初一数学不等式

合集下载

初一下册数学不等式

初一下册数学不等式

初一下册数学不等式一、不等式的基本概念1、不等式的定义:不等式是指两个表示数量大小的算式之间的一种比较关系,它主要有以下比较关系:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等关系。

2、不等式的解法:不等式的解法可以分为两个大类,一是数值比较,即把不等式通过数值对比,直接得出有解或无解的结论;二是构建图像比较法,即构造图像,找出满足不等式的所有符合的解。

二、一元一次不等式的解法1、绝对值不等式的解法:绝对值不等式的图像是一条双线段,其满足条件的解即是在双线段上的所有实数,该解法常应用于根据某一等价条件选择最优解时。

2、平方式不等式:平方式不等式的图像是一个双曲线,它的满足条件的解是在两个双曲线之间的所有实数解。

3、一元一次不等式概括法:一元一次不等式概括法是给出一元一次不等式的一般形式,通过其中的“≥”或者“≤”确定其中不等式的解的区间,根据给出的条件判断所有不等式的解。

三、一元二次不等式的解法1、分类解法:分类解法是根据不等式中a、b、c三个系数的大小来判断不等式有多少个解,及其解的范围,适用于求解有两个实数解的一元二次不等式。

2、构造图像比较法:构造图像比较法,它的图像是一个二次函数的图像,可以找出所有满足条件的不等式的解。

四、不等式的应用1、用于科学研究:不等式在科学探究中也有着重要的作用,它可以帮助科学家们得出一些初步的结论,如经济学中的供求情况、物理学中的极限分析等,可以给出有关观察对象的某些假设和概念。

2、用于工程计算:不等式在工程计算中也有着不可替代的作用,它可以帮助工程师解决一些复杂的问题,如土木工程中的振动分析和工作量计算等,可以帮助工程师给出更加优化的计算方案。

初一不等式题型及解题方法

初一不等式题型及解题方法

初一不等式题型及解题方法篇一:初一不等式是数学中的一个重要章节,涉及到不等式的定义、不等式的解法、不等式的证明等多个方面。

在初中数学中,不等式是一个重要的概念,不仅能够帮助我们解决许多实际问题,而且在中考和高考中也占有重要的地位。

下面是一些常见的初一不等式题型及解题方法。

一、不等式的基本性质1. 不等式的符号法则:对于任意两个数 x、y,若 x+y>0,则不等式 ax+by>c 的解集为 R,其中 a、b、c 为任意实数;若 x+y<0,则不等式 ax+by<c 的解集为-R,其中 a、b、c 为任意实数。

2. 不等式的解集法则:对于任意一个不等式 ax+by>c,若 a、b>0,则解集为 R;若 a、b<0,则解集为-R。

3. 不等式的传递性:若 a>0,b>0,则 a×b>0;若 a>0,b<0,则 a×b<0。

二、解不等式的方法1. 直接解法:利用不等式的基本性质和符号法则,直接解出不等式的解集。

2. 移项解法:将不等式中的系数进行移项,使得不等式变得简单,从而解出不等式的解集。

3. 合并同类项解法:将不等式中的同类项进行合并,从而简化不等式,进而解出不等式的解集。

三、不等式的证明1. 直接证明法:利用不等式的基本性质和符号法则,直接证明不等式的正确性。

2. 转化证明法:将不等式转化为已知条件,然后证明结论与已知条件相等,从而证明不等式的正确性。

3. 均值不等式证明法:利用均值不等式,通过构造两个数,证明它们的和与积的差小于第三个数,从而证明不等式的正确性。

以上就是一些常见的初一不等式题型及解题方法。

在解题过程中,我们需要注意不等式的符号法则、解集法则和传递性,并且要善于运用不同的解题方法,以更好地解决问题。

同时,不等式的证明需要善于运用均值不等式,以达到事半功倍的效果。

篇二:初一不等式是数学中的一个重要章节,涉及到不等式的性质、不等式的解法、不等式的证明等多个方面。

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法
初一数学不等式题型及解题方法
一、不等式的概念
什么是不等式? 不等式就是用符号表示两个数量或几个数量之间的关系和大小的算术表达式,它一般由“大于、小于、大于等于、小于等于”等符号和“=”符号两部分组成,如:
3x-5 > 6
二、不等式的解题方法
(一)解不等式的共同方法:
1.把不等式的左右两边与右边的数比较:
(1)如果比较时左边的数大于右边的数,则原式为真,所以真不等式的结果是无穷大;
(2)如果比较时左边的数小于右边的数,则原式为假,所以假不等式的结果是无穷小。

2.变形法:
(1)把不等式左边的式子变形,使其变为等式或假不等式,继续上面的比较;
(2)把不等式转化为等式,再求解出等式的解,再进行排除法,排除掉不符合要求的解或将满足要求的解组成结果。

(二)不等式的分类
1.一元一次不等式
一元一次不等式是指x的一次幂不大于1,如:2x-3≤5。

解法:求得x ≤ 4/2,故不等式的解集为 x ≤ 4/2 。

2.一元二次不等式
一元二次不等式是指x的幂不大于2,如:2x2-3x+4≥2。

解法:首先方程的左边式子求得最小值,然后再以最小值与右边比较,确定原式的真假。

3.多元一次不等式
多元一次不等式指的是有一个或多个变量,且变量的幂均不大于1,如:x+2y ≤ 4
解法:先把不等式变成一元一次不等式,然后再求解:先把不等式中的y变量消去,即 x+2y ≤ 4 → x ≤ 4-2y 。

七年级数学不等式组典型例题

七年级数学不等式组典型例题

七年级数学不等式组典型例题不等式组是数学中常见的一个概念,它涉及到不等式的集合。

在七年级的数学学习中,学生通常会学习如何解决一些典型的不等式组问题。

以下是一些七年级数学中常见的不等式组典型例题,帮助学生更好地理解和应用不等式组的知识。

例题1:求解不等式组:x + y > 10x - y < 5解析:首先我们可以通过图形法来解决这个问题。

我们将不等式转化为等式得到两条直线:x + y = 10和x - y = 5。

然后我们可以在坐标平面上画出这两条直线,并找出它们的交点。

交点的左侧区域就是不等式组的解集。

例题2:求解不等式组:2x + 3y ≤ 12x + 2y > 4解析:这个问题中的不等式组包含了一个不等式和一个不等式。

我们可以通过图形法来解决这个问题。

首先我们将两个不等式转化为等式得到两条直线:2x + 3y = 12和x + 2y = 4。

然后我们可以在坐标平面上画出这两条直线,并找出它们的交点。

交点的右侧区域就是不等式组的解集。

例题3:求解不等式组:3x - 2y < 6x + y > 2解析:这个问题中的不等式组包含了一个不等式和一个不等式。

我们可以通过代入法来解决这个问题。

首先我们解决第一个不等式3x - 2y < 6,我们可以选择一个合适的x值,然后计算出相应的y 值。

例如,当x = 1时,我们得到-2y < 3,即y > -3/2。

然后我们解决第二个不等式x + y > 2,我们选择一个合适的x值,计算出相应的y值。

例如,当x = 1时,我们得到1 + y > 2,即y > 1。

因此,不等式组的解集为x > 1且y > -3/2。

通过解决这些典型例题,学生可以更好地掌握不等式组的解题方法。

同时,这也为他们以后更复杂的不等式组问题的解决打下了坚实的基础。

初中数学初一数学下册《不等式及其基本性质》教案、教学设计

初中数学初一数学下册《不等式及其基本性质》教案、教学设计
4.能够运用不等式的性质和解法解决一些简单的实际应用问题,提高学生的数学思维能力。
(二)过程与方法
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力,采用以下方法:
1.通过引入实际生活中的例子,激发学生对不等式的兴趣,引导学生发现不等式在生活中的广泛应用。
2.采用启发式教学,鼓励学生主动探究不等式的基本性质,培养学生的自主学习能力。
教师提问:“同学们,你们知道什么是比较吗?在生活中,我们经常会比较一些事物的大小,比如身高、体重等。今天,我们就来学习一种新的数学表达方式,用来表示两个数的大小关系。”
2.学生分享:请学生举例说明生活中遇到的大小比较情况,让学生感受到数学与生活的联系。
3.引入概念:教师通过学生分享的例子,引出不等式的定义,并用数学符号表示。
初中数学初一数学下册《不等式及其基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.了解不等式的定义,理解不等式两边的关系,能够正确书写和识别常见的不等式。
2.熟练掌握不等式的基本性质,如加法、减法、乘法、除法的性质,并能够运用这些性质进行不等式的化简和求解。
3.学会使用数轴和区间表示不等式的解集,掌握求解一元一次不等式的方法,并能够解决实际问题。
难点:运用不等式的基本性质进行复杂不等式的化简和求解,以及在实际问题中灵活运用不等式知识。
2.重点:培养学生利用数轴和区间表示不等式解集的能力,提高学生的直观想象力和逻辑思维能力。
难点:让学生理解并掌握不等式解集的求解方法,特别是在处理多重不等式和区间交、并问题时。
(二Байду номын сангаас教学设想
1.创设情境,导入新课
1.学生在不等式的理解上可能存在一定难度,需要通过具体实例和生活情境,帮助学生建立起不等式的直观感知。

七年级数学不等式的基本性质

七年级数学不等式的基本性质

要 变 号
4.用不等式表示: (1)X为正数; X>0 (3)X为非负数; x≥0
(2)X为负数; x <0 (4)X为非正数. x≤0
5.若a-b<0,则下列各式中一定成立的是( D ) A. a>b B. a+3>b+3 C. a-c>b-c D. a+0.1<b+0.1
课堂小结
1)不等式的定义:用不等号“>”(或“<”、“≥”、 “≤”)连接的式子叫做不等式。
冷风机环保空调主机运行时,要打开一定面积的门或窗,以便通风换气,若没有足够的门窗时,应加装排气扇,并保证排气量为环保空调总送 风量的80%。
显赫,怕是这王府后院从此不太平了。壹想到这里,她又有点儿后悔刚才替冰凝拉了偏架。淑清壹听宋姐姐的名字被解释得这么好听,心中很 是不服气。宋格格听到自己的名字第壹次被赋予了如此的诗意,脸色终于慢慢地好了起来。第壹卷 第六十八章 新居随着吟雪回到自己的院 子,冰凝这颗心才算是轻松下来。月影早早就将房间收拾得整整齐齐,壹点儿也见不到清早出发前的那副乱七八糟样子,此刻壹见丫鬟回来了, 忙不迭奉上了茶水。待这壹口热茶下肚,冰凝的心头立即涌上壹股暖暖的感觉,这两天来的壹幕幕,不停地在她的脑海回闪。昨天累了壹天, 晚上根本没有休息,紧接着就是早上的敬茶这个重要事情,把冰凝累得浑身似散了架壹般。而且刚刚的这个敬茶,哪里是姐妹相认、和睦相处? 分明就是刀光剑影,明争暗斗!在年府里从没有经历过这些事情的她,简直就是心力交瘁,疲于应付,只有招架之功,没有还有手之力。现在 终于闲下来,才算仔细看了看这个将来要生活壹辈子的地方。院落很大,毕竟是第壹侧福晋,不似福晋院落的庄重大气,也不如李侧福晋院落 的江南风情,这里倒是更有壹番世外桃源的意境,很合冰凝的心思,可以说,这个院落,是冰凝自被赐婚以来,最合心意的壹件事情。这个院 子叫做“怡然居”。福晋的院子是两进院,叫做“霞光苑”。但那是福晋,身份地位摆在那里,自然要与众女眷有着明显的不同;而且确实也 有需要,因为府中的家宴需要设在她那里,女眷们的请安需要在她那里,连管家汇报也需要在那里,因此前厅后院的格局是必须,也是必要的。 这怡然居就不同了,只是壹进的院子。但是,院子非常大,因此壹进门的位置设了影壁墙,绕过影壁,首先是壹个花园,这与壹般院落,将花 园设在最后位置有着极大的不同。也正是这个花园,拉开了院门与正房之间的距离,形成了较大的距离感和极强的私密感,颇有曲径通幽的效 果。院子的西侧种了壹棵芙蓉树,枝叶繁茂,占据了院子上空三分之壹的空间。现在正是芙蓉花盛开的季节,粉粉的花朵落满了壹地,把整个 儿院子映得暖融融的。但是,冰凝不太喜欢粉色,见到满眼的粉红,很是刺目,略略皱了壹下眉头。不过,想想也就这几天开花,过些日子不 开花就好了,因此也就没有多说什么,只是吩咐小太监及时把落下的花朵清扫干净。东侧有壹组石桌石椅,石桌的表面刻的是壹副围棋盘,既 可以当普通桌子,也可以当棋盘桌。除此之外,从影壁开始,壹直到正屋门前,全部是壹整片的花圃,高低错落地种植着各式各样的花草,其 中有冰凝最喜欢的兰草,淡淡蓝紫色的小花,很是清新淡雅。这让她的心情略略地好了壹些。从院门走到居室,就像是漫步在花海中,随着脚 步的移动,花香就

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法一、不等式的基本概念1.不等式符号及含义不等式是指两个数之间大小关系的一种表示方法。

不等号符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

其中,大于(>)表示左边的数比右边的数大;小于(<)表示左边的数比右边的数小;大于等于(≥)表示左边的数大于或等于右边的数;小于等于(≤)表示左边的数小于或等于右边的数。

2.不等式的解解不等式的过程就是求出不等式中未知数的取值范围。

一般情况下,我们通过对不等式进行变形、化简,再利用一些不等式性质和数轴上的图示可以求出不等式的解集。

解不等式的过程也包括反证法、分段讨论等方法。

二、不等式的性质不等式有一些特殊的性质,了解这些性质有助于我们更好地理解和运用不等式。

1.不等式的性质①两个相等的数之间没有大小关系,所以两个相等数代入一个不等式时不等式的成立与否是无法判断的。

②不等式两边同时加(减)一个相同的数,不等式仍然成立。

即如果a>b,则a+c>b+c。

③不等式两边同时乘(除)一个正数,不等式的方向不变。

即如果a>b,c>0,则a×c>b×c。

④不等式两边同时乘(除)一个负数,不等式的方向改变。

即如果a>b,c<0,则a×c<b×c。

2.不等式的转化不等式的转化是指将不等式进行变形、化简,以便更好地求解。

①不等式中可以进行加减、乘除、倒数、取对数等运算,但要注意符号的变化,需根据不等式的大小关系来进行变换。

②对于含绝对值的不等式,也可以通过转化为分段函数的方式来求解。

即根据不同的不等式形式,将绝对值进行分段讨论,再求解不等式。

三、不等式的解题方法1.一元一次不等式一元一次不等式是指只含有一个未知数和一次项的不等式,通常可以用数轴解题法、图像法、代入法等方法来求解。

①数轴解题法:首先将不等式化简,再根据不等式的方向在数轴上做出相应的标记,并根据不等式的特点来判断解集的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一(七年级)下册数学不等式与不等式组【知识梳理】
1.判断不等式是否成立:关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数。

因此,在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。

2.解一元一次不等式(组):解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。

一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。

3.求不等式(组)的特殊解:不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。

注意应用数形结合思想。

4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。

重要性质:
• 1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

表达式:
如果a>b,那么a±c>b±c
如果a<b,那么a±c<b±c
• 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

表示式:
如果a>b,并且c>0,那么ac>bc(或a/c>b/c)
如果a<b,并且c>0,那么ac<bc(或a/c>b/c)
• △3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
表达式:
如果a>b,并且c<0,那么ac<bc(或a/c<b/c)
如果a<b,并且c<0,那么ac>bc(或a/c>b/c)
拓展:把不等式的性质和等式的性质结合起来,试着总结出他们之间的联系和区别。

其他性质
(1) 可加性:若a>b,c>d,则a+c>b+d
(2) 可乘性:若a>b>0,c>d>0,则ac>bd>0
应用:若|a|>|b|>0,则|a|2>|b|2,即a2>b2
【能力训练】
一、填空题:
1.用不等式表示:① a大于0_____________;②是负数____________;③5与x的和比x的3倍小______________________。

2.不等式的解集是__________________。

3.用不等号填空:若。

4.当x_________时,代数代的值是正数。

5.不等式组的解集是__________________。

6.不等式的正整数解是_______________________。

7.的最小值是a,的最大值是b,则
8.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________。

9.编出解集为的一元一次不等式为______________________。

10.若不等式组的解集是空集,则a、b的大小关系是_______________。

二、选择题:
11.下列不等式中,是一元一次不等式的是()
A.2x-1>0 B.-1<2 C.3x-2y<-1 D.y2+3>5
12.不等式的解集是()
A.x≤ B.x ≥ C.x≤ D.x ≥
13.一元一次不等式组的解集是()
A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2
14.如图1,在数轴上所表示的是哪一个不等式的解集()
A. B.C.x+1≥-1 D.-2x>4
15.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。

下列两个不等式是同解不等式的是)
A.与 B.与
C.与 D.与
16.解下列不等式组,结果正确的是( )
A.不等式组的解集是x>3 B.不等式组的解集是-3<x<-2
C.不等式组的解集是x<-1 D.不等式组的解集是-4<x<2
17.若,则a只能是()
A.a≤-1 B.a<0 C.a≥-1 D.a≤0
18.关于x的方程的解是非负数,那么a满足的条件是( )
A.a>3 B.a≤3 C.a<3 D.a≥3
三、解一元一次不等式(或不等式组),并把它们的解集在数轴上表示出来。

19.6x<7x-2 20.
四、解答题:
21.x为何值时,代数式的值比代数式的值大。

22.已知关于x、y的方程组。

(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1。

23.已知方程组的解为负数,求k的取值范围.
五、列一元一次不等式(或不等式组)解应用题:
24.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。

5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
六、探究题:
25.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。

年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。

(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。

(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。

参考答案:
一、填空题
1.a>0,x+y<0,x+5<3x;2.x≤5;3.>,<,>;4.x<;5.-2≤x<1;6.1,2,3;7.-4;8.a-8%a<b<a-15%a;9.x-1≥1;10.a<b;
二、选择题答案分别为:ABCCADBD
三、解答题
19.x>2;20.-2≤x<3图略;21.当x<时;22.当m取值在1<m≤5时;23.k<;24.800米;25.提示:通过列三种票的函数关系,再通过不等式解答。

相关文档
最新文档