中考数学一轮复习试题:第39课时-概率应用
九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
中考数学一轮复习专题解析—统计与概率

中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
【最新】中考数学总复习学案:第39课时 圆的综合

第39课时 圆的综合一、选择题1.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙O 1的半径为4cm ,则⊙O 2的半径为( ) A .5cm B.13cm C.9cm 或13cmD.5cm 或13cm2.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切3.圆锥的侧面积为8πcm 2, 侧面展开图圆心角为45°,则该圆锥母线长为( ) A .64cm B .8cm4.如图,正三角形的内切圆半径为1,那么三角形的边长为( )A .2B .32C .3D .35、如图,PA PB ,分别是圆O 的切线,A B ,为切点,AC 是圆O的直径, 35BAC ∠=,P ∠的度数为( )A .35B .45C .60D .706.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ) A .2100cm π B .2400cm 3πC .2800cm π D .2800cm 3π 二、填空题7.如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =,3cm OC =,则⊙O 的半径为 cm .第5题图第7题图第4题图第6题图P8.若O 为△ABC 的外心,且∠BOC =60°,则∠BAC = °.9.圆O 1和圆O 2的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于 cm .10.圆锥的底面半径是1,母线长是4,它的侧面积是 ______.11.已知⊙O 的半径是3,圆心O 到直线l 的距离是3,则直线l 与⊙O 的位置关系是 . 三、解答题12.如图,AB 是圆O 的直径,点C 在圆O 上,且AB =(1)求sin BAC ∠的值;(2)如果OD AC ⊥,垂足为D ,求AD 的长; (3)求图中阴影部分的面积.第12题图14.AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.第14题图15.如图,正方形网格中,ABC △为格点三角形(顶点都是格点),将ABC △绕点A 按逆时针方向旋转90得到11AB C △. (1)在正方形网格中,作出11AB C △;(2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长.第15题图16.如图,某种雨伞的伞面可以看成由12块完全相同的等腰三角形布料缝合而成.量得其中一个三角形OAB的边OA=OB=56cm.(1)求∠AOB的度数;(2)求△OAB的面积.(不计缝合时重叠部分的面积)第16题图17.如图,点C是半圆O的半径OB上的动点,作PC AB⊥于C.点D是半圆上位于PC左侧的点,连结BD交线段PC于E,且PD PE=.(1)求证:PD是圆O的切线.(2)若圆O的半径为PC=OC x=,①求y关于x的函数关系式.②当x=tan B的值.第17题图。
中考数学一轮复习课后作业 概率-人教版初中九年级全册数学试题

概率课后作业1、在下列事件中,必然事件是( ) A .在足球赛中,弱队战胜强队B .任意画一个三角形,其内角和是360°C .抛掷一枚硬币,落地后反面朝上D .通常温度降到0℃以下,纯净的水结冰2、有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x-4|,则其结果恰为2的概率是( )A .61B .41C .31D .21 3、质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于24、甲和乙一起做游戏,下列游戏规则对双方公平的是( )A .在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一球,摸到红球甲获胜,摸到白球乙获胜;B .从标有号数1到100的100X 卡片中,随意抽取一X ,抽到号数为奇数甲获胜,否则乙获胜;C .任意掷一枚质地均匀的骰子,掷出的点数小于4则甲获胜,掷出的点数大于4则乙获胜;D .让小球在如图所示的地板上自由地滚动,并随机地停在某块方块上,若小球停在黑色区域则甲获胜,若停在白色区域则乙获胜5、下列说法错误的是( )A .袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,充分摇动后,再从中随机地摸出一个球,两次摸到不同颜色球的概率是94 B .甲、乙两人玩“石头、剪刀、布”的游戏,游戏规则是:如果两人的手势相同,那么第三人丙获胜,如果两人手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者.这个游戏规则对于甲、乙、丙三人是公平的C .连续抛两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D .一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平6、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一X 牌的花色是红桃B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率7、如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是实验次数 100 200 300 500 800 1000 2000 频率8、如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是9、如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为10、某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).11、近年来,我国持续的大面积的雾霾天气让环境和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾所了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%A.比较了解15%C.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有人,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平12、如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A 的可能性一样吗?参考答案1、解析:根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案. 解:A 、在足球赛中,弱队战胜强队,是随机事件; B 、任意画一个三角形,其内角和是360°,是不可能事件; C 、抛掷一枚硬币,落地后反面朝上,是随机事件; D 、通常温度降到0℃以下,纯净的水结冰,是必然事件. 故选:D2、解析:先求出绝对值方程|x-4|=2的解,即可解决问题. 解:∵|x-4|=2, ∴x=2或6.∴其结果恰为2的概率=62=31. 故选C .3、解析:先画树状图展示36种等可能的结果数,然后找出各事件发生的结果数,然后分别计算它们的概率,然后比较概率的大小即可.解:画树状图为:共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0,所以点数都是偶数的概率=369=41,点数的和为奇数的概率=3618=21,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13. 故选C4、解析:根据概率公式分别计算出A 、B 、C 选项中甲获胜和乙获胜的概率,利用几何概率的计算方法计算出D 选项中甲获胜和乙获胜的概率,然后比较两概率的大小判断游戏的公平性.解:A 、甲获胜的概率=52,乙获胜的概率=53,而52<53,所以游戏规则对双方不公平,所以A 选项错误;B 、甲获胜的概率=10050=21,乙获胜的概率=10050=21,所以游戏规则对双方公平,所以B 选项正确;C 、甲获胜的概率=63=21,乙获胜的概率=62=31,而21>31,所以游戏规则对双方不公平,所以C 选项错误;D 、甲获胜的概率=94,乙获胜的概率=95,而94<95,所以游戏规则对双方不公平,所以D 选项错误.故选B5、解析:根据概率的意义和游戏的公平性进行判断即可.解:A 、袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,充分摇动后,再从中随机地摸出一个球,两次摸到不同颜色球的概率是94,正确; B 、甲、乙两人玩“石头、剪刀、布”的游戏,游戏规则是:如果两人的手势相同,那么第三人丙获胜,如果两人手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者.这个游戏规则对于甲、乙、丙三人是公平的,正确;C 、连续抛两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是不同的,错误;D 、小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平,正确;故选C6、解析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A 、一副去掉大小王的普通扑克牌洗匀后,从中任抽一X 牌的花色是红桃的概率为41,不符合题意;B 、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是31,符合题意; C 、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为61,不符合题意; D 、抛一枚硬币,出现反面的概率为21,不符合题意, 故选B7、解析:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,即可得出答案.解:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=43; 故答案为:43 8、解析:利用轴对称图形的定义由3处涂黑得到黑色部分的图形是轴对称图形,然后根据概率公式可计算出新构成的黑色部分的图形是轴对称图形的概率.解:共有13种等可能的情况,其中3处涂黑得到黑色部分的图形是轴对称图形,如图,所以涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率=133故答案为133 9、解析:首先根据题意列出表格,然后由表格求得所有等可能的结果与两次指针指向的数都是奇数的情况,再利用概率公式即可求得答案.解:列表得如下:1231 1、1 1、2 1、3 2 2、1 2、2 2、3 33、13、23、3∵由表可知共有9种等可能结果,其中两次指针指向的数都是奇数的有4种结果, ∴两次指针指向的数都是奇数的概率为94, 故答案为:94 10、解析:(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可; (3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.解:(1)56÷20%=280(名), 答:这次调查的学生共有280名; (2)280×15%=42(名), 280-42-56-28-70=84(名), 补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°, 答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:ABCDEA (A ,B ) (A ,C ) (A ,D ) (A ,E )B (B ,A )(B ,C ) (B ,D ) (B ,E )C (C ,A ) (C ,B )(C ,D ) (C ,E )D (D ,A ) (D ,B ) (D ,C )(D ,E )E(E ,A ) (E ,B ) (E ,C ) (E ,D )用树状图为:共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是101 11、解析:(1)根据“基本了解”的人数以及所占比例,可求得总人数;在根据频数、百分比之间的关系,可得m ,n 的值;(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D 部分扇形所对应的圆心角;(3)根据D 等级的人数为:400×35%=140;可得(3)的答案; (4)用树状图列举出所有可能,进而得出答案.解:(1)利用条形图和扇形图可得出:本次参与调查的学生共有:180÷45%=400; m=40060×100%=15%,n=1-5%-15%-45%=35%, 故答案为:400,15%,35%;(2)图2所示的扇形统计图中D 部分扇形所对应的圆心角是:360°×35%=126°, 故答案为:126;(3)∵D 等级的人数为:400×35%=140; 如图所示:;(4)列树状图得:所以从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,则小明参加的概率为:P=128=32,小刚参加的概率为:P=124=31, 故游戏规则不公平.12、解析:(1)由共有4种等可能的结果,落回到圈A 的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A 的情况,再利用概率公式求解即可求得答案.解:(1)∵共有4种等可能的结果,落回到圈A 的只有1种情况,∴落回到圈A 的概率P 1=41; (2)列表得:1 2 3 4 1(1,1) (2,1) (3,1) (4,1) 2(1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3)∵共有16种等可能的结果,最后落回到圈A 的有(1,3),(2,2)(3,1),(4,4), ∴最后落回到圈A 的概率P 2=164=41, ∴她与嘉嘉落回到圈A 的可能性一样.。
2014届中考数学(华师版)复习方案:39函数实际应用型问题

函数实际应用型问题
第39课时┃ 函数实际应用型问题
函数实际应用型问题是把题中数量关系抽象为函数模 型,如一次函数、二次函数、反比例函数以及它们的分段函 数,进而应用函数进行分析、研究、解决有关问题.函数问 题的实质是研究两变量之间的对应关系,用函数思想构建数 学模型解决实际问题.
考向互动探究
考向互动探究
第39课时┃ 函数实际应用型问题
例题分层分析
(1)观察表格,你能获得哪些信息?3月份的用气量为 60 m3,该如何缴费? (2)从折线统计图你能得到什么?折线分为哪几段?表中 a对应图中的什么?结合图象与表格能求出a. (3)从0≤x≤75,75<x≤125和x>125运用待定系数法分别 表示出y与x之间的函数关系式. (4)设乙用户2月份用气x m3,则3月份用气(175-x) m3, 分3种情况:①x>125,175-x≤75时,②75<x≤125, 175 -x≤75时,③75<x≤125,75<175-x≤125时,分别建立方 程求出其解.
考向互动探究
第39课时┃ 函数实际应用型问题
(3)求两弯新月(图中阴影部分)的面积,并求当 x 为何值 1 时,矩形 DEFG 的面积等于两弯新月面积的 ? 3
图39-2
考向互动探究
第39课时┃ 函数实际应用型问题
解 (1)在 Rt△ABC 中, 由题意可得 AC=12 3米, BC=36 米, ∠ABC=30°, DG x 3 EF ∴AD= = = 3 x,BE= = 3x. tan60° tan30° 3 又 AD+DE+BE=AB, 4 ∴y=24 3-3 3x(0<x<18). 4 4 (2)S 矩形 DEFG=xy=x24 3-3 3x=-3 3(x-9)2+108 3, ∴当 x=9 时,矩形 DEFG 的面积最大,最大面积是 108 3平方米.
精编2019深圳中考数学第一轮课时训练含答案(31-40课时).docx

精编2019深圳中考数学第一轮课时训练含答案(31-40课时)目录:2019深圳中考数学第一轮课时训练含答案31:2019深圳中考数学第一轮课时训练含答案32:2019深圳中考数学第一轮课时训练含答案33:2019深圳中考数学第一轮课时训练含答案34:2019深圳中考数学第一轮课时训练含答案35:2019深圳中考数学第一轮课时训练含答案36:2019深圳中考数学第一轮课时训练含答案37:2019深圳中考数学第一轮课时训练含答案38:2019深圳中考数学第一轮课时训练含答案39:圆的有关性质直线与圆的位置关系弧长和扇形面积投影与三视图多面体的表面展开图图形的变换图形变换的应用数据与图表2019深圳中考数学第一轮课时训练含答案40:概率课时训练(三十一)圆的有关性质(限时:40分钟)/考场过关/1. [2017 •泸州]如图K31-1,初是00的直径,弦〃丄個于点氏若A. V7B. 2^7C. 6D. 82. [2018 •盐城]如图K31-2,初为00的直径,仞为00的弦,么ADC=35°,则ZGJg 的度数为 ()A. 35°B.45。
C. 55°D. 65°3..[2018 •白银]如图 K31-3,过点 0(0, 0), C 血,0), 〃(0, 1),点〃是x 轴下方CM 上的一点,连接% 血则ZO 肋的度数是 ()畑8,处二1,则弦〃的长是图 K31-24. [2017 •西宁]如图K31~4,初 是OO 的直径,弦皿 交初 于点P 、AP=2, BP 弋 ZAPC=30° ・则〃的长为()图K3WA. V15B. 2V5C. 2V15D. 85. [2018 •烟台]如图K31-5,方格纸上每个小正方形的边长均为1个 单位长度,点a 勺$ C 在格点(两条网格线的交点叫格点)上,以点。
为 原点建立直角坐标系,则过昇,3 C 三点的圆的圆心坐标 为 ・图 K31-56. [2017 -十堰]如图 K31-6, A ABC 内接于 OO, ZACB^0° , ZACB 的 平分线交O 。
备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案简单事件概率的计算综合题专训1、(2022开鲁.中考模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.2、(2019徐州.中考真卷) 如图,甲、乙两个转盘分别被分成了等份与等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.乙1 2 3 4积甲123(2)积为的概率为;积为偶数的概率为;(3)从这个整数中,随机选取个整数,该数不是(1)中所填数字的概率为.3、(2018山西.中考模拟) 图1所示是一枚质地均匀的骰子.骰子有六个面并分别代表数字1,2,3,4,5,6.如图2,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子向上的一面上的点数是几,就沿正六边形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A起跳.;(1)小明随机掷一次骰子,求落回到圈A的概率P1(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P,并指出他与小明落回到圈A的可能性一样吗?24、(2018建邺.中考模拟) 超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?5、(2018玄武.中考模拟) 甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A、B、C三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.6、(2018惠州.中考模拟) 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若丙想使球经过三次传递后,球落在自己手中的概率最大,丙会让球开始时在谁手中?请说明理由.7、(2019洪江.中考模拟) 甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.8、(2018柳北.中考模拟) 在一个不透明的袋里装有分别标有数字1,2,3,4,5的5个小球,除所有数字不同外,小球没有其他分别,每次试验前先搅拌均匀.(1)若从中任取一球,球上的数字为奇数的概率为多少?(2)若从中任取一球不放回,再从中任取1球,请用画树状图或列表的方法求出两个球上的数字之和为偶数的概率.9、(2019玉林.中考真卷) 某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=108°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.10、(2019南充.中考真卷) 现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.11、(2018遵义.中考模拟) 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.12、(2019岐山.中考模拟) 某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)13、(2019陕西.中考模拟) 有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)14、(2020长春.中考模拟) 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出1个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。
九年级概率试题及答案

九年级概率试题及答案概率是数学中的一个重要分支,它研究的是事件发生的可能性。
在现实生活中,概率无处不在,我们常常需要根据一些已知的信息来推测未知事件的可能结果。
九年级概率试题是对学生运用概率知识进行实际运算和解答的考核,下面是一些九年级概率试题及其答案的示例。
1. 问题:一批产品中有5%的次品,请问从中随机抽取3个产品,恰好有1个是次品的概率是多少?答案:要求恰好有1个是次品,可以先算出选取1个次品和2个优质品的情况,再将选取1个次品和2个优质品的概率相加。
计算过程如下:P(恰好有1个次品) = P(选取1个次品) × P(选取2个优质品)= (0.05 × 0.95 × 0.95) + (0.95 × 0.05 × 0.95) + (0.95 ×0.95 × 0.05)= 0.142752. 问题:一个标准扑克牌中,从中随机抽取4张牌,恰好有2张红心的概率是多少?答案:要求恰好有2张红心,可以先算出选取2张红心和2张非红心的情况,再将选取2张红心和2张非红心的概率相加。
计算过程如下:P(恰好有2张红心) = P(选取2张红心) × P(选取2张非红心)= (13/52 × 12/51) × (26/50 × 25/49)= 0.235293. 问题:甲、乙两位选手进行射击比赛,每位选手射击的命中率分别是60%和75%,请问哪位选手的命中率更高?答案:为了比较两位选手的命中率,可以计算出平均命中数,然后根据平均命中数来比较。
计算过程如下:平均命中数甲 = 0.6 × 10 = 6平均命中数乙 = 0.75 × 8 = 6根据计算结果可知,甲与乙的平均命中数相同,即两位选手的命中率相同。
4. 问题:从一个有10个红球和15个蓝球的盒子中随机抽取2个球,求抽到的两个球颜色不相同的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第39课时 概率应用
学校 日期
一.【复习演练题】
1.下列事件中:①在足球比赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm ,5cm ,9cm 的三条线段能围成一个三角形.其中确定事件有( )
A .1个
B .2个
C .3个
D .4个
2.有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )
A .15
B .29
C .14
D .518
3.如图,数轴上两点A B ,,在线段AB 上任取一点,则点C 到表示1的点的距离不大于2的概率是 . 4.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有8个,黄、白色小球的数目相.为估
计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀……多次试验发现摸到红球的频率是16
,则估计黄色小球的数目是( ) A .2个 B .20个 C .40个 D .48个
二.【重点精讲题】
1.某航空公司的保险合同上有这样一个条款:飞机一旦失事,向每位乘客赔偿50万人民币,但保险公司向每位乘客收取了20元的保险费,如果该航空公司航班平均每次约有120名乘客,那么在n 次飞行中,平均来说,当飞机的失事的概率不超过多少时,才能保证保险公司的收入不小于支出?
2.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖。
厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖。
(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个3
第3题图
黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖。
该抽奖方案符合厂家的设奖要求吗?请说明理由;
(2)下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求。
(友情提醒:1。
转盘上用文字注明颜色和扇形的圆心角的度数,2.结合转盘简述获奖方式,不需说明理由。
)
3.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了
(1
(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
三.【基础巩固题】
1. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为()
A.3000条B.2200条C.1200条D.600条
2.儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个喜羊羊玩具.已知参加这种游戏的儿童有40000人,公园游戏场发放喜羊羊玩具8000个.
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近接近多上
四.【能力提升题】
1.某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
2.一只不透明的袋子中装有4个球,分别标有2、3、4、x 这些球除数字外都相同,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如下表
:解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为7”的概率将稳定在它的概率附近,试估计出现“和为7”的概率;
(2)根据(1),若x 是不等于2,3,4的自然数,试求x 的值。
五.【当堂检测题】
姓名 成绩
1.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是
A .2
1 B .31 C . 41 D .51 2.已知袋中有2个红球,14个白球,从中任取两个球
(有放回),平均多少次才会从中取到红球?
3
(1)根据此表,求出该队员投一次3分球命中的概率;
(2)根据此表,假如该队员有5次投3分球的机会,估计能得多少分?
六.【自主训练题】
1.某人投篮的命中率为0.4,也就是说平均每投蓝10次会命中篮圈______次。
2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是个.
3.小明和小丽玩掷骰子游戏,2人各掷1枚质地均匀的骰子。
(1)当2枚骰子朝上一面的点数的积为奇数时,小明得3分,否则小丽得1分。
这个游戏对双方公平吗?为什么?
(2)当2枚骰子朝上一面的点数的和大于7时,小明得1分,否则小丽得1分。
这个游戏对双方公平吗?如果不公平,请提出一条对双方公平的改进意见.。