泰州中学附中2015-2016学年七年级下期末数学试卷含答案

合集下载

2015-2016学年度下学期七年级期末考试数学试卷及参考答案

2015-2016学年度下学期七年级期末考试数学试卷及参考答案

2015-2016学年度七年级下学期期末考试试卷数 学一、精心选一选,旗开得胜 (每小题3分, 满分30分,请将正确答案的序号填写在下表内)1. 如果向北走2米记作+2米,那么-3米表示A. 向东走3米B.向南走3米C.向西走3米D.向北走3米 2.下列说法中正确的是A. -a 一定是负数B. |a |一定是正数C. |a |一定不是负数D. |a |一定是负数。

3.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是A.6105.2⨯千克 B.5105.2⨯千克 C.61046.2⨯千克 D.51046.2⨯千克4.电影院第一排有m 个座位,后面每一排比前一排多2个座位,则第n 排的座位数有 A. m+2n, B. mn+2 C. m+(n+2) D. m+2(n-1) 5. 已知多项式ax bx +合并的结果为0,则下列说法正确的是A. a=b=0B.a=b=x=0C.a -b=0D.a+b=0 6.下列计算正确的是A.224a b ab +=B.2232x x -= C.550mn nm -= D.2a a a += 7.如图1,将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图18. 若式子x -1的值是-2,则x 的值是A 、-1B 、-2C 、-3D 、-4 9. 若a <0时,a 和-a 的大小关系是 A .a >-aB .a <-aC .a =-aD .都有可能10. 某班的5位同学在向“希望工程”捐款活动中,捐款如下(单位:元):4,3,8,2,8,那么这组数据的众数、中位数、平均数分别为A .8,8,5B .5,8,5C .4,4,5D .8,4,5二、耐心填一填,一锤定音 (每小题3分, 满分18分)11. -3.5的相反数是 .12.下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .13. 一个正多面体有六个面,则该多面体有 条棱. 14.欢欢将自己的零花钱存入银行,一年后共取得102元,已知年利 率为2%,则欢欢存入银行的本金是 元. 15. 比较大小: 34-56-.(填“<”、“>”或“=”) 16. 小明家上个月支出共计800元,各项支出如图2所示,其中用于教育上的支出是 元.三、细心想一想,慧眼识金 (每小题6分, 满分24分17. 计算:[]22)32(95542)3(6)2(⨯÷-÷⨯--+-18.求不等式1223++x >39+x 的最小整数解19. 有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中12x =,1y =-”.甲同学把“12x =”错抄成“12x =-”,但他计算的最后结果,与其他同学的结果都一样.试说明理由,并求出这个结果.20. 马小哈在解一元一次方程“⊙329x x -=+”时,一不小心将墨水泼在作业本上了,其中未知数x 前的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“∴原方程的解为2x =-”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?四、用心画一画,马到成功 (每小题4分,满分8分)21、画出如下图3中每个木杆在灯光下的影子。

15-16第二学期期末七年级数学答案

15-16第二学期期末七年级数学答案

2015-2016学年第二学期期末七年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)16.6 17.105° (17小题有无度数均不扣分)18.14 19.4 20.(14,2) 注:不加括号不能得分三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分) 解:(1)①6 ②﹣2 (①②两个小题,结果不正确不能得分) (2)解:由②得y=6﹣x ,代入①得2x ﹣3(6﹣x )=2,解得x=4.------------------2分 把x=4代入②,得y=2. ∴原方程组的解为.-------------------------------------------------------------4分(3)解:,由①得:x >﹣2,-----------------------------------------------------1分 由②得:x ≤3,---------------------------------------------------------2分 ∴不等式组的解集是:﹣2<x ≤3.-----------------------------4分 (其他解法参照此评分标准酌情给分) 22.(本题满分8分) 解:(1)如图所示;------------------------3分(2)由图可知,A ′(2,3)、B ′(1,0)、C ′(5,1);--6分(3)S △A ′B ′C ′=3×4﹣×1×3﹣×1×4﹣×2×3 =12﹣﹣2﹣3=.---------------------------------8分23.(本题满分8分)解:∵AB ⊥BF ,CD ⊥BF , ∴∠B=∠CDF=90°,∴AB ∥CD ,---------------------------------3分 ∵∠1=∠2,∴AB ∥EF ,----------------------------------6分 ∴CD ∥EF .----------------------------------8分 (其他解法参照此评分标准酌情给分)(第22题图)(第23题图)2015-2016学年第二学期期末七年级数学答案 第2页(共2页)24.(本题满分8分) 解:(1)4,6;------------------------2分(2)24, ------------------------------------3分120°,-----------------------------------4分 补图----------------------------------------6分 (3)32÷80×1000=400答:今年参加航模比赛的获奖人数约是400人. -------------------------------------------------8分25.(本题满分10分)解:设后半小时速度为xkm/h ,根据题意得:--------------------------------1分50+0.5x ≥120, --------------------------------------------------------6分解得:x ≥140.---------------------------------------------------------------------- 9分 答:后半小时速度至少为140km/h 才能保证按时到达.----------------- 10分 (其他解法参照此评分标准酌情给分。

泰州市初一下学期数学期末试卷带答案

泰州市初一下学期数学期末试卷带答案

泰州市初一下学期数学期末试卷带答案一、选择题1.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯4.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 5.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=06.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .7.下列运算正确的是( ) A .a 2+a 2=a 4 B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.计算28+(-2)8所得的结果是( )A .0B .216C .48D .299.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______13.等式01a =成立的条件是________.14.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.15.如果9-mx +x 2是一个完全平方式,则m 的值为__________.16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.17.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.20.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 三、解答题21.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.24.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.25.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.26.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.27.解下列方程组:(1)32316x yx y-=⎧⎨+=⎩(2)234229x y zx y z⎧==⎪⎨⎪-+=-⎩28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A、错误.由∠1=∠4应该推出AB∥CD.B、错误.由∠2=∠3,应该推出BC//AD.C、正确.D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,故选:C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解3.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110 ;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.9.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.14.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.16.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 18.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.20.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a -b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a 2-b 2=(a+b)(a-b),a 2﹣b 2=﹣1,a+b=12, ∴a-b=-1÷12=-2, 故答案为-2.三、解答题21.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.22.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB ,过点C 作AB 延长线的垂线段;(3)过点A 作BC 的平行线,这条平行线上的格点数(异于点A )即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.26.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.27.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A 类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B 类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B 种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。

学15—16学年下学期七年级期末考试数学试题(附答案)

学15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

泰州中学附中2016年七年级下第一次月考数学试卷含答案解析

泰州中学附中2016年七年级下第一次月考数学试卷含答案解析

2015-2016学年江苏省泰州中学附中七年级(下)第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列说法中,不正确的是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线被第三条直线所截,同旁内角互补D.同旁内角互补,两直线平行2.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.a<b<d<c3.多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定4.下列各组长度的3条线段,不能构成三角形的是()A.6cm、5cm、10cm B.5cm、4cm、9cm C.4cm、6cm、9cm D.2cm、3cm、4cm 5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠26.下列各式(1)b5•b5=2b5(2)(﹣2a2)2=﹣4a4(3)(a n﹣1)3=a3n﹣1(4)2m+3n=6m+n(5)(a﹣b)5(b﹣a)4=(a﹣b)20(6)﹣a3•(﹣a)5=a8其中计算错误的有()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题3分,共30分)7.一个多边形的每一个内角都是140°,则这个多边形是边形.8.已知a m=2,a n=5,则a m+n=.9.若27x=312,则x=.10.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是毫米.11.三角形的三边长为3,a,7,如果这个三角形中有两条边相等,那么它的周长是.12.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC 的面积为20cm2,则△BEF的面积是cm2.13.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需个五边形.14.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=56°,则∠2﹣∠1=.15.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是.三、解答题(本大题共10小题,共102分)17.计算题:(1)(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)()2008×()2009.18.先化简,再求值:a 3•(﹣b 3)+(﹣ab 2)3,其中a=,b=4.19.已知:5a =4,5b =6,5c =9,(1)求52a+c ﹣b 的值;(2)试说明:2b=a+c .20.如图,平行光线AB 与DE 射向同一平面镜后被反射,此时∠1=∠2,∠3=∠4,那么反射光线BC 与EF 平行吗?说明理由.21.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.试根据以上材料探索使等式(2x+3)x+2015=1成立的x 的值.22.如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1+∠2=90°.求证: (1)AB ∥CD ;(2)∠2+∠3=90°.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.(1)在给定方格纸中画出平移后的△A ′B ′C ′;(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)线段AA ′与线段BB ′的关系是: ;(4)求△A ′B ′C ′的面积.24.四边形ABCD 中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C ,试求出∠C 的度数;(2)如图2,若∠ABC 的角平分线BE 交DC 于点E ,且BE ∥AD ,试求出∠C 的度数; (3)如图3,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.25.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.26.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.2015-2016学年江苏省泰州中学附中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.下列说法中,不正确的是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线被第三条直线所截,同旁内角互补D.同旁内角互补,两直线平行【考点】平行线的判定与性质.【分析】利用平行线的判定与性质判断,即可得到不正确的选项.【解答】解:A、同位角相等,两直线平行,本选项正确;B、两直线平行,内错角相等,本选项正确;C、两条平行线被第三条直线所截,同旁内角互补,本选项错误;D、同旁内角互补,两直线平行,本选项正确,故选C2.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.a<b<d<c【考点】实数大小比较;零指数幂;负整数指数幂.【分析】首先根据有理数的乘方、负整数指数幂、零指数幂的意义化简a、b、c、d的值,然后比较大小.【解答】解:∵a=﹣0.09,b=﹣,c=9,d=1,∴c>d>a>b,故选B.3.多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定【考点】多边形内角与外角.【分析】任意多边形的外角和都是360度,依此可得答案.【解答】解:多边形的边数增加1,它的外角和还是360°.故选:A.4.下列各组长度的3条线段,不能构成三角形的是()A.6cm、5cm、10cm B.5cm、4cm、9cm C.4cm、6cm、9cm D.2cm、3cm、4cm 【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:A、6+5>10,则能构成三角形;B、5+4=9,则不能构成三角形;C、4+6>9,则能构成三角形;D、2+3>4,则能构成三角形;故选:B.5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠2【考点】平行线的判定.【分析】根据内错角相等,两直线平行可分析出∠1=∠2可判定AB∥CD.【解答】解:A、∠3=∠4可判定BD∥AC,故此选项不合题意;B、∠D=∠DCE可判定BD∥AC,故此选项不合题意;C、∠1=∠2可判定AB∥CD,故此选项符合题意;D、∠B=∠2不能判定直线平行,故此选项不合题意;故选:C.6.下列各式(1)b5•b5=2b5(2)(﹣2a2)2=﹣4a4(3)(a n﹣1)3=a3n﹣1(4)2m+3n=6m+n(5)(a﹣b)5(b﹣a)4=(a﹣b)20(6)﹣a3•(﹣a)5=a8其中计算错误的有()A.3个B.4个C.5个D.6个【考点】整式的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)b5•b5=b10,错误;(2)(﹣2a2)2=﹣4a4,正确;(3)(a n﹣1)3=a3n﹣3,错误;(4)2m+3n为最简结果,错误;(5)(a﹣b)5(b﹣a)4=(a﹣b)9,错误;(6)﹣a3•(﹣a)5=a8,正确,则其中计算错误的有4个.故选B二、填空题(本大题共10小题,每小题3分,共30分)7.一个多边形的每一个内角都是140°,则这个多边形是九边形.【考点】多边形内角与外角.【分析】首先求得这个多边形的一个外角的度数,用360°除一个外角的度数即可求得多边形的边数.【解答】解:180°﹣140°=40°,360°÷40°=9.故答案为:九.8.已知a m=2,a n=5,则a m+n=10.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:a m+n=a m•a n=5×2=10,故答案为:10.9.若27x=312,则x=4.【考点】幂的乘方与积的乘方.【分析】转化为同底数幂,即可解答.【解答】解:27x=(33)x=33x=312,∴3x=12,∴x=4,故答案为:4.10.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是 2.5×10﹣3毫米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1毫米=1000微米,∴2.5微米=0.0025毫米=2.5×10﹣3毫米.故答案为:2.5×10﹣3.11.三角形的三边长为3,a,7,如果这个三角形中有两条边相等,那么它的周长是17.【考点】三角形三边关系.【分析】根据已知的两边,则第三边可能是3或7;再根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【解答】解:根据题意,得第三边可能是3或7.根据三角形的三边关系,得当三边是3,3,7时,则3+3<7,不能构成三角形,应舍去.当三边是3,7,7时,则3+7>7,能构成三角形.那么它的周长是:3+7+7=17,故答案为:17.12.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC 的面积为20cm2,则△BEF的面积是5cm2.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×20=10cm2,∴S△BCE=S△ABC=×20=10cm2,∵点F是CE的中点,∴S△BEF=S△BCE=×10=5cm2.故答案为:5.13.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需7个五边形.【考点】正多边形和圆.【分析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【解答】解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故答案为:7.14.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=56°,则∠2﹣∠1=44°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据AD∥BC、折叠可知,∠EFG=∠DEF=∠D′EF=56°,进而知∠1度数,再根据两直线平行,同旁内角互补可得∠2度数,可得答案.【解答】解:∵AD∥BC,∴∠DEF=∠EFG,∵∠EFG=56°,∴∠DEF=56°;又∵∠DEF=∠D′EF,∴∠D′EF=56°;∴∠1=180°﹣56°﹣56°=68°;又∵AD∥BC,∴∠1+∠2=180°,即∠2=180°﹣∠1=180°﹣68°=112°,∴∠2﹣∠1=44°.故答案为:44°.15.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是40°.【考点】三角形内角和定理;平行线的性质.【分析】根据DE∥AB可求得∠ADE=∠BAD,根据三角形内角和为180°和角平分线平分角的性质可求得∠BAD的值,即可解题.【解答】解:∵DE∥AB,∴∠ADE=∠BAD,∵∠B=46°,∠C=54°,∴∠BAD=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=40°,∴∠ADE=40°,故答案为40°.16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是8.【考点】尾数特征.【分析】根据2的1次幂的尾数为2,2的2次幂的尾数为4,2的3次幂的尾数为8,2的4次幂的尾数为6,2的5次幂的尾数为2,2的6次幂的尾数为4,可以发现规律为2的正整数次幂的尾数为4次一个循环,据此可以解答.【解答】解:∵2的1次幂的尾数为2,2的2次幂的尾数为4,2的3次幂的尾数为8,2的4次幂的尾数为6,2的5次幂的尾数为2,2的6次幂的尾数为4,∴可以发现规律为2的中正整数次幂的尾数为4次一个循环,尾数依次为2,4,8,6∵89=227=27÷4=6…3,∴89的尾数为8.故答案为8.三、解答题(本大题共10小题,共102分)17.计算题:(1)(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)()2008×()2009.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂的运算、零指数幂的运算进行计算即可,(2)根据幂的乘方、同底数幂的乘法进行计算即可;(3)根据积的乘方、同底数幂的乘法的逆运算进行计算即可.【解答】解:(1)原式=﹣1+4﹣1=4;(2)原式=4x6•(﹣x2)÷x6=﹣4x12;(3)原式=()2008××()2008=(×)2008×=.18.先化简,再求值:a3•(﹣b3)+(﹣ab2)3,其中a=,b=4.【考点】整式的混合运算—化简求值.【分析】先算乘法和乘方,再代入求出即可.【解答】解:a3•(﹣b3)+(﹣ab2)3=﹣a3b3﹣a3b6,当a=,b=4时,原式=﹣()3×43﹣×()3×46=﹣1﹣×64=﹣9.19.已知:5a=4,5b=6,5c=9,(1)求52a+c﹣b的值;(2)试说明:2b=a+c.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】(1)根据同底数幂的乘法,可得底数相同的幂的乘法,根据根据幂的乘方,可得答案;(2)根据同底数幂的乘法、幂的乘方,可得答案.【解答】解:(1)5 2a+b=52a×5c÷5b=(5a)2×5c÷5b=42×9÷6=24;(2)∵5a+c=5a×5c=4×9=3652b=62=36,∴5a+c=52b,∴a+c=2b.20.如图,平行光线AB与DE射向同一平面镜后被反射,此时∠1=∠2,∠3=∠4,那么反射光线BC与EF平行吗?说明理由.【考点】平行线的判定.【分析】由AB与DE平行,利用两直线平行同位角相等即可得到∠1=∠3,再由∠1=∠2,∠3=∠4,等量代换即可得到∠2=∠4,利用同位角相等两直线平行,即可得到BC与EF平行.【解答】解:平行,理由如下:∵AB∥DE,∴∠1=∠3,又∵∠1=∠2,∠3=∠4,∴∠2=∠4,∴BC∥EF.21.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.试根据以上材料探索使等式(2x+3)x+2015=1成立的x的值.【考点】零指数幂;有理数的乘方.【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【解答】解:①当2x+3=1时,x=﹣1;②当2x+3=﹣1时,x=﹣2,但是指数x+2015=2013为奇数,所以舍去;③当x+2015=0时,x=﹣2015,且2×(﹣2015)+3≠0,所以符合题意;综上所述:x的值为﹣1或﹣2015.22.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.求证:(1)AB∥CD;(2)∠2+∠3=90°.【考点】平行线的判定与性质.【分析】(1)首先根据角平分线的定义可得∠ABD=2∠1,∠BDC=2∠2,根据等量代换可得∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2),进而得到∠ABD+∠BDC=180°,然后根据同旁内角互补两直线平行可得答案;(2)先根据三角形内角和定理得出∠BED=90°,再根据三角形外角的性质得出∠EDF+∠3=90°,由角平分线的定义可知∠2=∠EDF,代入得到∠2+∠3=90°.【解答】证明:(1)∵DE平分∠BDC(已知),∴∠ABD=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠BDC=2∠2(角的平分线的定义).∴∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等式的性质).∴AB∥CD(同旁内角互补两直线平行).(2)∵∠1+∠2=90°,∴∠BED=180°﹣(∠1+∠2)=90°,∴∠BED=∠EDF+∠3=90°,∵∠2=∠EDF,∴∠2+∠3=90°.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:平行且相等;(4)求△A′B′C′的面积.【考点】作图-平移变换.【分析】(1)直接利用平移的性质得出各对应点位置进而得出答案;(2)利用三角形中线的定义以及高线的定义分别得出答案;(3)利用平移的性质得出对应点连线的关系;(4)利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:中线CD和BC边上的高线AE即为所求;(3)线段AA′与线段BB′的关系是:平行且相等;故答案为:平行且相等;(4)△A′B′C′的面积与△ABC的面积相等为:×4×4=8.24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.【考点】多边形内角与外角;三角形内角和定理.【分析】(1)根据四边形的内角和即可得到结论;(2)根据平行线的性质得到∠ABE=35°,∠BED=105°,由∠ABC的角平分线BE交DC于点E,得到∠CBE=∠ABE=35°,根据三角形的外角的性质即可得到结论;(3)根据四边形的性质得到∠ABC+∠BCD=140°,根据三角形的内角和即可得到结论.【解答】解:(1)∵∠A=145°,∠D=75°,∴∠B=∠C==70°;(2)∵BE∥AD,∠A=145°,∠D=75°,∴∠ABE=180°﹣∠A=35°,∠BED=180°﹣∠D=105°,∵∠ABC的角平分线BE交DC于点E,∴∠CBE=∠ABE=35°,∴∠C=∠BED﹣∠EBC=40°;(3)∵∠A=145°,∠D=75°,∴∠ABC+∠BCD=360°﹣∠A﹣∠C=140°,∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=(∠ABC+∠DCB)=70°,∴∠BEC=110°.25.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.【考点】三角形内角和定理;直角三角形的性质.【分析】(1)由角平分线得出∠EBC,得出∠BAD=26°,再求出∠C,即可得出∠CAD=52°;(2)分两种情况:①当∠EFC=90°时;②当∠FEC=90°时;由角的互余关系和三角形的外角性质即可求出∠BEF的度数.【解答】(1)证明:∵BE平分∠ABC,∴∠ABC=2∠EBC=64°,∴∠EBC=32°,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD=90°﹣64°=26°,∵∠C=∠AEB﹣∠EBC=70°﹣32°=38°,∴∠CAD=90°﹣38°=52°;(2)解:分两种情况:①当∠EFC=90°时,如图1所示:则∠BFE=90°,∴∠BEF=90°﹣∠EBC=90°﹣32°=58°;②当∠FEC=90°时,如图2所示:则∠EFC=90°﹣38°=52°,∴∠BEF=∠EFC﹣∠EBC=52°﹣32°=20°;综上所述:∠BEF的度数为58°或20°.26.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.2016年4月14日。

江苏省泰州中学附中七年级(下)期末数学试卷含答案

江苏省泰州中学附中七年级(下)期末数学试卷含答案

江苏省泰州中学附中七年级(下)期末数学试卷含答案一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x63.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为.8.若一个多边形的内角和等于720°,则这个多边形是边形.9.若a>0,且a x=2,a y=3,则a x﹣2y=.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为.11.已知:,则用x的代数式表示y为.12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱元.14.若不等式组有解,则a的取值范围是.15.3108与2144的大小关系是.16.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1﹣S2=.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.19.解方程(不等式)组(1)(2).20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD﹣DC﹣CB方向顺时针作折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)当运动时间为秒时,点P与点Q相遇;(2)当AP∥CQ时,求线段DQ的长度;(3)用含t的代数式表示以点Q、P、A为顶点的三角形的面积S,并指出相应t 的取值范围;(4)连接PA,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等时,求t的值.2015-2016学年江苏省泰州中学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=,故选:B.2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据单项式乘法法则;单项式除法法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、2x2与3x3不是同类项,不能合并,故本选项错误;B、应为2x3•3x2=6x5,故本选项错误;C、2x3÷x2=2x,正确;D、应为(2x2)3=8x6,故本选项错误.故选C.3.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形【考点】多边形内角与外角.【分析】本题需先求出每个外角都等于40°的正多边形为正九边形,即可得出满足条件且边数最少的多边形为正九边形,即可得出答案.【解答】解:∵360÷40=9∴每个外角都等于40°的正多边形为正九边形,∴若存在正n边形的每一个外角都不大于40°,则满足条件且边数最少的多边形为正九边形.故选:C.5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形判定定理AAS、SAS、ASA、SSS对△MOC和△NOC进行分析,即可作出正确选择.【解答】解:∵OM=ON,CM=CN,OC为公共边,∴△MOC≌△NOC(SSS).故选D.6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关【考点】正方形的性质;勾股定理.【分析】由题意,正方形ABCD和CEFG的边长分别为m、n,先根据正方形的性质求出△AEG的面积,然后再判断△AEG的面积的值与m、n的关系.【解答】解:△GCE的面积是•CG•CE=n2.四边形ABCG是直角梯形,面积是(AB+CG)•BC=(m+n)•m;△ABE的面积是:BE•AB=(m+n)•m=S△CGE+S梯形ABCG﹣S△ABE=n2.∴S△AEG故△AEG的面积的值只与n的大小有关.故选D.二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为3.2×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00032=3.2×10﹣4故答案为:3.2×10﹣4.8.若一个多边形的内角和等于720°,则这个多边形是6边形.【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:180°•(n﹣2)=720,解得n=6.9.若a>0,且a x=2,a y=3,则a x﹣2y=.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.【解答】解:a x﹣2y=a x÷(a y)2=2÷9=.故答案为:.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为y=2.【考点】解一元一次不等式;解一元一次方程.【分析】根据已知不等式解集确定出a的值,代入方程计算即可求出y的值.【解答】解:∵不等式ax﹣2>0,即ax>2的解集为x<﹣2,∴a=﹣1,代入方程得:﹣y+2=0,解得:y=2.故答案为:y=2.11.已知:,则用x的代数式表示y为y=.【考点】解二元一次方程组.【分析】方程组消元t得到y与x的方程,把x看做已知数求出y即可.【解答】解:,①+②×3得:x+3y=14,解得:y=,故答案为:y=12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出a的值即可.【解答】解:原式=x2﹣2x+ax﹣2a=x2+(a﹣2)x﹣2a,由结果不含x的一次项,得到a﹣2=0,解得:a=2.故答案为:2.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱55元.【考点】三元一次方程组的应用.【分析】设一件甲商品x元,乙y元,丙z元,根据“购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱”列出方程组,用含y的代数式分别表示出x、z,再将x、y、z三者相加即可得出结论.【解答】解:设一件甲商品x元,乙y元,丙z元.根据题意得:,解得:.∴2x+2y+2z=150﹣3y+2y+y﹣40=110,∴x+y+z=55.故答案为:55.14.若不等式组有解,则a的取值范围是a<3.【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故答案为a<3.15.3108与2144的大小关系是3108>2144.【考点】幂的乘方与积的乘方.【分析】把3108和2144化为指数相同的形式,然后比较底数的大小即可.【解答】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.16.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1﹣S 2= 6 .【考点】三角形的面积.【分析】S △ADF ﹣S △BEF =S △ABD ﹣S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1﹣S 2的值.【解答】解:∵点D 是AC 的中点,∴AD=AC ,∵S △ABC =36,∴S △ABD =S △ABC =×36=18.∵EC=2BE ,S △ABC =36,∴S △ABE =S △ABC =×36=12,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =18﹣12=6,即S 1﹣S 2=6.故答案为:6.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)【考点】平方差公式;多项式乘多项式;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用多项式乘以多项式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=1﹣9+4=﹣4;(2)原式=4(a2+3a+2)﹣7(a2﹣9)=4a2+12a+8﹣7a2+63=﹣3a2+12a+71.18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式﹣2,进而利用完全平方公式分解因式即可;(2)首先利用平方差公式分解因式,进而利用完全平方公式分解因式.【解答】解:(1))﹣2x2+4x﹣2=﹣2(x2﹣2x+1)=﹣2(x﹣1)2;(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.19.解方程(不等式)组(1)(2).【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)整理后①﹣②得出2x=﹣6,求出x,把x的值代入②得出﹣6﹣3y=1,求出y即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)整理得:①﹣②得:2x=﹣6,解得:x=﹣3,把x=﹣3代入②得:﹣6﹣3y=1,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<2,解不等式②得:x>﹣,∴原不等式组的解集为﹣<x<2.20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.【考点】解一元一次不等式;二元一次方程组的解.【分析】将原方程组中两个方程相减可得x﹣y=﹣3m+6,由x﹣y>﹣3知﹣3m+6>﹣3,解该不等式求得m的范围,即可得满足条件的m的所有非负整数解.【解答】解:在关于x、y的二元一次方程组中,①﹣②,得:x﹣y=﹣3m+6,∵x﹣y>﹣3,∴﹣3m+6>﹣3,解得:m<3,∴满足条件的m的所有非负整数解有0,1,2.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.【解答】解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE=∠CAE=×50°=25°,∴∠ADE=65°.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论.【解答】解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.【考点】完全平方公式.【分析】(1)判断两式大小,利用完全平方公式验证即可;(2)已知等式两边平方,利用完全平方公式化简,整理求出所求式子的值即可;(3)利用得出的规律确定出代数式的最小值即可.【解答】解:(1)猜想a2+b2≥2ab,理由为:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab;(2)把x﹣=5两边平方得:(x﹣)2=x2+﹣2=25,则x2+=27;(3)x2+≥2,即最小值为2.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为30x﹣5(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【考点】一元一次不等式的应用;二元一次方程的应用.【分析】(1)若只租用30座客车x辆,还差5人才能坐满,说明了人数与客车数的关系.人数=客车数的30倍﹣5;(2)若只租用50座客车,比只租用30座客车少用2辆,据此列出不等式,求出x的最小值,继而求得师生的最少人数;(3)设租用30座客车a辆,50座客车b辆,根据总费用为2200元,求出a和b的值,找出费用最低的租车方案,然后求出师生总人数.【解答】解:(1)由题意得,该校参加此次活动的师生人数为:30x﹣5,故答案为:30x﹣5;(2)由题意得,50(x﹣2)≥30x﹣5,解得:x≥,∵当x越小时,参加活动的师生就越少,且x为整数,∴当x=5时,参加的师生最少,为30×5﹣5=145人;(3)设租用30座客车a辆,50座客车b辆,则400a+600b=2200,∵a、b为整数,∴或,当时,能乘坐的最多人数为180人,当时,能乘坐的人数为170人,∵参加此次活动的师生人数为30x﹣5,且x为整数,∴当x<6时,与“根据师生人数选择租车方案”不符合,当x=6时,参加的师生为175人,符合题意,当x>6时,人数超过180人,不符合题意.答:参加此次活动的师生人数为175人.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【考点】三角形综合题.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=150°,∴∠MBC+∠NDC=150°,(2)β﹣α=90°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒4个单位速度从A 点出发沿正方形的边AD ﹣DC ﹣CB 方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当AP ∥CQ 时,求线段DQ 的长度;(3)用含t 的代数式表示以点Q 、P 、A 为顶点的三角形的面积S ,并指出相应t 的取值范围;(4)连接PA ,当以点Q 及正方形的某两个顶点组成的三角形和△PAB 全等时,求t 的值.【考点】三角形综合题;四边形综合题.【分析】(1)设t 秒后P 、Q 相遇.列出方程即可解决问题.(2)如图1中,AP ∥QC 时,由AQ ∥PC ,推出四边形APCQ 是平行四边形,根据AQ=PC ,列出方程即可解决问题.(3)分三种情形①如图2中,当0<t ≤1,点Q 在AD 上时.②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC .③如图4中,当2<t ≤,点Q 在BC 时时.分别求解即可.(4)分四种情形求解①当DQ 1=BP 时,△CDQ 1≌△ABP .②当DQ 2=BP 时,△ADQ 2≌△ABP .③当CQ 3=BP 时,△BCQ 3≌△ABP .④当BQ 4=BP 时,△ABQ 4≌△ABP ,此时P 与Q 重合.【解答】解:(1)设t 秒后P 、Q 相遇.由题意(4+1)t=12,∴t=秒,∴秒后P 、Q 相遇.故答案为.(2)如图1中,由图象可知,AP ∥QC 时,∵AQ ∥PC ,∴四边形APCQ 是平行四边形,∴AQ=PC ,∴4t=4﹣t ,∴t=,此时DQ=AD ﹣AQ=4﹣×4=.(3)①如图2中,当0<t ≤1,点Q 在AD 上时,S=×4t ×4=8t .②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC =16﹣×4×(4t ﹣4)﹣×4×t ﹣×(4﹣t )(8﹣4t )=﹣2t 2+2t +8.③如图4中,当2<t≤,点Q在BC时时,S=×[4﹣t﹣(4t﹣8)]•4=﹣10t+24.综上所述,S=.(4)如图5中,①当DQ1=BP时,△CDQ1≌△ABP,此时4﹣4t=t,t=s.②当DQ2=BP时,△ADQ2≌△ABP,此时4t﹣4=t,t=s.③当CQ3=BP时,△BCQ3≌△ABP,此时8﹣4t=t,t=s.④当BQ4=BP时,△ABQ4≌△ABP,此时P与Q重合,t=s综上所述,t为s或s或s或s时,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等.2017年3月4日。

江苏省泰州中学附中2015-2016学年七年级数学12月月考试题(含解析)新人教版

江苏省泰州中学附中2015-2016学年七年级数学12月月考试题(含解析)新人教版

XX省XX中学附中2021 -2021学年七年级数学12 月月考试题一、选择题〔每题3 分,共 18 分〕1.﹣ 2 的相反数是〔〕A.2B.﹣ 2 C.D.﹣2.小红在月历的同一列上圈出相邻的三个数,假设算出它们的和是39,那么该列第一个数是〔〕A.6B.12C.13D. 143.以下关于单项式的说法中,正确的选项是〔〕A.系数是3,次数是 2B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.以下几何体的主视图、俯视图和左视图都是长方形的是〔〕A.B.C.D.5.某顾客以八折的优惠价买了一件商品,比标价少付了30 元,那么他购置这件商品花了〔〕A.70 元 B.120 元C. 150 元D. 300 元6.把四X形状大小完全一样的小长方形卡片〔如图①〕不重叠地放在一个底面为长方形〔长为acm,宽为 bcm〕的盒子底部〔如图②〕,盒子底面未被卡片覆盖的局部用阴影表示.那么图②中两块阴影部分周长和是〔〕A.4acm B.4bcm C.2〔 a+b〕 cm D. 4〔 a﹣ b〕cm二、填空题〔每题3 分,共 30 分〕7.比较大小:﹣〔﹣2〕﹣3〔填“<〞、“ =〞或“>〞〕8.太阳的半径约为696000000 米,用科学记数法表示为米.9. x=3 是方程 ax﹣ 6=a+10 的解,那么a=.10.如果是关于x的一元一次方程,那么k=.11.假设单项式x2 y a与﹣ 2x b y3的和仍为单项式,那么a+b=.12.代数式x2+x+3 的值是 5,那么 10﹣ 3x2﹣ 3x 的值是.13.甲,乙两城市间的铁路经过技术改造,列车在两城市间的运行速度从160km/h 提高到 200km/h ,运行时间缩短了2.5h ,如果设甲,乙两城市间的距离是xkm,那么可以得到方程.14.如图是一个几何体的三视图,根据图中提供的数据〔单位:cm〕可求得这个几何体的体积为.15.某商店以90 元一样的售价卖出 2 件不同的衬衫,其中一件盈利25%,另一件亏损25%.问商店卖出这两件衬衫亏损.16.某市对城区主干道进展绿化,方案把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5 米栽 1 棵,那么树苗缺21 棵;如果每隔 6 米栽 1 棵,那么树苗正好用完.那么原有树苗棵.三、解答题〔共102 分〕17.计算:(1〕 4+〔﹣ 2〕2×2﹣〔﹣ 36〕÷ 4;(2〕〔﹣ 2〕3÷4×[5 ﹣〔﹣ 3〕2] .18.解方程:(1〕 6x﹣ 10=12x+9;(2〕=﹣1.19.先化简,再求值:5〔 3a2b﹣ ab2〕﹣ 4〔﹣ ab2+3a2b〕,其中 a=3, b=﹣.20.多项式﹣2x 2+3 与 A 的 2 倍的差是2x2+2x﹣ 7,(1〕求多项式 A.(2〕当 x=﹣1 时,求 A 的值.21.点 A、 B在数轴上,且到原点的距离相等,它们所对应的数分别是2x+1 和 3﹣ x,求 x 的值.22.化简与求值:〔 1〕假设 m=﹣3,那么代数式2;m+1 的值为〔 2〕假设 m+n=﹣ 3,那么代数式〔 m+n〕2+1 的值为;〔 3〕假设 5m﹣3n=﹣ 4,请你仿照以上方法求2〔 m﹣n〕 +4〔 2m﹣ n〕 +2 的值.23.在做一元一次方程练习时,有一个方程“2y﹣3=y+■〞中的■没印清晰,小聪问教师,教师只是说:“■是一个有理数,该方程的解与当 x=2 时代数式 2〔 x﹣1〕﹣ 3〔 x﹣2〕﹣ 1 的值一样.〞请你帮小聪算出■所表示的数.24.用棱长为1 的正方体摆放成如图形状.①请根据图形如图1 摆放规律推测,第 3 个图形有个小正方体组成;②请在以下网格中分别画出第3 个图形的主视图、左视图和俯视图.25.一家商店因换季将某种服装打折销售,如果每件服装按标价的5 折出售,将赔本20 元.如果按标价的 8 折出售,将盈利40 元.求:〔 1〕每件服装的标价是多少元?〔 2〕为保证不赔本,最多能打几折?26.数轴上有 A,B,C 三点,分别表示数﹣ 24,﹣ 10,10.两只电子蚂蚁甲、乙分别从 A,C 两点同时相向而行,甲的速度为 4 个单位 / 秒,乙的速度为 6 个单位 / 秒.(1〕问甲、乙在数轴上的哪个点相遇?(2〕问多少秒后甲到 A, B, C 三点的距离之和为 40 个单位?假设此时甲调头往回走,问甲、乙还能在数轴上相遇吗?假设能,求出相遇点;假设不能,请说明理由.〔 3〕假设甲、乙两只电子蚂蚁〔用P 表示甲蚂蚁、 Q 表示乙蚂蚁〕分别从A,C 两点同时相向而行,甲的速度变为原来的3 倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P 与乙蚂蚁Q 三点中,有一点恰好是另两点所连线段的中点.2021 -2021学年XX省XX中学附中七年级〔上〕月考数学试卷〔12 月份〕参考答案与试题解析一、选择题〔每题 3 分,共 18 分〕1.﹣ 2 的相反数是〔〕A.2B.﹣ 2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣ 2 的相反数是 2.应选: A.【点评】此题考察了相反数的意义.注意掌握只有符号不同的数为相反数,0 的相反数是 0.2.小红在月历的同一列上圈出相邻的三个数,假设算出它们的和是39,那么该列第一个数是〔〕A.6B.12 C.13 D. 14【考点】一元一次方程的应用.【分析】日历的一个竖列上圈出相邻的两个数相差为7,设较小的数是x,那么较大的数是x+7,又 x 是整数,故两个数的和减去7 后,必须是偶数.根据次规律可从以下答案中判断出正确答案.【解答】解:设中间的为x,那么上面的数是 x﹣ 7,下面的数是:x+7,根据题意得: x+x ﹣ 7+x+7=39,解得, x=13.根据题意可知,该列第一个数x﹣ 7=6应选: A.【点评】此题主要考察了一元一次方程的应用,关键是知道日历上相邻的三个数的特点,题目难度不大.3.以下关于单项式的说法中,正确的选项是〔〕A.系数是3,次数是 2B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.应选 D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.以下几何体的主视图、俯视图和左视图都是长方形的是〔〕A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.找到几何体的三视图即可作出判断.【解答】解:A、主视图和左视图为矩形,俯视图为圆,应选项错误;B、主视图为矩形,俯视图和左视图都为矩形,应选项正确;C、主视图和左视图为等腰梯形,俯视图为圆环,应选项错误;D、主视图和左视图为三角形,俯视图为有对角线的矩形,应选项错误.应选 B.【点评】此题重点考察了三视图的定义考察学生的空间想象能力.5.某顾客以八折的优惠价买了一件商品,比标价少付了30 元,那么他购置这件商品花了〔〕A.70 元 B.120 元C. 150 元D. 300 元【考点】一元一次方程的应用.【专题】应用题.【分析】要求顾客购置这个商品换了多少钱,可以先假设出未知数,再通过理解题意,列出方程,再通过这个方程求解.【解答】解:假设他购置这个商品花了x 元,那么这个商品原价为〔30+x〕元,那么由题目可得方程:〔30+x〕﹣ 0.8 〔 30+x〕 =30,解得: x=120 元,答:他购置这个商品花了120 元.应选 B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.6.把四X形状大小完全一样的小长方形卡片〔如图①〕不重叠地放在一个底面为长方形〔长为acm,宽为 bcm〕的盒子底部〔如图②〕,盒子底面未被卡片覆盖的局部用阴影表示.那么图②中两块阴影部分周长和是〔〕A.4acm B.4bcm C.2〔 a+b〕 cm D. 4〔 a﹣ b〕cm【考点】整式的加减.【专题】计算题.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:设小长方形卡片的长为xcm,宽为 ycm,根据题意得: x+2y=a ,那么图②中两块阴影局部周长和是2a+2〔 b﹣ 2y〕+2〔 b﹣ x〕=2a+4b﹣ 4y﹣ 2x=2a+4b﹣ 2〔 x+2y〕=2a+4b﹣2a=4b〔 cm〕.应选 B【点评】此题考察了整式的加减,熟练掌握运算法那么是解此题的关键.二、填空题〔每题 3 分,共 30 分〕7.比较大小:﹣〔﹣ 2〕>﹣ 3〔填“<〞、“ =〞或“>〞〕【考点】有理数大小比较.【分析】根据正数大于负数,可得答案.【解答】解:﹣〔﹣2〕 =2, 2>﹣ 3,﹣〔﹣ 2〕>﹣ 3,故答案为:>.【点评】此题考察了有理数比较大小,正数大于负数是解题关键.8.太阳的半径约为696000000 米,用科学记数法表示为 6.96 ×10 8米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a| < 10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数一样.当原数绝对值>1时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解: 696 000 000=6.96 ×108,故答案为: 6.96 ×108.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10 n的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.9. x=3 是方程 ax﹣ 6=a+10 的解,那么a= 8.【考点】一元一次方程的解.【专题】计算题.【分析】将 x=3 代入方程ax﹣ 6=a+10,然后解关于a 的一元一次方程即可.【解答】解:∵ x=3 是方程 ax﹣6=a+10 的解,∴x=3 满足方程 ax﹣ 6=a+10,∴3a﹣ 6=a+10,解得 a=8.故答案为: 8.【点评】此题主要考察了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.10.如果是关于x的一元一次方程,那么k= 0.【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数〔元〕,并且未知数的指数是 1〔次〕的方程叫做一元一次方程,它的一般形式是 ax+b=0〔 a,b 是常数且 a≠0〕.根据未知数的指数为 1 可得出 k 的值.【解答】解:根据题意得:1﹣ 2k=1,解得: k=0.故填: 0.【点评】此题主要考察了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是 1,一次项系数不是 0,这是这类题目考察的重点.11.假设单项式 x2 y a与﹣ 2x b y3的和仍为单项式,那么 a+b= 5.【考点】合并同类项.【分析】根据和同类项得出b=2, a=3,代入求出即可.【解答】解:根据题意得: b=2,a=3,所以 a+b=5,故答案为: 5.【点评】此题考察了合并同类项的应用,能根据题意求出a、b 的值是解此题的关键.2的值是2的值是﹣5.12.代数式 x +x+35,那么 10﹣ 3x ﹣ 3x【考点】代数式求值.【专题】计算题.【分析】根据题意确定出x2+x 的值,原式变形后代入计算即可求出值.【解答】解:∵x2+x+3=5,即 x2+x=2,∴原式 =10﹣3〔 x2+x〕 =10﹣ 15=﹣ 5.故答案为:﹣ 5.【点评】此题考察了代数式求值,熟练掌握运算法那么是解此题的关键.13.甲,乙两城市间的铁路经过技术改造,列车在两城市间的运行速度从160km/h 提高到 200km/h ,运行时间缩短了 2.5h ,如果设甲,乙两城市间的距离是xkm,那么可以得到方程.【考点】由实际问题抽象出一元一次方程.【分析】此题中的相等关系是:提速前所用时间﹣提速后所用时间 =2.5 小时.根据此等式即可列出方程.【解答】解:设甲,乙两城市间的距离是xkm,根据路程的计算公式求得提速前后所用的时间,再根据等量关系即可得到方程为:.【点评】列方程解应用题的关键是找出题目中的相等关系.14.如图是一个几何体的三视图,根据图中提供的数据〔单位:cm〕可求得这个几何体的体积为4πcm3.【考点】由三视图判断几何体.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的体积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是 4cm.所以该几何体的体积为23〕.π ×1×4=4π〔 cm故答案为: 4π cm3.【点评】此题主要考察了由三视图确定几何体和求圆柱体的体积,考察学生的空间想象.15.某商店以90 元一样的售价卖出 2 件不同的衬衫,其中一件盈利25%,另一件亏损25%.问商店卖出这两件衬衫亏损12元.【考点】一元一次方程的应用.【分析】设两件衬衫进价分别x 元、 y 元,根据题意列出x 和 y 的一元一次方程,求出x 和 y 的值,最后进展比较.【解答】解:设两件衣服进价分别x 元、 y 元,依题意得90﹣x=x?25%,解得 x=72,y﹣90=y?25%,解得 y=120 ,因为 72+120=192>90×2,所以亏损192﹣ 180=12 元.答:卖出这两件衣服总的是亏损12 元.故答案为: 12 元.【点评】此题主要考察了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.16.某市对城区主干道进展绿化,方案把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5 米栽 1 棵,那么树苗缺 21 棵;如果每隔 6 米栽 1 棵,那么树苗正好用完.那么原有树苗106棵.【考点】一元一次方程的应用.【分析】设原有树苗x 棵,由栽树问题栽树的棵数=分得的段数 +1,可以表示出路的长度,由路的长度相等建立方程求出其解即可.【解答】解:设原有树苗x 棵,那么路的长度为 5〔x+21﹣ 1〕米,由题意,得5〔x+21﹣ 1〕=6〔 x﹣1〕,解得: x=106.故答案为: 106.【点评】此题考察了栽树问题的运用,栽树的棵数=分得的段数 +1 的运用,列一元一次方程解实际问题的运用,解答时由路的长度不变建立方程是关键.三、解答题〔共102 分〕17.计算:(1〕 4+〔﹣ 2〕2×2﹣〔﹣ 36〕÷ 4;(2〕〔﹣ 2〕3÷4×[5 ﹣〔﹣ 3〕2] .【考点】有理数的混合运算.【专题】计算题;实数.【分析】〔 1〕原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2〕原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:〔 1〕原式 =4+4×2﹣〔﹣ 9〕=4+8+9=21;〔 2〕原式 =〔﹣ 8〕÷ 4×〔 5﹣ 9〕 =〔﹣ 2〕×〔﹣ 4〕 =8.【点评】此题考察了有理数的混合运算,熟练掌握运算法那么是解此题的关键.18.解方程:〔 1〕 6x﹣ 10=12x+9;〔2〕=﹣1.【考点】解一元一次方程.【分析】〔 1〕移项、合并同类项、系数化成1 即可求解;〔 2〕去分母、去括号、移项、合并同类项、系数化成1 即可求解.【解答】解:〔 1〕移项,得6x﹣ 12x=10+9,合并,得﹣ 6x=19,化系数为1,得 x=﹣;(2〕原方程可化为: 4〔 2y﹣ 1〕=3〔 y+2〕﹣ 12,整理,得 5y=﹣ 2,解得: y=﹣.【点评】此题考察解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为 1.注意移项要变号.19.先化简,再求值:5〔 3a2b﹣ ab2〕﹣ 4〔﹣ ab2+3a2b〕,其中 a=3, b=﹣.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a 与 b 的值代入计算即可求出值.222222当 a=3, b=﹣时,原式=﹣9.【点评】此题考察了整式的加减﹣化简求值,熟练掌握运算法那么是解此题的关键.20.多项式﹣2x 2+3 与 A 的 2 倍的差是2x2+2x﹣ 7,(1〕求多项式 A.(2〕当 x=﹣1 时,求 A 的值.【考点】整式的加减.【分析】〔 1〕根据题意,列出代数式,求出多项式A;〔 2〕将 x=﹣1 代入,求出A 的值.22【解答】解:〔 1〕由题意得:〔﹣ 2x +3〕﹣ 2A=2x +2x﹣ 7,则2A=﹣ 2x2+3﹣2x2﹣ 2x+7=﹣ 4x2﹣ 2x+10,A=﹣2x 2﹣ x+5;(2〕当 x=﹣1 时将 x 的值代入 A 得:A=﹣2×〔﹣ 1〕2﹣ 1+5=2.【点评】此题考察了整式的加减,解答此题的关键是掌握去括号法那么和合并同类项法那么.21.点 A、 B在数轴上,且到原点的距离相等,它们所对应的数分别是2x+1 和 3﹣ x,求 x 的值.【考点】一元一次方程的应用;数轴.【分析】由题意得到2x+1 与 3﹣ x 互为相反数,利用互为相反数两数之和为0 列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:2x+1+3﹣ x=0,解得: x=﹣ 4.故 x 的值是﹣ 4.【点评】考察了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.22.化简与求值:〔 1〕假设 m=﹣3,那么代数式2的值为 4 ;m+1〔 2〕假设 m+n=﹣ 3,那么代数式〔 m+n〕2+1 的值为 4 ;(3〕假设 5m﹣3n=﹣ 4,请你仿照以上方法求 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2 的值.【考点】代数式求值.【分析】〔 1〕把 m=﹣ 3 代入求出即可;(2〕把 m+n=﹣ 3 代入求出即可;(3〕先算乘法,再合并同类项,最后变形后代入求出即可.【解答】解:〔 1〕把 m=﹣ 3 代入,得,故答案为: 4;(2〕∵ m+n=﹣ 3,∴〔m+n〕2+1=×〔﹣3〕2+1=4,故答案为: 4;(3〕 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2=2m﹣ 2n+8m﹣4n+2=10m﹣ 6n+2=2〔5m﹣ 3n〕+2,当5m﹣ 3n=﹣4 时,原式 =2×〔﹣ 4〕 +2=﹣6.【点评】此题考察了求代数式的值的应用,能正确代入是解此题的关键,用了整体代入思想.23.在做一元一次方程练习时,有一个方程“2y﹣3=y+■〞中的■没印清晰,小聪问教师,教师只是说:“■是一个有理数,该方程的解与当 x=2 时代数式 2〔 x﹣1〕﹣ 3〔 x﹣2〕﹣ 1 的值一样.〞请你帮小聪算出■所表示的数.【考点】一元一次方程的解;代数式求值.21.点 A、 B在数轴上,且到原点的距离相等,它们所对应的数分别是2x+1 和 3﹣ x,求 x 的值.【考点】一元一次方程的应用;数轴.【分析】由题意得到2x+1 与 3﹣ x 互为相反数,利用互为相反数两数之和为0 列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:2x+1+3﹣ x=0,解得: x=﹣ 4.故 x 的值是﹣ 4.【点评】考察了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.22.化简与求值:〔 1〕假设 m=﹣3,那么代数式2的值为 4 ;m+1〔 2〕假设 m+n=﹣ 3,那么代数式〔 m+n〕2+1 的值为 4 ;(3〕假设 5m﹣3n=﹣ 4,请你仿照以上方法求 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2 的值.【考点】代数式求值.【分析】〔 1〕把 m=﹣ 3 代入求出即可;(2〕把 m+n=﹣ 3 代入求出即可;(3〕先算乘法,再合并同类项,最后变形后代入求出即可.【解答】解:〔 1〕把 m=﹣ 3 代入,得,故答案为: 4;(2〕∵ m+n=﹣ 3,∴〔m+n〕2+1=×〔﹣3〕2+1=4,故答案为: 4;(3〕 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2=2m﹣ 2n+8m﹣4n+2=10m﹣ 6n+2=2〔5m﹣ 3n〕+2,当5m﹣ 3n=﹣4 时,原式 =2×〔﹣ 4〕 +2=﹣6.【点评】此题考察了求代数式的值的应用,能正确代入是解此题的关键,用了整体代入思想.23.在做一元一次方程练习时,有一个方程“2y﹣3=y+■〞中的■没印清晰,小聪问教师,教师只是说:“■是一个有理数,该方程的解与当 x=2 时代数式 2〔 x﹣1〕﹣ 3〔 x﹣2〕﹣ 1 的值一样.〞请你帮小聪算出■所表示的数.【考点】一元一次方程的解;代数式求值.21.点 A、 B在数轴上,且到原点的距离相等,它们所对应的数分别是2x+1 和 3﹣ x,求 x 的值.【考点】一元一次方程的应用;数轴.【分析】由题意得到2x+1 与 3﹣ x 互为相反数,利用互为相反数两数之和为0 列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:2x+1+3﹣ x=0,解得: x=﹣ 4.故 x 的值是﹣ 4.【点评】考察了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.22.化简与求值:〔 1〕假设 m=﹣3,那么代数式2的值为 4 ;m+1〔 2〕假设 m+n=﹣ 3,那么代数式〔 m+n〕2+1 的值为 4 ;(3〕假设 5m﹣3n=﹣ 4,请你仿照以上方法求 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2 的值.【考点】代数式求值.【分析】〔 1〕把 m=﹣ 3 代入求出即可;(2〕把 m+n=﹣ 3 代入求出即可;(3〕先算乘法,再合并同类项,最后变形后代入求出即可.【解答】解:〔 1〕把 m=﹣ 3 代入,得,故答案为: 4;(2〕∵ m+n=﹣ 3,∴〔m+n〕2+1=×〔﹣3〕2+1=4,故答案为: 4;(3〕 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2=2m﹣ 2n+8m﹣4n+2=10m﹣ 6n+2=2〔5m﹣ 3n〕+2,当5m﹣ 3n=﹣4 时,原式 =2×〔﹣ 4〕 +2=﹣6.【点评】此题考察了求代数式的值的应用,能正确代入是解此题的关键,用了整体代入思想.23.在做一元一次方程练习时,有一个方程“2y﹣3=y+■〞中的■没印清晰,小聪问教师,教师只是说:“■是一个有理数,该方程的解与当 x=2 时代数式 2〔 x﹣1〕﹣ 3〔 x﹣2〕﹣ 1 的值一样.〞请你帮小聪算出■所表示的数.【考点】一元一次方程的解;代数式求值.21.点 A、 B在数轴上,且到原点的距离相等,它们所对应的数分别是2x+1 和 3﹣ x,求 x 的值.【考点】一元一次方程的应用;数轴.【分析】由题意得到2x+1 与 3﹣ x 互为相反数,利用互为相反数两数之和为0 列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:2x+1+3﹣ x=0,解得: x=﹣ 4.故 x 的值是﹣ 4.【点评】考察了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.22.化简与求值:〔 1〕假设 m=﹣3,那么代数式2的值为 4 ;m+1〔 2〕假设 m+n=﹣ 3,那么代数式〔 m+n〕2+1 的值为 4 ;(3〕假设 5m﹣3n=﹣ 4,请你仿照以上方法求 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2 的值.【考点】代数式求值.【分析】〔 1〕把 m=﹣ 3 代入求出即可;(2〕把 m+n=﹣ 3 代入求出即可;(3〕先算乘法,再合并同类项,最后变形后代入求出即可.【解答】解:〔 1〕把 m=﹣ 3 代入,得,故答案为: 4;(2〕∵ m+n=﹣ 3,∴〔m+n〕2+1=×〔﹣3〕2+1=4,故答案为: 4;(3〕 2〔 m﹣n〕 +4〔 2m﹣ n〕 +2=2m﹣ 2n+8m﹣4n+2=10m﹣ 6n+2=2〔5m﹣ 3n〕+2,当5m﹣ 3n=﹣4 时,原式 =2×〔﹣ 4〕 +2=﹣6.【点评】此题考察了求代数式的值的应用,能正确代入是解此题的关键,用了整体代入思想.23.在做一元一次方程练习时,有一个方程“2y﹣3=y+■〞中的■没印清晰,小聪问教师,教师只是说:“■是一个有理数,该方程的解与当 x=2 时代数式 2〔 x﹣1〕﹣ 3〔 x﹣2〕﹣ 1 的值一样.〞请你帮小聪算出■所表示的数.【考点】一元一次方程的解;代数式求值.。

七年级下册泰州数学期末试卷复习练习(Word版 含答案)

七年级下册泰州数学期末试卷复习练习(Word版 含答案)

七年级下册泰州数学期末试卷复习练习(Word 版 含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列图案中,是通过下图平移得到的是( )A .B .C .D . 3.若点()1,1P a b +-在第二象限,则点(),1Q a b -在第( )象限A .一B .二C .三D .四 4.下列命题中:①若0mn =,则点(,)A m n 在原点处;②点2(2,1)m --一定在第四象限③已知点(,)A m n 与点(,)B m n -,m ,n 均不为0,则直线AB 平行x 轴;④已知点A (2,-3),//AB y 轴,且5AB =,则B 点的坐标为(2,2).以上命题是真命题的有( )A .1个B .2个C .3个D .4个 5.直线//AB CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG EF ⊥.若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒ 6.下列说法不正确的是( ) A .125的平方根是±15 B .﹣9是81的平方根C .0.4的算术平方根是0.2D .327-=﹣37.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160°8.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋅⋅⋅的规律绕在四边形ABCD 的边上,则细线另--端所在位置的点的坐标是( )A .()1,1-B .()0,1C .()1,1D .()0,2-二、填空题9.如果1x +和2y -互为相反数,那么xy =________.10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,在ABC 中,1841B C ∠=︒∠=︒,,点D 是BC 的中点,点E 在AB 上,将BDE 沿DE 折叠,若点B 的落点B '在射线CA 上,则BA 与B D '所夹锐角的度数是________.14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果236x =,那么6x =±.15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC 的面积相等,则点P 的坐标为________.16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点2021A 的坐标为__________.三、解答题17.(1)-+; (2)245x -=,求x .18.求下列各式中的x 值.(1)2164x -=(2)()318x -=19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN ( )∵∠2=∠DMN (等量代换)∴DB ∥EC ( )∴∠DBC +∠C =180°( ).∵∠C =∠D (已知),∴∠DBC +( )=180°(等量代换)∴DF ∥AC ( )∴∠A =∠F ( )(2)在(1)的基础上,小明进一步探究得到∠DBC =∠DEC ,请帮他写出推理过程.20.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值; 21.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不能全部地写出来,于是小聪用21-来表示2的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为2的整数部分是1,用个数减去其整数部分,差就是它的小数部分.请解答下列问题:(1)10的整数部分是____,小数部分是_____.(2)如果55-的小数部分是a ,412-的整数部分是b ,求5a b ++的值. (3)已知611x y -=+,其中x 是正整数,01y <<,求x y -的相反数.二十二、解答题22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.二十三、解答题23.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数;解:过点P 作直线PH ∥AB ,所以∠A =∠APH ,依据是 ;因为AB ∥CD ,PH ∥AB ,所以PH ∥CD ,依据是 ;所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°. (2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点):①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.24.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.25.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.26.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .【参考答案】一、选择题1.B解析:B【分析】根据同位角的定义即可求出答案.【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角.故选:B .【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C 选项符合题意,A 、B 、D 选项需要通过旋转才能实现. 故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变 解析:C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C 选项符合题意,A 、B 、D 选项需要通过旋转才能实现.故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.3.C【分析】应根据点P 的坐标特征先判断出点Q 的横纵坐标的符号,进而判断点Q 所在的象限.【详解】解:∵点()1,1P a b +-在第二象限,∴1+a <0,1-b >0;∴a <-1, b -1<0,即点(),1Q a b -在第三象限.故选:C .【点睛】解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.B【分析】利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用0m =或0m ≠可对②进行判断;利用A 、B 点的纵坐标相同可对③进行判断;通过把A 点坐标向上或向下平移5个单位得到B 点坐标可对④进行判断.【详解】解:若0mn =,则0m =或0n =,所以点(,)A m n 坐标轴上,所以①为假命题;210m --<,点2(2,1)m --一定在第四象限,所以②为真命题;已知点(,)A m n 与点(,)B m n -,m ,n 均不为0,则直线AB 平行x 轴,所以③为真命题; 已知点3(2,)A -,//AB y 轴,且5AB =,则B 点的坐标为(2,2)或(2,8)-,所以④为假命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.B【分析】由对顶角相等得∠DFE =55°,然后利用平行线的性质,得到∠BEF =125°,即可求出2∠的度数.【详解】解:由题意,根据对顶角相等,则155DFE ∠=∠=︒,∵//AB CD ,∴180DFE BEF ∠+∠=︒,∴18055125BEF ∠=︒-︒=︒,∵EG EF ⊥,∴90FEG ∠=︒,∴21259035∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出125BEF ∠=︒.6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4,故C 错误, 故选C .【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴四边形ABCD的解析:B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴四边形ABCD的周长为10,2021÷10的余数为1,又∵AB=2,∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1).故选:B.【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型.二、填空题9.-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.【详解】解:∵和|y-2|互为相反数,∴,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.【详解】解:∵|y-2|互为相反数,∴20y +=,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy=-1×2=-2故答案为:-2.【点睛】本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0和|y-2|都是非负数,所以这个数都是0.10.-2【分析】直接利用关于x 轴对称点的性质得出m ,n 的值进而得出答案.【详解】∵点A (m ,1)和点B (2,n )关于x 轴对称,∴m =2,n =-1,故mn =−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x 轴对称点的性质得出m ,n 的值进而得出答案.【详解】∵点A (m ,1)和点B (2,n )关于x 轴对称,∴m =2,n =-1,故mn =−2.故填:-2.【点睛】此题主要考查了关于x 轴对称点的性质,正确掌握关于x 轴对称点的性质是解题关键. 11.α=β【详解】试题解析:当BF ∥DP 时,即:整理得:解析:α=β【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠=360.ABC ADC CBM CDN ∠+∠+∠+∠=.CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时, ()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠ 即:()1,2βαβ=+ 整理得:.αβ=故答案为.αβ=12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13..【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数.【详解】如下图,连接DE ,与解析:80︒.【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得BD B D '=, DC DB '=,由等腰三角形性质以及三角形外角定理求得BDB '∠度数,在BOD 中根据内角和即可求得BA 与B D '所夹锐角的度数.【详解】如下图,连接DE ,BA 与B D '相交于点O ,将 △BDE 沿 DE 折叠,BDE B DE '∴△≌△,BD B D '∴=,又∵D 为BC 的中点,BD DC =,BD B D '∴=,41DB C C '∴==︒∠∠,BDB DB C C =''∴=+︒∠∠∠82,18080BOD B BDB '∴=︒--=︒∠∠∠,即BA 与B D '所夹锐角的度数是80︒.故答案为:80︒.【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键.14.②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③解析:②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③两直线平行,同位角相等,故错误,是假命题;④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:∵a//b,∴∠CAE+∠ACF=180°.又AB平分∠CAE,CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.所以∠1+∠2=12∠CAE+12∠ACF=1 2(∠CAE+∠ACF)=12×180°=90°.又∵△ACG的内角和为180°,∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,∴AB⊥CD.∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;⑤如果236x=,那么6x=±,正确,是真命题.故答案为:②④⑤.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.15.(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积解析:(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵()2340a b-+-=,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积=12×6×4=12,四边形ABOP的面积=△AOP的面积+△AOB的面积=12×3×(-m)+12×3×4=6-32m,由题意得,6-32m=12,解得,m=-4,∴点P的坐标为(-4,1),故答案为:(-4,1).【点睛】本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.16.(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0),∴OA4n=4n÷2=2n,∴点A4n的坐标为(2n,0).∵2020÷4=505,∴点A2020的坐标是(1010,0).∴点A2021的坐标是(1010,1).故答案为:(1010,1).【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.三、解答题17.(1)-(2)±3【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式=;(2)x2-4=5x2=9x=3或x=-3解析:(1)-13(2)±3【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式=11 2233--=-;(2)x2-4=5x2=9x=3或x=-318.(1);(2).【分析】(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)解解析:(1)52x=±;(2)3x=.【分析】(1)首先求出2x的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)2164x-=2254x=解得:52 x=±故答案为:52 x=±(2)()318x-=12x-=解得:3x=故答案为:3x=【点睛】本题考查了平方根的含义和求法,立方根的含义和求法.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∵∠DBC+(∠D)=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A =∠F (两直线平行,内错角相等 ).(2)∵DB ∥EC ,∴∠DBC +∠C =180°,∠DEC +∠D =180°,∵∠C =∠D ,∴∠DBC =∠DEC .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 20.(1);(2);(3).【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案; (3)根据题中新定义可得出点B 的坐标,再根据解析:(1)()28,;(2)()21,;(3)1m =±. 【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,; (2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩ 解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3)(),0A x∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x =2AB OA =22mx x ∴=m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.21.(1)3;;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a 的值,同理估计的大小,再求出其整数部分b 的值,即可求解;(解析:(1)33;(2)7;(3)2【分析】(1(2)先估算5的大小,再求出其小数部分a 2的大小,再求出其整数部分b 的值,即可求解;(3)根据题意先求出x ,y 所表示的数,再求出x-y ,即可求出其相反数.【详解】解:(1)∵3<4, ∴33故答案为:33;(2)∵23< ∴32-<<-∴253<<∴5的小数部分a =5-2=3∵67 ∴425<<∴2的整数部分b =4 ∴a b ++=34=7;(3)∵34<< ∴-4<-3 ∴263< ∴62,小数部分为62=4∵6x y =+,其中x 是正整数,01y <<,∴2x =,y=4∴x y -=(242--=∴x y -的相反数为2【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 二十二、解答题22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,∴281x =,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.二十三、解答题23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH ;∠APH ,∠CPH ;(2)①∠APQ+∠PQC =∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C =360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH ;∠APH ,∠CPH ;(2)①∠APQ +∠PQC =∠A +∠C +180°成立,理由见解答过程;②3∠PMQ +∠A +∠C =360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠PMQ +∠MPQ +∠PQM =180°,即可证明∠PMQ ,∠A 与∠C 的数量关系.【详解】解:过点P 作直线PH ∥AB ,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,//DE BA ∴;(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.25.(1)110(2)(90 +n )(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平解析:(1)110(2)(90 +12n )(3)201712×90°+20182018212-n ° 【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平分线,用n °的代数式表示出∠OBC 与∠OCB 的和,再根据三角形的内角和定理求出∠BOC 的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °,∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 26.(1)见解析;(2)∠BGD =;(3)2∠BGD+∠BFD =360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB =(∠ABD+∠BDC ),根据平行线的性质∠ABD+∠BDC =180°解析:(1)见解析;(2)∠BGD =902a ︒-;(3)2∠BGD +∠BFD =360°. 【分析】(1)根据角平分线的性质求出∠EBD +∠EDB =12(∠ABD +∠BDC ),根据平行线的性质∠ABD +∠BDC =180°,从而根据∠BED =180°﹣(∠EBD +∠EDB )即可得到答案; (2)过点G 作GP ∥AB ,根据AB ∥CD ,得到GP ∥AB ∥CD ,从而得到∠BGD =∠BGP +∠PGD =∠ABG +∠CDG ,然后根据∠EBD +∠EDB =90°,∠ABD +∠BDC =180°, 得到∠ABE +∠EDC =90°,即∠ABE +α+∠FDC =90°,再利用角平分线的定义求出2∠ABG +2∠CDG =90°﹣α即可得到答案;(3)过点F 、G 分别作FM ∥AB 、GM ∥AB ,从而得到AB ∥GM ∥FN ∥CD ,得到∠BGD =∠BGM +∠DGM =∠4+∠6,根据BG 平分∠FBP ,DG 平分∠FDQ ,∠4=12∠FBP =12(180°﹣∠3),∠6=12∠FDQ =12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE 平分∠ABD ,∴∠EBD =12∠ABD ,∵DE 平分∠BDC ,∴∠EDB =12∠BDC ,∴∠EBD +∠EDB =12(∠ABD +∠BDC ),∵AB ∥CD ,∴∠ABD +∠BDC =180°,∴∠EBD +∠EDB =90°,∴∠BED =180°﹣(∠EBD +∠EDB )=90°.(2)解:如图2,由(1)知:∠EBD +∠EDB =90°,又∵∠ABD +∠BDC =180°,∴∠ABE +∠EDC =90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省泰州中学附中七年级(下)期末数学试卷一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x63.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为.8.若一个多边形的内角和等于720°,则这个多边形是边形.9.若a>0,且a x=2,a y=3,则a x﹣2y=.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为.11.已知:,则用x的代数式表示y为.12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱元.14.若不等式组有解,则a的取值范围是.15.3108与2144的大小关系是.16.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1﹣S2=.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.19.解方程(不等式)组(1)(2).20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD﹣DC﹣CB方向顺时针作折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)当运动时间为秒时,点P与点Q相遇;(2)当AP∥CQ时,求线段DQ的长度;(3)用含t的代数式表示以点Q、P、A为顶点的三角形的面积S,并指出相应t 的取值范围;(4)连接PA,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等时,求t的值.2015-2016学年江苏省泰州中学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=,故选:B.2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据单项式乘法法则;单项式除法法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、2x2与3x3不是同类项,不能合并,故本选项错误;B、应为2x3•3x2=6x5,故本选项错误;C、2x3÷x2=2x,正确;D、应为(2x2)3=8x6,故本选项错误.故选C.3.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形【考点】多边形内角与外角.【分析】本题需先求出每个外角都等于40°的正多边形为正九边形,即可得出满足条件且边数最少的多边形为正九边形,即可得出答案.【解答】解:∵360÷40=9∴每个外角都等于40°的正多边形为正九边形,∴若存在正n边形的每一个外角都不大于40°,则满足条件且边数最少的多边形为正九边形.故选:C.5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形判定定理AAS、SAS、ASA、SSS对△MOC和△NOC进行分析,即可作出正确选择.【解答】解:∵OM=ON,CM=CN,OC为公共边,∴△MOC≌△NOC(SSS).故选D.6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关【考点】正方形的性质;勾股定理.【分析】由题意,正方形ABCD和CEFG的边长分别为m、n,先根据正方形的性质求出△AEG的面积,然后再判断△AEG的面积的值与m、n的关系.【解答】解:△GCE的面积是•CG•CE=n2.四边形ABCG是直角梯形,面积是(AB+CG)•BC=(m+n)•m;△ABE的面积是:BE•AB=(m+n)•m=S△CGE+S梯形ABCG﹣S△ABE=n2.∴S△AEG故△AEG的面积的值只与n的大小有关.故选D.二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为3.2×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00032=3.2×10﹣4故答案为:3.2×10﹣4.8.若一个多边形的内角和等于720°,则这个多边形是6边形.【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:180°•(n﹣2)=720,解得n=6.9.若a>0,且a x=2,a y=3,则a x﹣2y=.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.【解答】解:a x﹣2y=a x÷(a y)2=2÷9=.故答案为:.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为y=2.【考点】解一元一次不等式;解一元一次方程.【分析】根据已知不等式解集确定出a的值,代入方程计算即可求出y的值.【解答】解:∵不等式ax﹣2>0,即ax>2的解集为x<﹣2,∴a=﹣1,代入方程得:﹣y+2=0,解得:y=2.故答案为:y=2.11.已知:,则用x的代数式表示y为y=.【考点】解二元一次方程组.【分析】方程组消元t得到y与x的方程,把x看做已知数求出y即可.【解答】解:,①+②×3得:x+3y=14,解得:y=,故答案为:y=12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出a的值即可.【解答】解:原式=x2﹣2x+ax﹣2a=x2+(a﹣2)x﹣2a,由结果不含x的一次项,得到a﹣2=0,解得:a=2.故答案为:2.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱55元.【考点】三元一次方程组的应用.【分析】设一件甲商品x元,乙y元,丙z元,根据“购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱”列出方程组,用含y的代数式分别表示出x、z,再将x、y、z三者相加即可得出结论.【解答】解:设一件甲商品x元,乙y元,丙z元.根据题意得:,解得:.∴2x+2y+2z=150﹣3y+2y+y﹣40=110,∴x+y+z=55.故答案为:55.14.若不等式组有解,则a的取值范围是a<3.【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故答案为a<3.15.3108与2144的大小关系是3108>2144.【考点】幂的乘方与积的乘方.【分析】把3108和2144化为指数相同的形式,然后比较底数的大小即可.【解答】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.16.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1﹣S 2= 6 .【考点】三角形的面积.【分析】S △ADF ﹣S △BEF =S △ABD ﹣S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1﹣S 2的值.【解答】解:∵点D 是AC 的中点,∴AD=AC ,∵S △ABC =36,∴S △ABD =S △ABC =×36=18.∵EC=2BE ,S △ABC =36,∴S △ABE =S △ABC =×36=12,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =18﹣12=6,即S 1﹣S 2=6.故答案为:6.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)【考点】平方差公式;多项式乘多项式;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用多项式乘以多项式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=1﹣9+4=﹣4;(2)原式=4(a2+3a+2)﹣7(a2﹣9)=4a2+12a+8﹣7a2+63=﹣3a2+12a+71.18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式﹣2,进而利用完全平方公式分解因式即可;(2)首先利用平方差公式分解因式,进而利用完全平方公式分解因式.【解答】解:(1))﹣2x2+4x﹣2=﹣2(x2﹣2x+1)=﹣2(x﹣1)2;(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.19.解方程(不等式)组(1)(2).【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)整理后①﹣②得出2x=﹣6,求出x,把x的值代入②得出﹣6﹣3y=1,求出y即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)整理得:①﹣②得:2x=﹣6,解得:x=﹣3,把x=﹣3代入②得:﹣6﹣3y=1,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<2,解不等式②得:x>﹣,∴原不等式组的解集为﹣<x<2.20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.【考点】解一元一次不等式;二元一次方程组的解.【分析】将原方程组中两个方程相减可得x﹣y=﹣3m+6,由x﹣y>﹣3知﹣3m+6>﹣3,解该不等式求得m的范围,即可得满足条件的m的所有非负整数解.【解答】解:在关于x、y的二元一次方程组中,①﹣②,得:x﹣y=﹣3m+6,∵x﹣y>﹣3,∴﹣3m+6>﹣3,解得:m<3,∴满足条件的m的所有非负整数解有0,1,2.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.【解答】解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE=∠CAE=×50°=25°,∴∠ADE=65°.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论.【解答】解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.【考点】完全平方公式.【分析】(1)判断两式大小,利用完全平方公式验证即可;(2)已知等式两边平方,利用完全平方公式化简,整理求出所求式子的值即可;(3)利用得出的规律确定出代数式的最小值即可.【解答】解:(1)猜想a2+b2≥2ab,理由为:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab;(2)把x﹣=5两边平方得:(x﹣)2=x2+﹣2=25,则x2+=27;(3)x2+≥2,即最小值为2.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为30x﹣5(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【考点】一元一次不等式的应用;二元一次方程的应用.【分析】(1)若只租用30座客车x辆,还差5人才能坐满,说明了人数与客车数的关系.人数=客车数的30倍﹣5;(2)若只租用50座客车,比只租用30座客车少用2辆,据此列出不等式,求出x的最小值,继而求得师生的最少人数;(3)设租用30座客车a辆,50座客车b辆,根据总费用为2200元,求出a和b的值,找出费用最低的租车方案,然后求出师生总人数.【解答】解:(1)由题意得,该校参加此次活动的师生人数为:30x﹣5,故答案为:30x﹣5;(2)由题意得,50(x﹣2)≥30x﹣5,解得:x≥,∵当x越小时,参加活动的师生就越少,且x为整数,∴当x=5时,参加的师生最少,为30×5﹣5=145人;(3)设租用30座客车a辆,50座客车b辆,则400a+600b=2200,∵a、b为整数,∴或,当时,能乘坐的最多人数为180人,当时,能乘坐的人数为170人,∵参加此次活动的师生人数为30x﹣5,且x为整数,∴当x<6时,与“根据师生人数选择租车方案”不符合,当x=6时,参加的师生为175人,符合题意,当x>6时,人数超过180人,不符合题意.答:参加此次活动的师生人数为175人.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【考点】三角形综合题.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=150°,∴∠MBC+∠NDC=150°,(2)β﹣α=90°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒4个单位速度从A 点出发沿正方形的边AD ﹣DC ﹣CB 方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当AP ∥CQ 时,求线段DQ 的长度;(3)用含t 的代数式表示以点Q 、P 、A 为顶点的三角形的面积S ,并指出相应t 的取值范围;(4)连接PA ,当以点Q 及正方形的某两个顶点组成的三角形和△PAB 全等时,求t 的值.【考点】三角形综合题;四边形综合题.【分析】(1)设t 秒后P 、Q 相遇.列出方程即可解决问题.(2)如图1中,AP ∥QC 时,由AQ ∥PC ,推出四边形APCQ 是平行四边形,根据AQ=PC ,列出方程即可解决问题.(3)分三种情形①如图2中,当0<t ≤1,点Q 在AD 上时.②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC .③如图4中,当2<t ≤,点Q 在BC 时时.分别求解即可.(4)分四种情形求解①当DQ 1=BP 时,△CDQ 1≌△ABP .②当DQ 2=BP 时,△ADQ 2≌△ABP .③当CQ 3=BP 时,△BCQ 3≌△ABP .④当BQ 4=BP 时,△ABQ 4≌△ABP ,此时P 与Q 重合.【解答】解:(1)设t 秒后P 、Q 相遇.由题意(4+1)t=12,∴t=秒,∴秒后P 、Q 相遇.故答案为.(2)如图1中,由图象可知,AP ∥QC 时,∵AQ ∥PC ,∴四边形APCQ 是平行四边形,∴AQ=PC ,∴4t=4﹣t ,∴t=,此时DQ=AD ﹣AQ=4﹣×4=.(3)①如图2中,当0<t ≤1,点Q 在AD 上时,S=×4t ×4=8t .②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC =16﹣×4×(4t ﹣4)﹣×4×t ﹣×(4﹣t )(8﹣4t )=﹣2t 2+2t +8.③如图4中,当2<t≤,点Q在BC时时,S=×[4﹣t﹣(4t﹣8)]•4=﹣10t+24.综上所述,S=.(4)如图5中,①当DQ1=BP时,△CDQ1≌△ABP,此时4﹣4t=t,t=s.②当DQ2=BP时,△ADQ2≌△ABP,此时4t﹣4=t,t=s.③当CQ3=BP时,△BCQ3≌△ABP,此时8﹣4t=t,t=s.④当BQ4=BP时,△ABQ4≌△ABP,此时P与Q重合,t=s综上所述,t为s或s或s或s时,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等.2017年3月4日。

相关文档
最新文档