广东省中山市八年级数学下册18平行四边形18.2.1矩形矩形的判定学案2无答案新版新人教版20180326189

合集下载

广东省中山市八年级数学下册 18 平行四边形 18.2.1《矩形》教案 (新版)新人教版

广东省中山市八年级数学下册 18 平行四边形 18.2.1《矩形》教案 (新版)新人教版

18.2.1《矩形》一、教学目标知识与能力:1.掌握矩形的概念,了解矩形与平行四边形的区别和联系。

2.掌握矩形的性质,初步应用矩形的性质来解决简单问题,渗透转化的思想。

过程与方法:3、经历、体验、探索矩形概念、性质的过程,渗透从一般到特殊、类比的数学思想,培养学生归纳和和初步的演绎推理能力。

情感态度与价值观:4、通过观察比较、合作交流,激发学生的学习兴趣,增强学习信心,体验探索与创造的快乐,感受数学的严谨性和数学的美。

教学重点:矩形的概念和性质及性质的简单应用教学难点:1、矩形的性质“对角线相等”的探索。

2、矩形性质的应用,尤其是有条理地书写解题过程。

二、教学过程(一)温故而知新。

复习平行四边形的定义和性质(设计意图:为学习矩形的定义和性质做铺垫。

)(二)、创设情境,引出课题。

我用多媒体展示生活中的物体,问学生图形中有平行四边形吗?下面三个与上面两个有什么不同,学生观察、回答,引出课题。

(设计意图:用生活中的物体展示长方形(即矩形),激发学生兴趣,让学生直观感受生活中物体的美,体会数学源于生活,充分体现课标理念——数学应向生活回归,向学生经验回归,人人学有价值的数学。

同时为形成矩形概念打下基础。

)(三)观察思考,总结概念。

1、看一看,提出概念。

我利用多媒体展示平行四边形的变化过程,提出问题:变化后是什么图形;学生通过观察后回答是矩形;通过我的引导和学生的观察,学生容易得出为直角时是矩形,然后让学生说一说矩形概念;强调矩形的概念有两方面的涵义,它既是矩形的定义,又是以后学习中矩形的一种识别方法。

(设计意图:诱发学生学习动机有两种,即感性认识和理性思考,出示动态变化,学生兴趣肯定很高,同时也让学生知道矩形是在平行四边形的基础上定义的,学生也容易从直观物体中得到抽象的矩形概念,符合学生认知规律;阅读是理解的基础,数学教学同样需要阅读,让学生齐读,这样有利于学生理解和记忆。

)(四)合作探索,归纳性质。

1、提出问题。

八年级数学下册:18.2.1矩形的判定学案

八年级数学下册:18.2.1矩形的判定学案

课题:18.2.1矩形的判定学习目标:1、理解矩形判定的探究过程。

2、掌握矩形判定定理的应用。

教学重点:矩形的判定定理教学难点:定理的证明方法及运用一.预习导学矩形的定义及性质:预习P53-P54,完成下列问题:1.下列说法错误的是()(A)有一个内角是直角的平行四边形是矩形(B)矩形的四个角都是直角,并且对角线相等(C)对角线相等的平行四边形是矩形(D)有两个角是直角的四边形是矩形2.平行四边形内角平分线能够围成的四边形是()(A)梯形(B)矩形(C)正方形(D)不是平行四边形3.如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH 为矩形,四边形ABCD应具备的条件是().(A)一组对边平行而另一组对边不平行;(B)对角线相等(C)对角线互相垂直; (D)对角线互相平分4.矩形的判定方法:(作图、证明)二、课堂导学5、已知□ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)平行四边形是矩形吗?说明你的理由.(2)求这个平行四边形的面积.6、如图,以△ABC的三边为边,在BC•的同侧分别作3•个等边三角形,•即△ABD、△BCE、△ACF.请回答问题并说明理由:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?二次备课教案:三、自主检测1.在□ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形2如图,BO是Rt△ABC斜边上的中线,延长BO至点D,使BO=DO,连结AD,CD,•则四边形ABCD是矩形吗?请说明理由.3.如图所示,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点,求证:•四边形ABED是矩形.4.如图所示,在平行四边形ABCD中,M是BC的中点,∠MAD=∠MDA,求证:四边形ABCD是矩形.5、如图,M、N分别是平行四边形ABCD对边AD、BC的中点,且AD=2AB,求证,四边形PMQN是矩形。

广东省中山市八年级数学下册 18 平行四边形 18.1.2 平行四边形的判定(1)教案 (新版)新人

广东省中山市八年级数学下册 18 平行四边形 18.1.2 平行四边形的判定(1)教案 (新版)新人

18.1.2 平行四边形的判定(1)学习目标知识:在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形方法。

能力:正确运用判定定理进行简单的推理、论证。

情感:让学生树立科学、严谨、理论联系实际的良好学风。

学习重点:在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形方法。

学习难点:在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形方法。

教学流程【导课】活动1:知识准备1、平行四边形的概念:2、平行四边形的性质:边:角:线:3、写出平行四边形的性质1. 2的逆命题:【多元互动合作探究猜想:上面的两个逆命题是否成立?活动2:如图,将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化过程中,它一直是一个平行四边形吗?活动3:如图,将两根细木条AC、BD用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转到两根木条,四边形ABCD一直是一个平行四边形吗?归纳:从探究中得到的结论:(1)(2)证明结论(1)已知:求证:(提示:利用三角形的全等,根据平行四边形的定义证明)证明:判定1:2证明结论(2)已知:求证:证明:判定2:【训练检测 目标探究】1、下列条件中能判断四边形是平行四边形的是( ).(A )对角线互相垂直 (B )对角线相等(C )对角线互相垂直且相等 (D )对角线互相平分2、如图,在四边形ABCD 中,AC 、BD 相交于点O ,(1)若AD=8cm ,AB=4cm ,那么当BC=___ _cm ,CD=___ _cm 时,四边形ABCD 为平行四边形;(2)若AC=10cm ,BD=8cm ,那么当AO=__ _cm ,DO=__ _cm 时,四边形ABCD 为平行四边形3、已知: ABCD 的对角线 AC 、BD 交于点O , E 、F 是AC 上的两点,并且AE=CF 。

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版18、2、1《矩形》矩形的判定学习目标1、熟悉矩形的判定方法,会判定一个四边形是菱形。

2、会用矩形的判定和性质进行有关的计算和证明。

3、经历探索矩形的判定的过程,发展合情推理的意识,培养严密的逻辑推理能力。

重点:综合运用矩形的判定和性质进行有关的计算和证明、难点:根据题目的条件合理运用判定方法证明矩形、时间分配旧知回顾2分钟、自主探知10分钟问题解决15分练习巩固10分课堂小结3分、学案(学习过程)导案(学法指导)学习过程一、回顾旧知:1、什么是矩形?(有一个角是直角的平行四边形是矩形)2、矩形有什么性质?边:对边平行且相等角:四个角都是直角对角线:对角线相等、3、如何判定一个平行四边形或四边形是矩形?(与研究平行四边形的判断方法类似,研究一下矩形的性质定理的逆命题,看看他们是否成立、)二、自主探知1、定义(判定1):有一个角是直角的平行四边形是矩形、2、思考:矩形的对角线相等,反过来,对角线相等的平行四边形是矩形吗?怎么证明?判定2:对角线相等的平行四边形是矩形、3、思考:矩形的四个角都是直角,它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?判定3:有三个角是直角的四边形是矩形、三、问题解决:1、在 ABCD中,对角线AC,BD相交于点O,OA=OD, ∠OAD=500 求∠ OAB的度数解:∵四边形ABCD是平行四边形∴OA=OC= AC OB=OD= BD 又∵OA=OD, ∴ AC=BD、∴四边形ABCD是矩形∴ ∠DAB=900 又∵ ∠OAD=500 ∴ ∠OAB=4002、已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4、(1)平行四边形ABCD是矩形吗?说明你的理由、(2)求这个平行四边形的面积四、课堂练习P551、4一、导课:1、复习矩形的性质、2、从研究问题的方法及逆命题的角度入手,去研究矩形的判定、二、自主探知1、教师引导解释强调矩形的定义:先判定是平行四边形在加一个直角。

八年级数学18平行四边形18.2特殊的平行四边形18.2.1矩形第2课时矩形的判定教案新人教版

八年级数学18平行四边形18.2特殊的平行四边形18.2.1矩形第2课时矩形的判定教案新人教版

[解析]在 Rt△ABC 中,AC= AB +BC =10 cm. ∵点 E,F 分别是 AO,AD 的中点, ∴EF 是△AOD 的中位线, 1 1 1 5 EF= OD= BD= AC= cm, 2 4 4 2 1 1 AF= AD= BC=4 cm, 2 2 1 1 5 AE= AO= AC= cm, 2 4 2 ∴△AEF 的周长=AE+AF+EF=9 cm. 2. 根据矩形的判定定理进行相关的证明 矩形的判定方法有两个基本思路: 1.由角入手直接证明; 2.只要证明其中三个角是直角就可以说明四边形是 矩形 分析 填空

ABCD 中,M 为 BC 的中点,∠MAD=∠MDA.
求证:四边形 ABCD 是矩形.
4
矩形的判定 1. 根据定义判定矩形 判定方法:__有一个角是直角__的平行四边形叫做矩形. 2. 按对角线的数量关系判定矩形. 定理 1:对角线相等的平行四边形是矩形. 板 书 设 计 3. 按直角的数量来判定矩形. 定理 2:有三个角是直角的四边形是矩形. 例:如图,在矩形 ABCD 中,对角线 AC,BD 相交于点 O,点 E,F 分别是 AO、AD 的中点,若 AB=6 cm,BC=8 cm,则△AEF 的周长=__9__cm.
作课时间
教 教师活动 【复习巩固】 1. 根据定义判定矩形
学 过
程 学生活 动 设计意图
判定方法:__有一个角是直角__的平行四边形叫做矩 形. 2. 按对角线的数量关系判定矩形 定理 1:对角线相等的平行四边形是矩形. 3. 按直角的数量来判定矩形 记忆 回顾矩形的定义 和判定方法, 梳理记 忆。
专题课件 矩形的判定
课 题 课 型 教 学 内 容 分 析 教 学 目 标 本节课复习矩形判定的应用。 1. 复习记忆矩形的定义和判定内容。 2. 根据矩形的性质和判定方法进行简单的计算。 3. 根据矩形的判定定理进行 相关的证明。 重 点 根据矩形的性质和判定方法进行简单的计算和证明。 难 点 教 学 策 略 首先师生一起回顾矩形的定义和判定方法,梳理记忆。再通过典例分类教学, 逐个掌握。 选 择 与设计 学 生 学 习 方 法 教 具 复习记忆法,分析法,应用法 三角板 矩形的判定 复习课 课 时 第 2 课时

[精品]最新八年级下册特殊的平行四边形18.2.1矩形第2课时矩形的判定教案新人教版

[精品]最新八年级下册特殊的平行四边形18.2.1矩形第2课时矩形的判定教案新人教版

第2课时矩形的判定1.掌握矩形的判定方法;(重点) 2.能够运用矩形的性质和判定解决实际问题.(难点)一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分; 2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC 中,AB =AC ,AD是BC 边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E .求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B =∠ACB =∠FAE =∠EAC ,进而得到AE ∥BC ,即可得出四边形AEDB 是平行四边形,再利用平行四边形的性质得出四边形ADCE 是平行四边形,再根据AD 是高即可得出四边形ADCE 是矩形.证明:∵AB =AC ,∴∠B =∠ACB .∵AE 是△BAC 的外角平分线,∴∠FAE =∠EAC .∵∠B +∠ACB =∠FAE +∠EAC ,∴∠B =∠ACB =∠FAE =∠EAC ,∴AE ∥BC .又∵DE ∥AB ,∴四边形AEDB 是平行四边形,∴AE 平行且等于BD .又∵AB =AC ,AD ⊥BC ,∴BD =DC ,∴AE 平行且等于DC ,故四边形ADCE 是平行四边形.又∵∠ADC =90°,∴平行四边形ADCE 是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,延长OA 到N ,ON =OB ,再延长OC 至M ,使CM =AN .求证:四边形NDMB 为矩形.解析:首先由平行四边形ABCD 可得OA =OC ,OB =OD .若ON =OB ,那么ON =OD .而CM =AN ,即ON =OM .由此可证得四边形NDMB 的对角线相等且互相平分,即可得证.证明:∵四边形ABCD 为平行四边形,∴AO =OC ,OD =OB .∵AN =CM ,ON =OB ,∴ON =OM =OD =OB ,∴MN =BD ,∴四边形NDMB 为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形如图,▱ABCD 各内角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH 是矩形.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAB +∠ABC =180°.∵AH ,BH 分别平分∠DAB 与∠ABC ,∴∠HAB=12∠DAB ,∠HBA =12∠ABC ,∴∠HAB +∠HBA =12(∠DAB +∠ABC )=12×180°=90°,∴∠H =90°.同理∠HEF =∠F =90°,∴四边形EFGH 是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】 矩形的性质和判定的运用如图,O 是矩形ABCD 的对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,且AE =BF =CG =DH .(1)求证:四边形EFGH 是矩形; (2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF =2cm ,求矩形ABCD 的面积.解析:(1)证明四边形EFGH 对角线相等且互相平分;(2)根据题设求出矩形的边长CD 和BC ,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD 是矩形,∴OA =OB =OC =OD .∵AE =BF =CG =DH ,∴AO -AE =OB -BF =CO -CG =DO -DH ,即OE =OF =OG =OH ,∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点,∴GO =GC .∵DG ⊥AC ,∴∠DGO =∠DGC =90°.又∵DG =DG ,∴△DGC ≌△DGO ,∴CD =OD .∵F 是BO 中点,OF =2cm ,∴BO =4cm.∵四边形ABCD 是矩形,∴DO =BO =4cm ,∴DC =4cm ,DB =8cm ,∴CB =DB 2-DC 2=43cm ,∴S 矩形ABCD =4×43=163(cm 2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】 矩形的性质和判定与动点问题如图所示,在梯形ABCD 中,AD∥BC ,∠B =90°,AD =24cm ,BC =26cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形?(2)经过多长时间,四边形PQBA 是矩形?解析:(1)设经过t s 时,四边形PQCD 是平行四边形,根据DP =CQ ,代入后求出即可;(2)设经过t ′s 时,四边形PQBA 是矩形,根据AP =BQ ,代入后求出即可.解:(1)设经过t s ,四边形PQCD 为平行四边形,即PD =CQ ,所以24-t =3t ,解得t =6;(2)设经过t ′s ,四边形PQBA 为矩形,即AP =BQ ,所以t ′=26-3t ′,解得t ′=132.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、板书设计 1.矩形的判定有一角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形. 2.矩形的性质和判定的综合运用在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.。

八年级数学下册 18.2.1 矩形(2)矩形的判定学案(新版)新人教版

八年级数学下册 18.2.1 矩形(2)矩形的判定学案(新版)新人教版

八年级数学下册 18.2.1 矩形(2)矩形的判定学案(新版)新人教版1、理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形、2、会有条理的思考与表达,并逐步学会分析与综合的思考方法、3、会综合运用矩形的性质定理与判定定理进行计算与证明、导学过程【问题探究】问题1:矩形的定义:_______________________________________叫做矩形、问题2:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?问题3:李芳同学用“边直角、边直角、边直角、边”这样四步,画出了一个四边形,她说这就是一个矩形,她的判断对吗?为什么?归纳矩形的判定定理:ABOCD【应用范例】例1、如图,在□ABCD中,对角线AC和BD相交于点O,△OAB 是等边三角形,且AB=4,求□ABCD的面积例2、已知:如图,□ABCD的四个内角的平分线分别相交于点E、F、G、H、求证:四边形EFGH是矩形、例3、已知,如图、矩形ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是矩形、【课堂达标】1、四边形ABCD中,∠A =∠B =∠C =∠D, 则四边形ABCD 是;2、下列命题是真命题的是();A、有一个角是直角的四边形是矩形B、两条对角线相等的四边形是矩形C、有三个角是直角的四边形是矩形D、对角线互相垂直的四边形是3、已知:如图,在△ABC中,∠C=90,CD为AB边上中线,延长CD到点E,使得 DE=CD、连结AE,BE、求证:四边形ACBE为矩形、4、□ABCD 中,E是CD的中点,△A BE是等边三角形,求证:四边形ABCD是矩形【课后作业】5、在平行四边形□ABCD 中,增加下列条件中的一个,就能断定它是矩形的是()A、∠A+∠C=180B、AB=BCC、AC⊥BDD、AC=2AB6、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅拿尺子要他们帮助检测一个窗框是否是矩形,他们各自做了如下检测,检测后,他们都说窗框是矩形,你认为最有说服力的是()A、甲量得窗框两组对边分别相等B、乙量得窗框对角线相等C、丙量得窗框的一组邻边相等D、丁量得窗框的两组对边分别相等且两条对角线也相等7、如图3-14,□ ABCD的四个内角的平分线相交于点E、F、G、H、求证:EG = FH、8、如图3-12,□ABCD中,∠DAC=∠ADB, 求证:四边形ABCD是矩形、ADBCFE9、已知:如图,在△ABC中,∠ACB=90,D是AB的中点,DE、DF分别是∠BDC、∠ADC的角平分线、求证:四边形DECF是矩形、。

人教版2019八年级(下册)数学第十八章平行四边形18.2.1矩形第2课时矩形的判定导学案

人教版2019八年级(下册)数学第十八章平行四边形18.2.1矩形第2课时矩形的判定导学案

18.2.1 矩形第2课时矩形的判定一、新课导入1.导入课题工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?(板书课题)2.学习目标(1)能推导归纳判定一个四边形是矩形的几种方法.(2)能选取适当的判定方法判定一个四边形是矩形.3.学习重、难点重点:矩形的判定方法的探究.难点:矩形的性质与判定的综合运用.二、分层学习1.自学指导(1)自学内容:P53最后二行至P54例2前的内容.(2)自学时间:10分钟.(3)自学要求:用已学的矩形意义和性质推导出矩形的判定方法.(4)自学参考提纲:①按定义:有一个角是直角的平行四边形是矩形.②“矩形的对角线相等”的逆命题是对角线相等的平行四边形是矩形,这个命题成立吗?请给予证明.③有三个角是直角的四边形是矩形.④判断:a.对角线相等的四边形是矩形.(×)b.对角线相等且互相平分的四边形是矩形.(√)2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生是否能完成对两个判定定理的推导,命题证明存在的障碍在哪里?②差异指导:指导学生依据矩形定义完成两个定理的论证及证明一个四边形是矩形的方法步骤.(2)生助生:同桌之间相互研讨.4.强化归纳矩形的三种判定方法及几何推理格式:方法1:有一个角是直角的平行四边形是矩形;方法2:有三个角是直角的四边形是矩形;方法3:对角线相等的平行四边形是矩形.1.自学指导(1)自学内容:P 54至P55例2.(2)自学时间:5分钟.(3)自学方法:边看例题,边思考解题思路及解答过程中的每步依据.(4)自学参考提纲:①课本中求∠OAB 的度数的思路是:50()OAD OAB DAB OAD ∠=︒∠=−−−−−→∠∠-求∠DAB 的度数→证明∠DAB=90°→证明四边形ABCD 是矩形.②(证明)解答第一步推理运用了平行四边形的性质:对角线互相平分.第二步由OA=OD 得到AC=BD 的依据是等量代换.第三步由AC=BD 得到四边形ABCD 是矩形的依据是对角线相等的平行四边形是矩形.③完成课本P 55练习第2题,参照例2的思路写出解答过程.2.自学:结合自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否理解例2的解题思路和步骤,存在的困难在哪里.②差异指导:对练习第2题的条件进行分析,猜测有什么结论.(2)生助生:学生之间相互交流帮助.4.强化(1)矩形的判定方法.(2)由条件到问题之间的联系如何分析.三、评价1.学生自我评价(围绕三维目标):各组学生代表介绍自己的学习方法、收获及困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习中的态度、学习方式、成果及不足之处.(2)纸笔评价:评价作业.3.教师的自我评价(教学反思).本节课通过观察、探究,让学生掌握矩形的三个判定方法:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本节课的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性与主动性.(时间:12分钟满分:100分)一、基础巩固(50分)1.(20分)下列判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.(×)(2)四个角都相等的四边形是矩形.(√)(3)对角线相等的四边形是矩形.(×)(4)对角线互相平分,且有一个角是直角的四边形是矩形. (√)2.(10分)下列四边形中不一定是矩形的是(C)A.有三个角是直角的四边形B.四个角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形3.(20分)如图:(1)当AC=BD 是矩形;(2)当∠ABC=∠BCD=∠CDA=90°时,四边形ABCD是矩形.二、综合应用(20分)4.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)这个平行四边形是矩形吗?说明你的理由;(2)求这个平行四边形的面积.解:(1)是.∵△AOB是等边三角形,∴AO=BO,又∵AO=12AC,BO=12BD.(平行四边形的性质)∴AC=BD.是矩形.(2))2144.2ABCD S cm =⨯⨯= 三、拓展延伸(30分)5.如图,在△ABC 中,D 在AB 边上,AD=BD=CD ,DE ∥AC ,DF ∥BC.求证:四边形DECF 是矩形. 证明:∵AD=BD=CD ,∴△ABC 为直角三角形,∠FCE=90°,∵DE ∥AC,DF ∥BC,∴四边形DECF 为平行四边形,又∵∠FCE=90°,∴平行四边形DECF 是矩形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《18.2.1 矩形的判定》
一、【回顾】
1.四边形-----------→平行四边形-------------→矩形
2.矩形的性质
边: 角: 对角线:
学习研讨:矩形是特殊的平行四边形,怎样判定一个平行四边形是矩形呢? 请同学们说出最基本的方法:(用定义) 二、【导入】
情境一:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?
根据工人师傅的操作猜想矩形的判定方法:
情景二:李芳同学有“边——直角、边——直角、边——直角、边”这样四步,画出了一个四边形,她说这就是一个矩形,她的判断对吗?为什么?
学习目标:1.在探索矩形判定条件中,理解并掌握用对角线来矩形的方法;
2.会综合运用矩形的判定方法和性质来解决问题;
3.培养用类比、逆向联想及运动的思维方法来研究问题.
重点知识:解和掌握矩形的判定定理
难点问题:够运用综合法和严密的数学语言证明矩形的判定定理
.
根据李芳的做法猜想矩形的判定方法:
三、【探究】
1. 探究一:探究“对角线相等的平行四边形是矩形.” (学法指导:利用矩形的定义来证)
如图在□ABCD 中,对角线AC 、BD 相交于O ,如果AC =BD, 求证:□ABCD 是矩形.
2.探究二:探究“三个角都是直角的四边形是矩形.”逻辑证明“有三个角是直角的四边形...是矩形.
(学法指导:先证明它是平行四边形,然后用矩形的定义来证明)
已知: 在四边形ABCD 中∠A =∠B =∠C =90°
求证:四边形ABCD 矩形
跟踪练习:
下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;( )
(2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( )
(4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( )
(6)对角线互相平分且相等的四边形是矩形;( ) (7)对角线相等,且有一个角是直角的四边形是矩形;( ) (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( ) (9)两组对边分别平行,且对角线相等的四边形是矩形. ( )
A
D
C
C D
3.例题研究:
例1:如图,M 为平行四边形ABCD 边AD 的中点,且MB =MC , 求证:四边形ABCD 是矩形.
例2:已知,如图.矩形ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,
求证:四边形EFGH 是矩形.
小试牛刀:
已知:如图,在□ABCD 中,各个内角的平分线 相交于点E 、F 、G 、H
(1)猜想EG 与FH 间的关系是: (2)试证明你的猜想。

拓展提升:△ABC 中,点O 是AC
,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO=FO
(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.
归纳总结 :矩形的判定
角:(1)有一个角是直角的平行四边形是矩形
(2)四个角都是直角的四边形是矩形 对角线:(1)对角线相等的平行四边形是矩形
C
D
B D
A
D
B
N
C
F
O
E
M
A
(2)对角线相等且互相平分的四边形是矩形
2.思想方法:本节主要学习了矩形几种判定方法,在使用各种判定方法时,一定要注意看清楚
给出的是平行四边形还是四边形.主要数学思想:类比,转化思想.
四、【课堂检测】
1、能够判断一个四边形是矩形的条件是()
A 对角线相等
B 对角线垂直
C对角线互相平分且相等 D对角线垂直且相等
2、矩形的一组邻边长分别是3cm和4cm,则它的对角线长是
cm
3、如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠ EAC、∠ MCA、∠ ACN、∠ CAF的角平分线,则四边形ABCD是()
A 菱形
B 平行四边形
C 矩形
D 不能确定。

相关文档
最新文档