 40厘米、80厘米;C. 80厘米、120厘米;D. 90厘米、120厘米【答案】C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.6. 在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG 为半径的圆和以点C为圆心半径为的圆相交,那么的取值范围是()A. ;B. ;C. ;D. .【答案】D【解析】延长CD交⊙D于点E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中点,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C与⊙D相交,⊙C的半径为r,∴ ,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7. 计算:_________.【答案】【解析】,故答案为:.8. 计算:_________.【答案】0【解析】原式==0,故答案为:0.9. 如果两个相似三角形对应边上的高的比为1∶4,那么这两个三角形的周长比是_________.【答案】1:4【解析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.10. 在Rt△ABC中,∠C=90°,sinA=,那么cosA=_________.【答案】【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案为:.11. 已知一个斜坡的坡度,那么该斜坡的坡角为_________.【答案】30°【解析】设坡角为α,则有tanα=,∴α=30°,故答案为:30°.【点睛】本题考查了坡度的定义,考查了特殊角的三角函数值,考查了三角函数值在直角三角形中的应用,熟练掌握相关知识是解题的关键.12. 如图,E是□ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=_________.【答案】4【解析】∵AE=ED,AE+ED=AD,∴ED=AD,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案为:4.13. 抛物线的顶点坐标是_________.【答案】(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴抛物线的顶点坐标是(0,-1),故答案为:(0,-1).14. 点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_________ b(填“>”或“<”或“=”).【答案】<【解析】把点(-1,a)、(-2,b)分别代入抛物线,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案为:<.15. 如图3,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于_________.【答案】18【解析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为:18.16. 如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是_________.【答案】10【解析】设这个多边形的边数为n,则有180(n-2)=144n,解得:n=10,故答案为:10.17. 两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_________.【答案】4或8【解析】∵两圆内切,一个圆的半径是6,圆心距是2,∴另一个圆的半径=6-2=4;或另一个圆的半径=6+2=8,故答案为:4或8.【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.18. 如图4,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是_________.【答案】【解析】由题意易得四边形ABFE是正方形,设AB=1,CF=x,则有BC=x+1,CD=1,∵四边形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案为:............................三、解答题:(本大题共7题,满分78分)19. 计算:.【答案】【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.20. 如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设,,求向量关于、的分解式.【答案】答案见解析【解析】试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.试题解析:连接BD,∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,∴MN∥BD,MN= BD,∵,∴ .21. 如图,已知AB是⊙O的弦,C是的中点,AB=8,AC=,求⊙O半径的长.【答案】5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.22. 如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)【答案】6000【解析】试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CD⊥AB于点D,由已知可得:∠ACD=32°,∠BCD =37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=6000,答:小岛到海岸线的距离是6000米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.23. 如图,已知在Rt△ABC中,∠ACB=90°,AC > BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE·AC=AG·AD,求证:EG·CF=ED·DF.【答案】证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得,由(1)可得,从而得,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.24. 平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.【答案】(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B 的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B关于x=1对称,∴B(-1,0),∵A、B在抛物线y=ax2+bx+3上,∴,∴,∴抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,∴顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO= =;(3)Q在C点的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).25. 如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC 的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.【答案】(1)12(2)y=(0<x<5)(3)或【解析】试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH 的长,BC的长,再利用三角形的面积公式即可得;(2)先证明△BPD∽△BAC,得到=,再根据,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2B H=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,过C作CE⊥AB交BA延长线于E,可得cos∠CAE=,①当∠ADP=90°时,cos∠APD=cos∠CAE=,即,解得x=;②当∠PAD=90°时,,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.。