Transient pressure induced by laser ablation
外文翻译---液压密封完整性调查研究

外文翻译---液压密封完整性调查研究Mechanical Systems and Signal Processing, 2007, 21: 1115–1126A study of hydraulic seal integrityP. Chena, P.S.K. Chua, G.H. LimAbstract: The work described in this paper involved on-line detection of seal defects in a water hydraulic cylinder. An obvious effect of seal defect is internal leakage. Therefore, the approach used was to detect the internal leakage using suitable technique. The technique used involved detecting the acoustic emission (AE) due to the internal leakage. This paper evaluated various parameters of AE signals in terms of their capability in estimating the internal leakage rate in a water hydraulic cylinder. Experiments were carried out to study the characteristics of AE parameters at different internal leakage rates, the parameters including the root-mean-square (rms) value, the count rate, the peak magnitude of power spectral density and the energy. The correlations between these parameters and the internal leakage rate wereanalysed carefully. The results show that energy-based AE parameters, especially the rms value, are more suitable to interpret AE signals generated by internal leakage.Keywords: Acoustic emission; Water hydraulic cylinder; Internal leakage; AE count rate; Root mean square; Power spectral density; AE energy1. IntroductionModern water hydraulics, using tap water as the hydraulic fluid, has gained much interest in the past decade due to its inherent advantages compared to oil hydraulics. These advantages include environment friendliness, good product compatibility and no fire hazards [1, 2]. However, some problems with modern water hydraulics are still to be addressed. One of the most common problems is the relatively large internal leakage in water hydraulic components. For example, a water hydraulic cylinder could suffer from internal leakage across the piston seals. This is due to the very low viscosity of water in comparison with that of hydraulic oil [1, 3]. Therefore, it is important to monitor the internal leakage to achieve optimal performance and reliable and safe operations of water hydraulic systems.The work presented in this paper is part of a project that aims to develop a quantitative model to estimate the internal leakage flow rate in a water hydraulic cylinder by means of AE. It is focused on the internal leakage smaller than 1.0 L/min. In order to model the AE signal generated by the internal leakage, suitable parameters must first be selected to interpret the signal. Therefore, experiments were conducted to study the characteristics of various AE parameters in terms of their effectiveness in estimating the internal leakage rate, as described in this paper.2. Acoustic emissionAE is defined as the transient elastic waves that are generated by the rapid release of energy from localised sources. It has been found that AE signals can be generated by fluid leakage. Pollock and Hsu [10] studied the physical origin of these signals in detail and Goodman et al. [12] reported a variety of AE source mechanisms associated with leakage from vessels, tanks and pipelines. In the case of internal leakage in water hydraulic cylinders, the generation of AE signals is largely attributed to the turbulence induced by the internal leakage. AE signals can be categorised into two basic types. The burst-type AE refers to AE signals corresponding to individual AE events, while the continuous-type AE refers to an apparently sustained signal level from rapidly occurring AE events [16]. AE signals generated by internal leakage in water hydraulic cylinders are of continuous type, as shown in Fig. 1.AE counts are widely used as a practical measure of AE activity. This parameter is defined as the number of times the signal exceeds a counter threshold. For continuous-type AE, AE count rate is often used to measure the variation of AE counts with time. The root-mean-square (rms) value is often used to measure the energy content of AE signals. For an AE signal consisting ofx [0],x [1], ……, x [N−1] , its rms value isThe advantage of energy measurement is that the energy content of the AE signal can be directly related to important physical parameters associated with theenergy release at the AE source [14]. The above parameters have been used to describe AE signals in a variety of applications [11, 17, 18].The aforementioned parameters are measured in the time domain. Besides, parameters measured in the frequency domain are also of interest, such as the frequency and magnitude of the dominant frequency component and the energy contained within frequency bands. For the continuous-type AE, these parameters can be obtained through spectral analysis using Fourier transform. The power spectral density (PSD) of AE signals can be computed using the following equation [19]:where P[ k ] is the power spectral density, X [k]] is the discrete Fourier transform (DFT) of an AE signal x[n], andT is the sampling period. The PSD represents the distribution of the signal power over frequencies. Some studies of AE signals in the frequency domain can be found in Refs. [10, 13, 20, 21].3. ExperimentationDue to the complexity of AE phenomena, analytical methods are not well established. Therefore, experimental methods are introduced to investigate AE. In order to study the characteristics of AE signals generated by internal leakage in water hydraulic cylinders, experiments were deliberately designed, as described below.For each record of AE signal, the AE count rate, denoted as _N AE was calculated by dividing the AE counts by the signal duration. Both a fixed threshold and a floating threshold were used for counting. Since there was no well-defined procedure to choose the threshold value, a wide range of values were tried. For the fixed threshold, a value of 0.04V yielded the best results, as shown in Fig. 6a. It is noted that the AE count rate drops fast as the internal leakage rate decreases. For the floating threshold, the threshold value was set to be proportional to the rms value of the signal. The resulting AE count rate remained at a constant level, no provide a desirable simulation of the dynamic processes existing in a cylinder subject to internal leakage. Thus in the present work, efforts have been made to simulate the real internal leakage in hydraulic cylinders. In the following, the leakage mechanism is first studied; then, thesimulation of the leakage is presented.In order to simulate scores created by the abrasive action of solid particulates, a file was used, in the present work, to make scores on the piston seal surfaces of a water hydraulic cylinder. Fig. 2 shows the scored piston seals used in the experiments. These seals lead to an internal leakage smaller than 1.0 L/min for the pressure range of 0–70 bar. Sixteen scores were equally distributed along the circumference of the seals. The dimensions of these scores were measured with a non-contact optical measurement system. Fig.3 shows the profile of a score taken by the measurement system. Along the edge of the score, five key points were selected and their coordinates were measured. The width and depth of the score were then measured. In addition, a circular arc fit to these five points was calculated. Thus, an approximate radius of the score could be obtained.Fig. 2. The 16-score piston seals.Fig. 3. The profile of a score.4. Experimental resultsIn the experiment, 100 sets of data were acquired at different internal leakage rates, with each set consisting of 40 records of AE signals measured at a certain leakage rate. Each record of AE signal contained 4096 points sampled at 5 MHz, from which AE parameters were calculated. For each AE parameter, results obtained from the 40 records were then averaged. In the following, all the results are the average values.For each record of AE signal, the AE count rate, denoted as _N AE, was calculated by dividing the AE counts by the signal duration. Both a fixed threshold and a floating threshold were used for counting. Since there was no well-defined procedure to choose the threshold value, a wide range of values were tried. For the fixed threshold, a value of 0.04V yielded the best results, as shown in Fig. 4a. It is noted that the AE count rate drops fast as the internal leakage rate decreases.Fig. 4. AE count rate versus internal leakage rateFor the floating threshold, the threshold value was set to be proportional to the rms value of the signal. The resulting AE count rate remained at a constant level, nom atter how the leakage rate varied. This is shown in Fig. 4b, where the AE count rate was obtained with the threshold equal to the rms value of the signal. It can be seen that there is no desirable trend in the AE count rate with respect to the leakage rate.5. Predict the internal leakage rateAs has been shown in the above, the energy content of AE signal is closely related to the internal leakage rate in the water hydraulic cylinder. Therefore, it may be used to predict the internal leakage rate. The error of prediction, then, is of interest. In the following, an empirical model is built to predict the internal leakage rate based on measured AE signals and the error of prediction is analysed with statistical methods. Due to the simplicity in calculation, the rms value Vrms is chosen instead of the energy Ef to characterise AE signals. From the previous experimental data, the relationship between the AE rms value Vrms and the internal leakage rate Qi is obtained using the least squares method, given byQi=7.86Vrms+0.14.For a measured AE rms value, the internal leakage rate may be predicted with Eq.(7). Suppose the measured AE rms value is Vrms0. A 95% prediction interval for the true value of the internal leakage rate,denoted as Qi0, is given bywhere ^Qi is the internal leakage rate predicted by Eq. (7) based on the measured Vrms0 and d is a measure of the width of the prediction interval. Note that d is not a constant but varies with the measured AE rms value Vrms0. For the range of the internal leakage rates smaller than 1.0 L/min, d is about 0.078 L/min. Eq. (8) means that for the measured AE rms value Vrms0, the true value of the internal leakage rate Qi0 lies inside the intervale ^Qi d; ^Qi t dT with 95% confidence.6. ConclusionsThis paper analysed the characteristics of AE signals generated by internal leakage in a water hydraulic cylinder. Experiments were carefully designed, including the simulation of the internal leakage across the piston seals in a water hydraulic cylinder and the measurement of the internal leakage rate. AE signals obtained from the experiments were analysed, in which several AE parameterswere extracted from the AE signals and their effectiveness for predicting the internal leakage rate were studied.From the analysis results,some conclusions can be made, as follows:(1) AE signals are sensitive to small internal leakage in a water hydraulic cylinder and AE-based methods are able to predict the internal leakage that is smaller than 1.0 L/min.(2)Energy-based AE parameters, whether measured in the time domain or in the frequency domain, are more suitable than the AE count rate and the peak PSD magnitude to interpret AE signals generated by the internal leakage.References[1] G.W. Krutz, P.S.K. Chua, Water hydraulics—theory and applications 2004, in: Proceedings of the Workshop on Water Hydraulics, Agricultural Equipment Technology Conference (AETC ’04), Louisville, KY, USA, February 8–10, 2004.[2] E. Trostmann, Water Hydraulics Control Technology, Marcel Dekker, New York, USA, 1996.[3] W. Backe′ , Water- or oil-hydraulics in the future, in: Proceedings of the Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland, May 26–28, 1999, pp. 51–64.[4] J. Watton, Condition Monitoring and Fault Diagnosis in Fluid Power Systems, Ellis Horwood, New York, USA, 1992.[5] T.T. Le, J. Watton, D.T. Pham, An artificial neural network based approach to fault diagnosis and classification of fluid power systems, Proceedings of the Institution of Mechanical Engineers, Part I, Journal of Systems and Control Engineering 211 (1997)307–317.[6] T.T. Le, J. Watton, D.T. Pham, Fault classification of fluid power system usinga dynamics feature extraction technique and neural networks, Proceedings of the Institution of Mechanical Engineers, Part I, Journal of Systems and Control Engineering 212 (1998) 87–97.[7] G. Thompson, G. Zolkiewski, An experimental investigation into the detection of internal leakage of gases through valves by vibration analysis, Proceedings of the Institution of Mechanical Engineers, Part E, Journal of Process Mechanical Engineering 211 (1997) 195–207.[8] M. Pietola, R. Ma¨ kinen, P. Va¨ yrynen, S. Kesanto, J. Varrio, Using a highresolution thermograph in predictive maintenance and fault diagnosis of fluid power components and systems, in: Proceedings of the Fourth Scandinavian International Conference on Fluid Power, Tampere, Finland, September 26–29, 1995, pp. 719–725.机械系统与信号处理, 2007, 21: 1115–1126液压密封完整性调查研究P. Chena, P.S.K. Chua, G.H. Lim摘要:本文中所涉及在液压缸的上线检测密封缺陷. 一个明显的影响密封的缺陷是内部泄漏。
流体力学常用名词中英文对照

流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动]flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament 涡线vortex line 涡面vortex surface 涡层vortex layer 涡环vortex ring 涡对vortex pair 涡管vortex tube 涡街vortex street 卡门涡街『Karman vortex street 马蹄涡horseshoe vortex 对流涡胞convective cell 卷筒涡胞roll cell 涡eddy 涡粘性eddy viscosity 环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole 驻点stagnation point 总压[力]total pressure 总压头total head 静压头static head 总焓total enthalpy 能量输运energy transport 速度剖面velocity profile 库埃特流Couette flow 单相流single phase flow 单组份流single-component flow 均匀流uniform flow 非均匀流nonuniform flow 二维流two-dimensional flow 三维流three-dimensional flow 准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow 振荡流oscillatory flow 分层流stratified flow 无旋流irrotational flow 有旋流rotational flow 轴对称流axisymmetric flow 不可压缩性incompressibility 不可压缩流[动]incompressible flow浮体floating body 定倾中心metacenter 阻力drag, resistance 减阻drag reduction 表面力surface force 表面张力surface tension 毛细[管]作用capillarity 来流incoming flow 自由流free stream 自由流线free stream line 外流external flow 进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation分布distribution 传播propagation 色散dispersion 弥散dispersion 附力口质量added mass ,associated mass 收缩contraction 镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity 运动相似kinematic similarity 动力相似[性]dynamic similarity 平面流plane flow 势potential 势流potential flow 速度势velocity potential 复势complex potential 复速度complex velocity 流函数stream function 源source 汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow 超空泡supercavity 超空泡流supercavity flow 空气动力学aerodynamics 低速空气动力学low-speed aerodynamics 高速空气动力学high-speedaerodynamics 气动热力学aerothermodynamics 亚声速流[动]subsonic flow 跨声速流[动]transonic flow超声速流[动]supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动]non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall月兑体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动力口热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动]compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow 兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state 量热状态方程caloric equation of state 完全气体perfect gas 拉瓦尔喷管Laval nozzle 马赫角Mach angle 马赫锥Mach cone 马赫线Mach line 马赫数Mach number 马赫波Mach wave 当地马赫数local Mach number 冲击波shock wave 激波shock wave 正激波normal shock wave 斜激波oblique shock wave 头波bow wave 附体激波attached shock wave 激波阵面shock front 激波层shock layer 压缩波compression wave 反射reflection 折射refraction 散射scattering 衍射diffraction 绕射diffraction 出口压力exit pressure 超压[强]over pressure 反压back pressure 爆炸explosion 爆轰detonation 缓燃deflagration 水动力学hydrodynamics 液体动力学hydrodynamics 泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave 斯托克斯波Stokes wave 瑞利数Rayleigh number 自由面free surface波速wave speed, wave velocity波高wave height 波歹U wave train 波群wave group 波能wave energy 表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage 超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孑1流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动]viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process 表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity 泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point 附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex 驻涡standing vortex 涡旋破碎vortex breakdown 涡旋脱落vortex shedding 压[力]降pressure drop 压差阻力pressure drag 压力能pressure energy 型阻profile drag 滑移速度slip velocity 无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity 气体润滑gas lubrication 液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory 边界层方程boundary layer equation 边界层boundary layer 附面层boundary layer层流边界层laminar boundary layer 湍流边界层turbulent boundary layer 温度边界层thermal boundary layer 边界层转捩boundary layer transition 边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness 动量厚度momentum thickness 能量厚度energy thickness 焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU 形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU 方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL 条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method,FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split 物理解physical solution 弱解weak solution 黎曼解算子Riemann solver 守恒型conservation form 弱守恒型weak conservation form 强守恒型strong conservation form 散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation 自动网格生成automatic grid generation 数值网格生成numerical grid generation 交错网格staggered mesh 网格雷诺数cell Reynolds number 数植扩散numerical diffusion 数值耗散numerical dissipation 数值色散numerical dispersion 数值通量numerical flux 放大因子amplification factor 放大矩阵amplification matrix 阻尼误差damping error 离散涡discrete vortex 熵通量entropy flux 熵函数entropy function 分步法fractional step method。
缺氧易化快速起搏引起的心室肌细胞钙瞬变交替

缺氧易化快速起搏引起的心室肌细胞钙瞬变交替赵斌;王礼春;庄晓东;董小变;黄泽娜;邝素娟;刘晓颖;廖新学【摘要】目的:探讨缺氧对快速起搏诱导的心室肌细胞钙瞬变交替的影响.方法:分离成年SD大鼠心室肌细胞,并将其置于无血清的低氧液中以建立缺氧性心肌损伤的体外模型;采用激光扫描共聚焦显微镜观察心室肌细胞的钙瞬变及钙瞬变交替情况;应用WST-8试剂盒检测心室肌细胞线粒体的功能状况.结果:在正常情况下,成年SD大鼠心室肌细胞呈棒状,低频起搏(60~240 min-1)可引起钙瞬变现象,但不引起钙瞬变交替.当起搏频率增加至(288±27)min-1时,可诱导钙瞬变交替现象.缺氧处理后,心室肌细胞的形态学无明显改变,但钙瞬变交替的阈值频率降低为(227±26)min-1,与对照组比较差异具有统计学意义(P<0.05).另外,缺氧处理还可使线粒体脱氢酶的相对活性从(100.2±8.7)%降低至(57.6±7.5)%,而L-型钙通道阻滞剂可部分抑制缺氧诱导的线粒体脱氢酶活性降低.结论:缺氧处理可易化快速起搏诱导的心室肌细胞钙瞬变交替,而钙瞬变交替可能介导了缺氧引起的线粒体功能受损.%AIM: To explore the effecl of hypoxia on rapid pacing — induced calcium Iransienl allernalions in venlricular myocyles. METHODS: Venlricular myocyles were isolaled from the heart of adult SD rats and cullured in serum — free hypoxic fluid Lo set up an in vitro model of hypoxia — induced cardiac injury. The calcium Iransienl and its allernalions were investigated under confocal laser scanning microscope. The milochondrial function was also examined by WST — 8 kit. RESULTS: Under normoxic condition, the ventricular myocyles were claviform. Low frequency of pacing, ranging from 60 to 240 min~ , induced calcium Iransient, but not calcium Iransient allernalions, which was eliciled by thepacing over a threshold frequency of (288 ± 27)min-1. Exposure of the venlricular myocyles lo hypoxia did not obviously affect the morphology of the cells, but reduced the threshold frequency of pacing lo (227 ±26) min-1 (P<0. 05). Additionally, exposure of the cells to hypoxia repressed the activity of milochondrial dehy drogenase from (100.2 ±8.7)% ( control group) to (57.6 ±7.5)% , which was partially blocked by L — lype Ca2+ channel inhibitor. CONCLUSION; Hypoxia fa-cililates calcium Iransient allernalions induced by rapid pacing, and the calcium transienl allernalions are involved in the hypoxia — injured mitochondria function.【期刊名称】《中国病理生理杂志》【年(卷),期】2012(028)008【总页数】5页(P1405-1409)【关键词】缺氧;快速起搏;钙瞬变交替;线粒体;心室肌细胞【作者】赵斌;王礼春;庄晓东;董小变;黄泽娜;邝素娟;刘晓颖;廖新学【作者单位】中山大学附属第一医院心血管内科,高血压血管病科,广东,广州,510080;中山大学附属第一医院心血管内科,高血压血管病科,广东,广州,510080;中山大学附属第一医院心血管内科,高血压血管病科,广东,广州,510080;中山大学附属第一医院心血管内科,高血压血管病科,广东,广州,510080;中山大学附属第一医院心血管内科,高血压血管病科,广东,广州,510080;广东省人民医院医学研究中心,广东,广州,510080;广东省人民医院医学研究中心,广东,广州,510080;中山大学附属第一医院心血管内科,高血压血管病科,广东,广州,510080【正文语种】中文【中图分类】R541.7尽管恶性心律失常是大多数心脏病患者的重要死因,但是诱导其发作的离子机制尚未完全阐明。
有关血液透析的缩写词和短语

有关血液透析的缩写词和短语中国血液净化2010年9月第9卷第9期ChineseJournalofBloodPurification,September12,2010,V o1.9,No.9.509. calcium—sensingreceptoracceleratesapoptosisinhyper—inESRDpatientswithsecondaryhyperparathyr0idism(SHPT) plasticparathyroidcel1s[J].BiochemBiophysResCommun,[J].JAmSocNephro1.2002.1 3:572A573A.2007,362:11—16.[23]LienYH,SiIvaAL,WhittmanD.Effectsofcinacaleet0nll3jGoodmanWG,H1adikGA,TurnerSA,eta1.ThecalcimimeticbonemineraldensitYinpa tientswithsecondarYagentAMG073lowersplasmaparathyroidhormonelevelsinhyperparathyr0idism[J].Neph rolDialTransplant,2005,20: hemodialysispatientswithsecondaryhyperparathyr0idism12321237.[J].JAmSocNephrol,2002,13:10171024.[24]HenleyC,CollotonM,CattleyRC,eta1.1,25 l14]B1ockGA,MartinKJ,deFranciSCOALM.eta1.CinacalcetDihydroxyvitaminD3butn otcinacalcetHCl(Sensipar/ forsecondaryhyperparathyroidisminpatientsreceivingMimpara)treatmentmediatesaorti ccalcificationinarathemodialysis[J].NEnglJMed,2004,350:15161525.modelofsecondaryhyperparathyroidi sm[J].NephrolDiall15JMoeSM,ChertowGM,CoburnJW,eta1.AchievingNKF—K/D0QITransplant,2005,20:13701377. bonemetabolismanddiseasetreatmentgoalswithcinacaleet[25]LopezI,AguileraTejeroE, MendozaFJ,eta1.CalcimimeticHCI【JJ.KidneyInt,2005.67:760—771.R568decreasesextraosseouscaleificationsinuremicratsl16]NeerRM,ArnaudCD,ZanehettaJR,eta1.Effectofparathy—treatedwithcalcitriol[J].JAmSocNephrol,2006,17:795reidhormone(134)onfracturesandbonemineraldensity804.inpostmen0pausa1womenwithosteoporosis[J].NEnglJ[26]OgataH,RitzE,OdoniG,eta1. BeneficialeffectsofMed,2001,344:1434l441.calcimimeticsonprogressionofrenalfailureandcardiol17]Gunness—HeyM,HockJM.Increasedtrabecu]arbonemassinvascularriskfactors[J].JAmSocNephro l,2003,14:959一ratstreatedwithhumansyntheticparathyroidhormone【J].967. MetabBoneDisRelatRes,1984,5:l77—181.127]MessaP,AlbertiL,ComoG,eta1.Calcimimeticincreasesl18]SjodenG,LindgrenJU,DeLucaHF.Antirachiticactivityofosteoprotegerinanddecrease sfetuin—Alevelsindialysis1a1PhahYdroxY ergoca1cifero1andlalPha—patients[J].NephrolDialTransplant,2007,22:2724—2725. hydroxyeholecalciferolinrats[J].JNutr,1984,114:2043一l28]Ti1lingL,ColinForfarJ.Cinaealcet—asSOCiatedcardio2046.genicshockinapatientwitheardiomyopathy[J].C1inl19]ShiiH,WadaM,FuruyaY.eta1.Dai1Yintermittentde—Ther,2007,29:352—356. creasesinserumlevelsofparathyroidhormonehavean[29]1wazuY,MutoS,IkeuchiS,eta1. Reversiblehypoca]cemicanabolic1ikeactiononthebonesofuremicratswithlowheartfailurewithTwayea】ternansandincreasedQTeturnoverboneandosteomalacia[J].Bone,2000,26:l75182.dispersioninapatientwithchroni crenalfailureafter【20]WadaM,IshiiH,FuruyaY,eta1.NPSR568haltsorparathyroideetomylJjC1inNephrol ,2006,65:65—70.reversesosteltisfibrosainuremicratsL].KidneyInt,[3O]CoenG,CalabriaS,Bel1inghieriG, eta1.Parathyroidec1998.53:448453.tomyinchronicrenalfailure:shortandlongtermrel21]Mil1erMA,FoxJ.DailYtransientdecreasesinP1asmasnltsonparathyroidfunction,blo odpressureandanemiaparathyroidhormone1eve1sinducedbythecalcimimeticNPS[J].Nephron,2001.88:149—155.R-568slowstherateofbonelOSSbutdoesnotincrease【3i]SaundersRN,KarooR,MetcalfeMS,eta1.Fourglandpar bonemassinovariectomizedrats【.]].Bone,2000,27:5ilathyroidectomywithoutreimp1antationinpatientswith519.chronicrenalfai1ure[J].PostgradMedJ,2005,81:255一[22]Quar1esL,SpiegelD,CurziM,eta1.Theeffectsofone一258. yeartreatmentwiththecalcimimeticAMG073onbonehealth(收稿日期:200912—04) (本文编辑:孙志谦)有关血液透析的缩写词和短语中文动脉的动静脉的血流速体表面积血尿素氮全血计数疾病控制中心持续质量改进慢性肾衰竭评价的干体重促红细胞生成素铁英文全名arterialarterlovenousbloodflowratebodysurfacearea bloodureanitrogen completebloodcount Centersf0rDiseaseCon仃olc0ntinuousqua1ityimprovement chronicrenalf.ailure estimatedd1yweight erythropoietinjmn缩写词ABFRBSABUNCBCCDCCQICRFEDWEP0Fe中文终末期肾脏病肾小球滤过率红细胞压积血液透析血红蛋白腹膜内的静脉内的全国肾脏病基金会腹膜透析聚甲基丙烯乙酯消息?英文全名end.stagerenaldiseaseg10merularfi1trati0nmte hematocrit hemOdialysishemogl0bin intraperitOneal intravenous1eftventricularhyper虹ophy NationalKidneyFoundation peritonealdialysis polymetby1methacrylate缩写词ESRDGFRHctHDHbIPIVLVHNKFPD。
激光诱导击穿光谱技术及应用研究进展

第6卷 第4期2013年8月 中国光学 Chinese Optics Vol.6 No.4Aug.2013 收稿日期:2013⁃04⁃11;修订日期:2013⁃06⁃13 基金项目:国家自然科学基金面上项目(No.31270680,No.61076064);江苏省“六大高峰人才”资助项目(No.2011⁃XCL⁃018);江苏高校优势学科建设工程资助项目文章编号 1674⁃2915(2013)04⁃0490⁃11激光诱导击穿光谱技术及应用研究进展侯冠宇1,王 平1∗,佟存柱2(1.南京林业大学化学工程学院,江苏南京210037;2.中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林长春130033)摘要:激光诱导击穿光谱(LIBS)技术是一种基于原子发射光谱学的元素定性、定量检测手段。
本文介绍了LIBS 技术的原理、应用方式、检测元素种类及检测极限;综述了该项技术在固体、液体、气体组分检测方面的技术发展,以及在环境检测、食品安全、生物医药、材料、军事、太空领域的应用进展。
最后,提出了高功率、高稳定的激光光源和准确的定量分析方法是LIBS 技术目前所面临的问题和挑战。
关 键 词:激光诱导击穿光谱;激光产生等离子体;元素分析;检测限中图分类号:O433.54;O657.319 文献标识码:A doi:10.3788/CO.20130604.0490Progress in laser⁃induced breakdown spectroscopyand its applicationsHOU Guan⁃yu 1,WANG Ping 1∗,TONG Cun⁃zhu 2(1.College of Chemical Engineering ,Nanjing Forestry University ,Nanjing 210037,China ;2.State Key Laboratory of Luminescence and Applications ,Changchun Institute of Optics ,Fine Mechanics and Physics ,Chinese Academy of Sciences ,Changchun 130033,China )∗Corresponding author ,E⁃mail :wp_lh@ Abstract :Laser⁃induced Breakdown Spectroscopy(LIBS)based on atomic emission spectral technology is a kind of convenient and sensitive approach for the qualitative and quantitative detection of elements.In this pa⁃per,the mechanism,detecting element types,detection limit and the recent progress of LIBS technology are reviewed.The progress of LIBS technology in component testing for solid,liquid and gas samples is expoundedin detail.The applications of LIBS in the environment test,food security,biological and medicines,material sciences,military and space fields are also presented.Finally,the challenges and problems for the LIBS tech⁃nology in high power and stable laser sources and accurately quantitative analysis method are discussed.Key words :laser⁃induced breakdown spectroscopy;laser⁃induced plasmon,element analysis;detection limit1 引 言 激光诱导击穿光谱(Laser⁃Induced Breakdown Spectroscopy,简称LIBS)技术是利用激光照射被测物体表面产生等离子体[1⁃2],通过检测等离子体光谱而获取物质成分和浓度的分析技术。
侧脑室注射硫化氢对大鼠血压和呼吸的调节作用

侧脑室注射硫化氢对大鼠血压和呼吸的调节作用高艳;宋俊;殷焦;李道坤;邵金辉;袁杰【摘要】目的探讨中枢硫化氢(H2S)对正常大鼠平均动脉血压的调节及其机制.方法将微量H2S饱和盐溶液一次性和连续注射入麻醉大鼠侧脑室(ICV),观察注药后血压、心率和呼吸的变化.结果 ICV一次性注射不同剂量的H2S饱和盐溶液后可引起血压先急剧降低而后迅速升高,心率减慢,呼吸幅度增加和呼吸频率减慢,并存在显著的剂量和时间依赖关系.ICV连续注射H2S可显著升高血压,但对心率和呼吸没有影响.ICV注射一次性注射K+-ATP通道开放剂Pinacidil可显著的降低血压,但心率和呼吸没有显著变化;ICV一次性注射K+-ATP通道阻断剂glibenclamide对血压、心率和呼吸没有显著的影响;但预先ICV注射glibenclamide可阻断H2S的降低血压和减慢心率的作用,对呼吸没有影响.预先静脉注射酚妥拉明对血压没有明显的影响,却显著抑制ICV给予H2S产生的升高血压减慢心率效应.结论本工作提示H2S是调节心血管活动的一个重要的中枢活性因子,其降低血压的效应是通过K+-ATP通道和影响呼吸有关系,而升压效应是通过激活交感神经的活性.【期刊名称】《中国组织化学与细胞化学杂志》【年(卷),期】2013(022)006【总页数】5页(P518-522)【关键词】硫化氢;平均动脉血压;心率;呼吸【作者】高艳;宋俊;殷焦;李道坤;邵金辉;袁杰【作者单位】湖北文理学院形态学部,襄阳,441053;襄阳市中心医院骨外科,襄阳,441021;湖北文理学院形态学部,襄阳,441053;湖北文理学院形态学部,襄阳,441053;湖北文理学院形态学部,襄阳,441053;湖北医药学院生理教研室,十堰,442000【正文语种】中文【中图分类】R322.81长期以来,硫化氢(hydrogen sulfide,H2S)一直被认为是一种污染环境的毒性气体,它可以损害中枢神经系统,抑制呼吸[1,2]。
青光眼发病机制,治疗方式e

Aqueous productionAqueous humour is produced from plasma by the ciliary epithelium of the ciliary body pars plicata, using a combination of active and passive secretion〔既有主动分泌也有被动运输〕.A high-protein filtrate passes out of fenestrated capillaries (ultrafiltration) into the stroma of the ciliary processes, from which active transport of solutes〔溶质〕 occurs across the dual-layered ciliary epithelium. The osmotic gradient thereby established facilitates the passive flow of water into the posterior chamber. Secretion is subject to the influence of the sympathetic nervous system, with opposing actions mediated by beta-2 receptors (increased secretion) and alpha-2 receptors (decreased secretion)〔互相拮抗调节〕. Enzymatic action is also critical – carbonic anhydrase〔碳酸酐酶〕 is among those playing a key role.[1]The trabecular meshwork〔小梁网〕 (trabeculum) is a sieve-like〔筛状〕 structure at the angle of the anterior chamber (AC) through which 90% of aqueous humour leaves the eye. It has three components.The uveal meshwork〔葡萄网〕 is the innermost portion, consisting of cord-like〔索状〕endothelial cell-covered strands arising from the iris〔虹膜〕 and ciliary body stroma. The intertrabecular〔小梁〕 spaces are relatively large and offer little resistance to the passage of aqueous.The corneoscleral meshwork lies external to the uveal meshwork to form the thickest portion of the trabeculum. It is composed of layers of connective tissue strands with overlying endothelial-like cells. The intertrabecular spaces are smaller than those of the uveal meshwork, conferring greater resistance to flow.The juxtacanalicular (cribriform) meshwork is the outer part of the trabeculum, and links the corneoscleral meshwork with the endothelium of the inner wall of the canal of Schlemm. It consists of cells embedded in a dense extracellular matrix with narrow intercellular spaces, and offers the major proportion of normal resistance to aqueous outflow.The Schlemm canal is a circumferential channel within the perilimbal sclera. The inner wall is lined by irregular spindle-shaped endothelial cells containing infoldings (giant vacuoles) that are thought to convey aqueous via the formation of transcellular pores. The outer wall is lined by smooth flat cells and contains the openings of collector channels, which leave the canal at oblique angles and connect directly or indirectly with episcleral veins. Septa commonly divide the lumen into 2–4 channels.[1]Anatomy of outflow channels: A, Uveal meshwork; B, corneoscleral meshwork; C, Schwalbe line; D, Schlemm canal; E, connector channels; F, longitudinal muscle of the ciliary body; G, scleral spur Routes of aqueous outflow: A, trabecular; B, uveoscleral; C, irisAqueous Humor Drainage Pathways of Healthy and Glaucomatous EyesSimple intraocular pressure:High intraocular pressure has direct damage to the optic nerve. [2]High intraocular pressure directly oppresses optic nerve fibers, blocks axoplasmic transport, thereby damaging retinal ganglion cells. Increased intraocular pressure (IOP) causes stretching of the laminar beams and damage to retinal ganglion cell axons..[3, 4]Trans-lamina cribrosa pressure difference[5]Mitochondrial DNA mechanismAbnormally elevated intraocular pressure can directly lead to mtDNA damage and mutation, leading to mitochondrial dysfunction, thereby mtDNA further damages and mutates, forming a vicious circle, causing RGC progressive apoptosis.The vascular theory of glaucoma considers GON as a consequence of insufficient blood supply due to either increased IOP or other risk factors reducing ocular blood flow (OBF).Vascular dysregulation, rather than an atherosclerosis, leads to both low perfusion pressure and insufficient autoregulation. This in turn may lead to unstable ocular perfusion and thereby to ischemia and reperfusion damage.[6]High concentrations of glutamate causing RGC excitotoxic damage is the main cause of death in glaucoma patients.[7]Increased oxidative stress and increased ROS production play an important role in the development of glaucoma.[8]In recent years, it has been found that the immune system plays an important role in the development of GON.药物治疗的局限性:[9]1.很多患者仅用药物治疗不能降至理想的目标眼压。
焊接相关英文缩写及常用焊接词汇

焊接相关英文缩写收集整理:John Zhang 2007-7-18AW——ARC WELDING——电弧焊AHW——atomic hydrogen welding——原子氢焊BMAW——bare metal arc welding——无保护金属丝电弧焊CAW——carbon arc welding——碳弧焊CAW-G——gas carbon arc welding——气保护碳弧焊CAW-S——shielded carbon arc welding——有保护碳弧焊CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊FCAW——flux cored arc welding——药芯焊丝电弧焊FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊GTAW——gas tungsten arc welding——钨极气体保护电弧焊GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊SMAW——shielded metal arc welding——焊条电弧焊SW——stud arc welding——螺栓电弧焊SAW——submerged arc welding——埋弧焊SAW-S——series——横列双丝埋弧焊RW——RWSISTANCE WELDING——电阻焊FW——flash welding——闪光焊RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊RSEW——resistance seam welding——电阻缝焊RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊UW——upset welding——电阻对焊UW-HF——high-frequency——高频电阻对焊UW-I——induction——感应电阻对焊SSW——SOLID STATE WELDING——固态焊CEW——co-extrusion welding——CW——cold welding——冷压焊DFW——diffusion welding——扩散焊HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊FOW——forge welding——锻焊FRW——friction welding——摩擦焊FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊FRW-I——inertia friction welding——惯性摩擦焊HPW——hot pressure welding——热压焊ROW——roll welding——热轧焊USW——ultrasonic welding——超声波焊S——SOLDERING——软钎焊DS——dip soldering——浸沾钎焊FS——furnace soldering——炉中钎焊IS——induction soldering——感应钎焊IRS——infrared soldering——红外钎焊INS——iron soldering——烙铁钎焊RS——resistance soldering——电阻钎焊TS——torch soldering——火焰钎焊UUS——ultrasonic soldering——超声波钎焊WS——wave soldering——波峰钎焊B——BRAZING——软钎焊BB——block brazing——块钎焊DFB——diffusion brazing——扩散焊DB——dip brazing——浸沾钎焊EXB——exothermic brazing——反应钎焊FB——furnace brazing——炉中钎焊IB——induction brazing——感应钎焊IRB——infrared brazing——红外钎焊RB——resistance brazing——电阻钎焊TB——torch brazing——火焰钎焊TCAB——twin carbon arc brazing——双碳弧钎焊OFW——OXYFUEL GAS WELDING——气焊AAW——air-acetylene welding——空气乙炔焊OAW——oxy-acetylene welding——氧乙炔焊OHW——oxy-hydrogen welding——氢氧焊PGW——pressure gas welding——气压焊OTHER WELDING AND JOINING——其他焊接与连接方法AB——adhesive bonding——粘接BW——braze welding——钎接焊ABW——arc braze welding——电弧钎焊CABW——carbon arc braze welding——碳弧钎焊EBBW——electron beam braze welding——电子束钎焊EXBW——exothermic braze welding——热反应钎焊FLB——flow brazing——波峰钎焊FLOW——flow welding——波峰焊LBBW——laser beam braze welding——激光钎焊EBW——electron beam welding——电子束焊EBW-HV——high vacuum——高真空电子束焊EBW-MV——medium vacuum——中真空电子束焊EBW-NV——non vacuum——非真空电子束焊ESW——electroslag welding——电渣焊ESW-CG——consumable guide eletroslag welding——熔嘴电渣焊IW——induction welding——感应焊LBW——laser beam welding——激光焊PEW——percussion welding——冲击电阻焊TW——thermit welding——热剂焊THSP——THERMAL SPRAYING——热喷涂ASP——arc spraying——电弧喷涂FLSP——flame spraying——火焰喷涂FLSP-W——wire flame spraying——丝材火焰喷涂HVOF——high velocity oxyfuel spraying——高速氧燃气喷涂PSP——plasma spraying——等离子喷涂VPSP-W——vacuum plasma spraying——真空等离子喷涂TC——THERMAL CUTTING——热切割OC——OXYGEN CUTTING——气割OC-F——flux cutting——熔剂切割OC-P——metal powder cutting——金属熔剂切割OFC——oxyfuel gas cutting——氧燃气切割CFC-A——oxyacetylene cutting——氧乙炔切割CFC-H——oxyhydrogen cutting——氢氧切割CFC-N——oxynatural gas cutting——氧天然气切割CFC-P——oxypropanne cutting——氧丙酮切割OAC——oxygen arc cutting——氧气电弧切割OG——oxygen gouging——气刨OLC——oxygen lance cutting——氧矛切割AC——ARC CUTTING——电弧切割CAC——carbon arc cutting——碳弧切割CAC-A——air carbon arc cutting——空气碳弧切割GMAC——gas metal arc cutting——熔化极气体保护电弧切割GTAC——gas tungsten arc cutting——钨极气体保护电弧切割PAC——plasma arc cutting——等离子弧切割SMAC——shielded metal arc cutting——焊条电弧切割HIGH ENERGY BEAM CUTTING——高能束切割EBC——electron beam cutting——电子束切割LBC——laser beam cutting——激光切割LBC-A——air——空气激光切割LBC-EV——evaporative——蒸气激光切割LBC-IG——inert gas——惰性气体激光切割LBC-O——oxygen——氧气激光切割焊接英文词汇收集整理:John Zhang 2007-7-18电阻焊resistance welding (RW)点焊spot welding; resistance spot welding凸焊projection welding缝焊seam welding滚点焊roll-spot welding连续点焊stitch welding多点焊multiple spot welding手压点焊push welding; poke welding脉冲点焊pulsation spot welding; multiple-impulse welding 双面点焊direct spot welding单面点焊indirect spot welding串联点焊series spot welding多点凸焊multiple projection welding频道进缝焊step-by-step seam welding压平缝焊mash seam welding串联缝焊series seam welding对接缝焊butt seam welding; foil-butt seam电阻对焊upset butt welding闪光对焊flash butt welding (FBW)储能焊stored energy welding电容储能点焊condenser discharge spot welding高频电阻焊high frequency resistance welding冲击电阻焊percussion welding胶接点焊spot weld-bonding; weld-bonding闪光flashing; flash过梁bridge; lintel顶锻upsetting; upset夹紧力clamping force顶锻力upsetting force; upset force电极压力electrode force; electrode pressure电极滑移electrode skid焊接循环welding cycle预压时间squeeze time锻压时间forge-delay time; forge time焊接通电时间(电阻焊)welding time (resistance welding) 预热时间preheat time加热时间heat time冷却时间cool time间歇时间quench time; chill time回火时间temper time维持时间hold time休止时间off time闪光时间flash time; flashing time顶锻时间upset time; upsetting time有电顶锻时间upset current time无电顶锻时间upset current-off time闪光速度flashing speed闪光电流flashing current; flash current顶锻电流upset current预热电流preheat current回火电流temper current调伸长度initial overhange; extension总留量total allowance闪光留量flash allowance顶锻留量upset allowance顶锻速度upset speed电极接触面electrode contact surface贴合面faying surface焊点welding spot熔核nugget熔核直径diameter of nugget塑性金属环区corona bond焊透率penetration rate压痕indentation压痕深度depth of indentation压深率indentation ratio翘离sheet separation缩孔shrinkage cavity胡须intrusion电极粘损electrode pick up喷溅splash/ expulsion毛刺fin飞边upset metal/ fin焊点距weld spacing/ spot weld spacing边距edge distance分流shunt current接触电阻contact resistance电阻焊机resistance welding machine点焊机spot welding machine多点焊机multiple spot welding machine移动式点焊机portable spot welding machine 缝焊机seam welding machine纵横两用缝焊机universal seam welder对焊机butt resistance welding machine凸焊机projection welding machine三相低频焊机three phase low frequency welder二次整流电阻焊机direct current resistance welder secondary rectification电容储能电阻焊机condenser discharge resistance welder电容储能点焊机condenser type spot welder/ capacitor spot welding machine 工频电阻焊机mains frequency resistance welding machine低频电阻焊机frequency converter resistance welding machine高频焊机high frequency induction welder逆变式电阻焊机inverter type resistance welding machine全波阻焊电源full wave resistance welding power source斩波阻焊电源chopped wave resistance welding power source旋转焊接变压器rotary welding transformer点焊钳spot welding headC形点焊钳C-type welding head/ C-type gunX形点焊钳pincer spot welding head/ pliers spot welding head断续器contactor同步断续器synchronous contactor异步断续器non-synchronous contactor程序控制器sequencer程序时间调节器sequencer timer电极臂arm电极握杆electrode holder电极台板backup die/ bolster电极水冷管electrode cooling tube电极头electrode tip电极帽electrode cap锥头电极truncated tip electrode平头电极flat tip electrode尖头电极pointed tip electrode球面电极radius tip electrode偏心电极offest electrode直电极straight electrode弯电极cranked electrode双弯电极double cranked (swannecked) electrode滚轮电极circular electrode/ welding wheel斜棱滚轮电极bevelled wheel顶锻机构upsetting mechanism电极总行程total electrode stroke工作行程operational stroke辅助行程electrode travel/ electrode stroke臂间距离horn spacing/ throat opening电极臂伸出长度arm extension摩擦焊friction welding (FW)转速friction speed摩擦压力friction pressure/ heating pressure摩擦转矩friction torque摩擦时间friction time摩擦变形量burn-off length摩擦变形速度burn-off rate停车时间stopping time顶锻变形量forge length顶锻变形速度forge rate摩擦表面friction surface储能摩擦焊fly-wheel type friction welding径向摩擦焊radial friction welding扩散焊diffusion welding (DW)过渡液相扩散焊transient liquid phase diffusion welding 热等静压扩散焊hot isotatic pressure diffusion welding热轧扩散焊roll diffusion welding扩散缝焊seam diffusion welding超塑成形扩散焊supperplastic forming diffusion bounding 隔离剂buttering material爆炸焊explosive welding (EW)爆炸点焊explosive spot welding爆炸线焊explosive line welding多层板爆炸焊explosive welding of multiplayer plates多层管爆炸焊explosive welding of multiplayer tubes覆板(覆管)cladding plat (tube)/ flyer plate (tube)基板(基管)base plate(tube)/ parent plate (tube)保护层buffer/ protector基础base预置角preset angle间距initial stand-off/ spacing装药量explosive load装药密度charge density/ loading density质量比mass ratio平行法parallel plate configuration角度法preset angle configuration均匀布药average arranging explosive梯形布药gradient arranging explosive爆炸焊参数explosive welding parameters初始参数initial parameters动态参数dynamic parameters界面参数interface parameters爆轰速度detonation velocity覆板速度cladding plate velocity碰撞点impact point碰撞点速度velocity of the impact point弯折角bending angle碰撞角collision angle碰撞压力impact pressure格尼能Gurney energy垂直碰撞normal impact倾斜碰撞oblique impact/ inclined impact对称碰撞symmetrical impact来流upper stream出流down stream再入射流re-entrant jet自清理oneself cleaning结合区bond zone平面结合plane bond波状结合wave-like bond界面波长length of the interfacial wave界面波幅amplitude of the interfacial wave熔化层molten layer熔化袋molten pocket雷管区detonator zone边界效应edge effect焊接性窗口weldability windows焊着率ratio of welding area起爆方法method of initiation内爆法internal explosion process外爆法external explosion process半圆柱试验法semi-cylinder experiment method 超声波焊ultrasonic welding (UW)超声波点焊ultrasonic spot welding超声波缝焊ultrasonic seam welding超声波点焊机ultrasonic spot welder超声波缝焊机ultrasonic seam welder冷压焊cold pressure welding (CPW)热压焊hot pressure welding热轧焊hot roll welding旋弧压力焊rotating arc pressure welding埋弧压力焊submerged arc pressure welding电渣压力焊electroslag pressure welding气压焊gas pressure welding锻焊forge-welding/ blacksmith welding磁力脉冲焊magnetic-pulse welding硬钎焊brazing软钎焊soldering烙铁钎焊iron soldering火焰钎焊torch brazing/ torch soldering热风钎焊hot gas soldering感应钎焊induction brazing电阻钎焊resistance brazing接触反应钎焊contact-reaction brazing电弧钎焊arc brazing浸渍钎焊dip brazing/ dip soldering盐浴钎焊saltbath dip brazing (soldering)金属浴钎焊molten metal bath dip brazing炉中钎焊furnace brazing/ furnace soldering保护气氛钎焊brazing in controlled atmosphere真空钎焊vacuum brazing蒸气钎焊vapor phase soldering超声波钎焊ultrasonic soldering扩散钎焊diffusion brazing波峰钎焊flow soldering/ wave soldering分级钎焊step brazing/ step soldering不等间隙钎焊brazing with the unparalleled clearance红外线钎焊infra-red brazing (soldering)光束钎焊light soldering (brazing)激光钎焊laser brazing (soldering)电子束钎焊electron beam brazing钎接焊braze-welding钎料brazing filler metal/ solder硬钎料brazing filler metal软钎料solder (m)自钎剂钎料self-fluxing brazing alloy/ self-fluxing filler metal 活性钎料active filler metal/ active metal brazing alloy成形钎料preformed filler metal/ solder preform非晶态钎料amorphous filler metal粉状钎料powdered filler metal钎料膏braze cream/ braze paste/ solder cream/ solder paste药皮钎料flux coated brazing(soldering)rod层状钎料sandwich filler metal药芯钎料丝flux-cored colder wire敷钎料板clad brazing sheet钎剂brazing flux; soldering flux气体钎剂gas flux反应钎剂reaction flux松香钎剂colophony flux; rosin flux钎剂膏flux paste阻流剂stopping-off agent钎剂活性flux activity钎剂活性温度范围activation temperature range of flux钎剂热稳定性thermal stability of flux钎焊过程brazing (soldering) process钎焊操作brazing (soldering) operation工艺镀层technological coating钎焊面faying face钎缝间缝joint gap; joint clearance钎焊参数brazing process variables钎焊温度brazing temperature钎焊时间brazing time钎焊保温时间holding time of brazing钎缝brazing seam; soldering seam钎缝界面区interfacial region钎缝金属brace metal钎角fillet钎焊接头braced joint; soldered joint平面搭接头joggled lap joint; flush lap joint搭接对接接头butt and lap joint搭接T形接头lapped T-joint; flanged T-joint锁缝接头folded joint平面锁缝接头lick side seam joint; flat lock seam joint 锁缝角接接头lock corner joint; corner double seam 嵌入T形接头inset T jointT形管接头branch T saddle joint套管接头socket joint外喇叭口套管接头flare tube fitting扩口套管接头spigot joint钎焊性brazability; solderability润湿性wettability润湿角wetting angle; contact angle铺展性spreadability铺展系数spread factor; coefficient of spreading钎着率brazed rate脱钎de-brazing; de-soldering润湿称量试验wetting balance test铺展性试验spreadability test填缝性试验clearance fillability test未钎透incomplete penetration虚钎cold soldered joint钎料熔析liquation of filler metal溶蚀erosion钎料流失brazing filler metal erosion钎剂夹杂flux inclusion晶间渗入intergranular penetration波峰钎焊机wave soldering machine冷壁真空钎焊炉cold wall type vacuum brazing热壁真空钎焊炉hot wall type vacuum brazing furnace 钎焊盒brazing retort钎剂涂敷器fluxer钎炬brazing (soldering) blowpipe喷灯brazing lamp烙铁solder iron热喷涂thermal spraying火焰喷涂flame spraying电弧喷涂electric arc spraying等离子喷涂plasma spraying高频感应喷涂high frequency spraying气体爆燃式喷涂detonation flame spraying金属喷涂metal spraying; metallizing塑料喷涂plastic spraying陶瓷喷涂ceramic spraying喷熔spray-fusing表面粗糙化处理surface roughening电火花拉毛electrospark roughening抛锚效应anchoring喷涂层spray-fused coating喷熔层spray-fused coating结合层bond coating; under coating工作层work coating结合强度adhesive strength涂层强度strength of coating封孔处理sealing封孔剂sealant喷涂率spray rate沉积效率deposition efficiency孔隙率porosity喷涂材料spraying material自熔剂合金粉末self-fluxing alloy powder喷炬(枪)spray torch;热切割thermal cutting (TC)气割gas cutting; oxygen cutting氧溶剂切割powder cutting氧-石英砂切割quartz powder cutting电弧切割arc cutting氧气电弧切割oxy-arc cutting空气电弧切割air arc cutting等离子弧切割plasma arc cutting (PAC)空气等离子弧切割air plasma arc cutting氧等离子切割oxygen plasma arc cutting水再压缩空气等离子弧切割air plasma water injection arc cutting双层气流等离子弧切割dual gas plasma arc cutting; shielded gas plasma arc cutting 激光切割laser cutting(LC); laser beam cutting电子束切割electron beam cutting喷气激光切割gas jet laser cutting碳弧切割carbon arc cutting水下切割underwater cutting喷水式水下电弧切割waterjet method underwater arc cutting氧矛切割oxygen lancing; oxygen lance cutting溶剂氧切割powder lancing手工气割manual oxygen cutting自动气割automatic oxygen cutting仿形切割shape cutting数控切割NC (numerical-control) cutting快速切割high-speed cutting垂直切割square cut叠板切割stack cutting坡口切割beveling; bevel cutting碳弧气割carbon arc air gouging火焰气刨flame gouging火焰表面清理scarfing氧熔剂表面修整powder washing预热火焰preheat flame预热氧preheat oxygen切割氧cutting oxygen/ cutting stream切割速度cutting speed切割线lone of cut/ cut line切割面face of cut/ cut face切口kerf切口上缘cutting shoulder切口宽度kerf width后拖量drag切割面平面度evenness of cutting surface/ planeness of cutting surface割纹深度depth of cutting veins/ stria depth切割面质量quality of cut face上缘熔化度shoulder meltability/ melting degree of shoulder切口角kerf angle缺口notch挂渣adhering slag结瘤dross割炬cutting torch/ cutting blowpipe/ oxygen-fuel gas cutting torch割枪cutting gun割嘴cutting nozzle/ cutting tip快速割嘴divergent nozzle/ high-speed nozzle表面割炬gouging blowpipe水下割炬under-water cutting blowpipe水下割条electrode for under-water cutting粉剂罐powder dispenser数控切割机NC cutting machine门式切割机flame planer光电跟踪切割机photo-electric tracing cutting火焰切管机pipe flame cutting machine磁轮式气割机gas cutting machine with magnetic wheels 焊接结构welded structure/ welded construction焊件weldment焊接部件weld assembly组装件built-up member接头设计joint design焊接应力welding stress焊接瞬时应力transient welding stress焊接残余应力welding residual stress热应力thermal stress收缩应力contraction stress局部应力local stress拘束应力constraint stress固有应力inherent stress固有应变区inherent strain zone残余应力测定residual stress analysis逐层切割法Sach’s methodX射线衍射法X-ray stress analysis小孔释放法Mathar method固有应变法inherent strain method消除应力stress relieving局部消除应力local stress relieving应力重分布stress redistribution退火消除应力stress relieving by annealing温差拉伸消除应力low temperature stress relieving机械拉伸消除应力mechanical stress relieving应力松弛stress relaxation焊接变形welding deformation焊接残余变形welding residual deformation局部变形local deformation角变形angular distortion自由变形free deformation收缩变形contraction deformation错边变形mismatching deformation挠曲变形deflection deformation波浪变形wave-like deformation火焰矫正flame straightening反变形backward deformation焊接力学welding mechanics断裂力学fracture mechanics弹塑性断裂变形elasto-plastic fracture mechanics线弹性断裂力学linear elastic fracture mechanics延性断裂ductile fracture脆性断裂brittle fracture应力腐蚀开裂stress corrosion cracking热应变脆化hot straining embrittlement临界裂纹尺寸critical crack size裂纹扩展速率crack propagation rate裂纹张开位移(COD)crack opening displacement拘束度restraint intensity拘束系数restraint coefficient应变速率strain rate断裂韧度fracture toughness应力强度因子stress intensity factor临界应力强度因子critical stress intensity factors应力腐蚀临界应力强度因子critical stress intensity factor of stress corrosion cracking J积分J-integration罗伯逊止裂试验Robertson crack arrest testESSO试验ESSO test双重拉伸试验doucle tension test韦尔斯宽板拉伸试验Well’s wide plate test帕瑞斯公式Paris formula断裂分析图fracture analysis diagram焊接车间welding shop焊接工作间welding booth焊接工位welding post/ welding station焊接环境welding surroundings焊工welder电焊工manual arc welder气焊工gas welder焊接检验员weld inspector焊工培训welders training焊工模拟训练器trainer of synthetic weld焊工考试welder qualification test焊工合格证welder qualification/ welder qualified certification钢板预处理steel plate pretreatment喷沙sand blast喷丸shot blast矫正straighten开坡口bevelling (of the edge)/ chanfering装配assembly/ fitting安装erect刚性固定rigid fixing装配焊接顺序sequence of fitting and welding 焊接工艺评定welding procedure qualification 焊接工艺规程welding procedure specification 焊接工艺试验welding procedure test焊接工艺卡welding procedure card工序operational sequence焊接材料消耗定额welding consumables quota 焊接工时定额welder-hour quota清渣slag removal清根back gouging/ back chipping锤击peening返修次数number of rewelding焊接工作台welding bench装焊平台welding platen电磁平台electromagnetic platen焊接翻转机welding tilter焊接回转台floor turnable positioner焊接变位机positioner焊接滚轮架turning rolls焊接操作机manpulator焊工升降台welder’s lifting platform焊接夹具welding jig/ fixture磁力夹紧器magnetic jig螺旋推撑器screw operated tensioning unit焊丝盘绕机welding wire coiler焊条压涂机welding electrode extrusion press 红外线加热器infra-red heater干燥箱dryer焊条保温筒thermostat for electrode流量计flow meterCO2预热器CO2 heaterCO2干燥器CO2 desiccator焊接电缆welding cable电缆夹头welding connector地线earth lead地线夹头earth clamp焊接参数记录仪welding parameter recorder 焊缝检测规weld gauge喷嘴通针tip cleaner测温笔tempil stick敲渣锤chipping hammer焊接衬垫backing/ welding backing保留垫板fusible backing/ permanent backing临时垫板temporary backing焊剂垫flux backing惰性气体衬垫inert-gas backing引弧板run-on tab/ end tab/ starting weld tab引出板run-off tab/ end tab定位板strong-back加强勒stiffener嵌条insert套环ferrule面罩helmet滤光镜片filter glass/ welding glass防护镜片cover glass/ plain glass气焊眼镜welding goggles焊接机器人welding robot点焊机器人spot welding robot弧焊机器人arc welding robot切割机器人cutting robot焊接机器人生产线robot line for welding焊接机器人工作站welding robot station机器人运动自由degree of free for robot机器人工作空间robot working space轨迹重复精度path repeatability点位重复精度PTP repeatability焊接专家系统welding expert system焊接机器人示数welding robot play back焊接图象识别pattern recognition for welding焊接图象处理welding image processing计算机辅助焊接工艺设计computer-aided welding process programming (CAWPP) 计算机辅助焊接结构设计computer-aided design for welding structure焊接烟尘weld fume焊接发尘量total amount of fumes焊接烟尘浓度weld fume concentration焊接烟尘容限浓度threshold limit values of weld fume (TLV)焊接发尘速率weld fume emission rate焊接有害气体welding toxic gases/ weld harmful gases标定卫生空气需要量nominal hygienic air requirement焊工尘肺pheumocomsis of welder焊工锰中毒chronic occupational manganese poisoning of welder焊工氟中毒fluorosis of welder焊工金属烟热metal fume fever of welder电光性眼炎eye-flash (arc eye)电光性皮炎electro-photo dermatitis电弧紫外线灼伤ultraviolet ray burn防电击装置voltage reducing device除尘装置dust collection device焊工手套welding gloves护脚welding spats防护鞋shielding shoes焊接欠缺welding imperfection焊接缺陷weld defect气孔blowhole/ gas pore针尖状气孔pinhole密集气孔porosity条虫状气孔wormhole裂纹crack表面裂纹surface crack咬边undercut焊瘤overlap凹坑pit烧穿burn through塌陷excessive penetration未焊透incomplete penetration/ lack of penetration未熔合lack of fusion/ incomplete fusion未焊满incompletely filled weld根部凹陷root concavity电弧擦伤arc scratch夹渣slag inclusion夹杂物inclusion夹钨tungsten inclusion白点fish eye/ flake错边misalignment/ dislocation试件test piece试样test specimen无损检验nondestructive test破坏检验destructive test外观检查visual examination超声波探伤ultrasonic inspection直射法超声波探伤straight beam method斜射法超声波探伤angle beam method液浸法超声波探伤immersion method射线探伤radiographic inspection/ radiographyX射线探伤X-ray radiographic inspectionγ射线探伤gamma-ray inspectionX射线工业电视探伤X-ray industrial television inspection 磁粉探伤magnetic particle inspection电磁探伤electromagnetic inspection/ eddy current test探伤灵敏度flaw detection sensitivity渗透探伤penetration inspection荧光探伤flurescent penetrant inspection 着色探伤dye penetrant inspection密封性检验leak test气密性检验air tight test枕形气密检验pillow test耐压检验pressure test水压检验hydraulic test气压检验pneumatic test液晶检验liquid crystal test声发射检测acoustic emission testing面弯试验face bend testing背弯试验root bend test侧弯试验side bend test横弯试验horizontal bend test纵弯试验axial bend test压扁试验squeezing test。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DOI:10.1007/s00339-004-2580-7Appl.Phys.A 79,883–885(2004)Materials Science &ProcessingApplied Physics Ay.kawaguchi u x.dinga.narazaki t.sato h.niinoTransient pressure induced by laser ablation of liquid toluene:toward the understanding of laser-induced backside wet etchingPhotoreaction Control Research Center,National Institute of Advanced Industrial Science and Technology (AIST),Tsukuba Central 5,1-1-1Higashi,Tsukuba,Ibaraki 305-8565,JapanReceived:1October 2003/Accepted:17December 2003Published online:26July 2004•©Springer-Verlag 2004ABSTRACT To clarify the initial stage of laser-induced back-side wet etching,we directly measured transient pressure upon laser ablation of toluene under KrF excimer laser irradiation by using a fast-response pressure gauge.The propagation time of the pressure peak to the gauge agreed well with the time for the shock wave to reach the gauge on time-resolved im-ages.The peak pressure P decreased slowly with increasing distance d :P =30.4MPa for d =100µm to P =11.1MPa for d =1000µm at a fluence F =1.0J cm −2pulse −1.The initial pressure,estimated to be of the order of 10–200MPa,impinges on a transparent plate and contributes to the etching.PACS 79.20.Ds;47.40.Nm;47.55.Bx;42.62.Cf;81.65.Cf1IntroductionBecause of the optical transparency,mechanicalhardness and brittleness,and chemical stability,microfabri-cation of transparent materials such as fused silica has been a challenging theme.We have developed a method to mi-croetch various types of transparent materials by using laser ablation of a highly laser-absorbing organic solution,laser-induced backside wet etching (LIBWE)[1–9].A nanosec-ond pulsed UV laser beam is irradiated to a solution through a transparent substrate.Because of the large absorption co-efficient of the solution at the wavelength of the laser beam,the laser energy is initially confined to a micron-scale shal-low volume at the interface between the substrate and the solution,which causes laser ablation of the solution and re-sults in etching of the substrate.Investigation of transient processes,especially transient pressures,upon laser ablation of organic solutions is key for understanding the mechanism of LIBWE.However,a small number of works have been re-ported on the transient pressure upon laser ablation of highly laser-absorbing solutions [5,8–12].We previously studied time-resolved optical microscopic images upon laser ablation of toluene,and estimated the initial pressure caused by the generation of a flat bubble [8,9].In the last paper,we directly measured transient pressure caused by toluene ablation withu Fax:+81-298/61-4560,E-mail:y-kawaguchi@aist.go.jpa fast-response pressure gauge,compared the results with time-resolved optical images,and estimated the initial pres-sure upon toluene ablation [10].In this paper,we study details of the transient pressures upon toluene ablation,time-resolved optical images in the presence of the pressure gauge in two cases (when the pressure gauge was far from the transparent plate and when the gauge was near the plate),and compare both results.2ExperimentalFigure 1depicts the schematic of the experimentalsetup for the measurement of transient pressure upon toluene ablation.Toluene (Wako,purity 99.5%)was poured into an optical cell made of fused silica,and a piezoelectric pressure gauge (Dr.Müller Ingenieur-technik,Müller-Platte-Gauge)was inserted inside the cell.The pressure gauge is a cylin-der with a flat tip,and has a calibration factor assured by the manufacturer.The gauge was fixed to a z -stage for adjusting the distance d between the flat tip of the gauge and the bot-tom of the inner side of the cell,i.e.the fused-silica plate.A KrF excimer laser beam (Lambda Physik COMPEX102;λ=248nm ,FWHM ≈20ns )was transmitted upward and fo-cused to the interface between the fused-silica plate and the toluene.The output of the gauge was acquired with a digi-tizing oscilloscope.The KrF laser pulse wassimultaneouslyFIGURE 1Schematic of the experimental setup for the measurement of transient pressure upon laser ablation of toluene884Applied Physics A –Materials Science &Processingmonitored with a biplanar detector.An attenuating plate was used for adjusting the fluence F .Time-resolved optical images of toluene ablation in the presence of the pressure gauge were observed by flash shad-owgraphy.Details of the experimental setup were described elsewhere [5,8].3Results and discussionFigure 2depicts waveforms of the transient pres-sure caused by toluene ablation as a function of distance d at F =1.0J cm −2pulse −1.The origin was set to the instant of fir-ing the KrF laser.The peak pressure P decreased slowly with increasing d :P =30.4MPa for d =100µm to P =11.1MPa for d =1000µm ,while the FWHM of the peak increased from 80ns to 190–200ns and saturated.For d =100µm ,the waveform showed a peak at the apparent propagation time ∆t of 150ns ,followed by small irregular peaks due to internal reflection of the pressure gauge.For d =100–1000µm ,∆t increased linearly with d with a slope of 1.32×103m s −1and a constant of 55ns for d =0.The slope corresponds to the sound velocity of toluene,and the constant 55ns means the in-ternal delay of the gauge.That is,the real propagation time is ∆t −55ns .Next,time-resolved images of toluene ablation in the pres-ence of rigid boundaries were observed.The laser spot at the interface was 200µm in diameter.Figure 3shows typi-cal images with various delay times ∆t after firing the laser pulse at F =1.0J cm −2pulse −1and d =1000µm .SeveralFIGURE 2Output waveform of the pressure gauge due to toluene ablationvs.distance d at F =1.0J cm −2pulse −1.∆t is the apparent propagation time of the pressure peak to the gauge,including the internal delay of the gaugeblack spots of various shapes were located on the flat tip of the pressure gauge,and they were residual bubbles generated by the preceding KrF laser pulses.The shock wave reached the flat tip of the gauge at ∆t slightly smaller than 800ns ,which agreed with the propagation time of the pressure peak in Fig.1,775ns .At ∆t =100ns ,the shock wave was rather planar at the center with round expansion waves on both ends.The shape of the shock wave changed gradually,and it became almost hemispherical at ∆t =400–500ns .This initially rather planar expansion of the shock wave should cause a slow dissipation of the energy and a slow decrease of the transient pressure due to the shock wave with increasing d ,as shown in Fig.1.In contrast,for point-focused pulsed-laser irradiation of wa-ter,the laser-induced shock wave expands almost spherically from the early stage and the injected energy dissipates inallFIGURE 3Time-resolved images of toluene ablation observed by shad-owgraph technique vs.delay time ∆t after firing of the KrF excimer laser at F =1.0J cm −2pulse −1and d =1000µm.The laser spot was 200µm in diameterKAWAGUCHI et al.Transient pressure induced by toluene ablation885FIGURE 4Time-resolved images of toluene ablation observed by shad-owgraph technique vs.delay time ∆t after firing of the KrF excimer laser at F =1.0J cm −2pulse −1and d =130µm.The laser spot was 200µm in diameterdirections,causing a rapid decrease of the transient pressure with increasing d :P ∝d −γwith γ=1–3,depending on the irradiation conditions [13–15].In our experiment,the bub-ble expanded upward more prominently at ∆t >1µs ,grew to a maximum with a hemispherical shape at ∆t =50–60µs ,and shrank afterwards.The expansion of the bubble was free from the presence of the pressure gauge when the distance between the gauge and the fused-silica plate was as large as 1000µm .This is in contrast to the case of d =500µm :the expansion of the bubble upward was limited by the pressure gauge and the bubble was an elliptical hemisphere in shape at a maximum volume,and the shrinkage of the bubble after-wards was slower [10].Figure 4shows the images for d =130µm ,a very narrow gap between the fused-silica plate and the pressure gauge.At ∆t =100ns ,the shock wave was already reflected by the flat tip of the gauge,which corresponded to the propagation time of the pressure peak for d =100µm in Fig.1,95ns .At ∆t >1µs ,the expansion of the bubble was strictly limited by the existence of the pressure gauge.The bubble almost reached the pressure gauge and expanded horizontally at ∆t =5µs .The gap between the gauge and the fused-silica plate was al-most filled with the expanded bubble at ∆t ≈50µs ,and the bubble shrank very slowly afterwards.From Figs.3and 4at ∆t =100ns ,it was confirmed that the initial stage of bubble expansion upon toluene ablationwas not influenced by the pressure gauge.Thus,it makes sense to estimate the initial impact pressure due to bubble ex-pansion upon toluene ablation in the presence of the pressure gauge by using the expression P = CV jet ,(1)where and C are the density and the sound velocity of the liquid and V jet is the expansion velocity of the bubble [16].From Figs.3and 4,the maximum value of V jet was esti-mated to be 110m s −1at F =1.0J cm −2pulse −1,and the cor-responding initial impact pressure was 120MPa .This value agrees with 65MPa [10],estimated from the results of direct pressure measurement,within a factor of two.Together with the rapid temperature rise induced by toluene ablation,the ini-tial pressure of the order of 10–200MPa strongly impinges on the surface of transparent materials and contributes to the etching.4ConclusionBy directly measuring transient pressure upon KrFexcimer laser ablation of toluene and comparing with time-resolved optical images,the initial stage of toluene ablation was investigated for clarifying the mechanism of LIBWE.Reflecting the initial condition that the laser energy is con-fined to a micron-scale shallow volume at the interface be-tween the toluene and a fused-silica plate,the expansion of the shock wave was rather planar initially and the peak pres-sure decreased very slowly with increasing distance d ,com-pared with the case of point-focused pulsed-laser irradiation of water.The initial pressure of the order of 10–200MPa con-tributes to the etching of transparent materials together with the rapid temperature rise upon toluene ablation.REFERENCES1J.Wang,H.Niino,A.Yabe:Appl.Phys.A 68,111(1999)2J.Wang,H.Niino,A.Yabe:Appl.Phys.A 69,S271(1999)3J.Wang,H.Niino,A.Yabe:Appl.Surf.Sci.154–155,571(2000)4X.Ding,Y .Yasui,Y .Kawaguchi,H.Niino,A.Yabe:Appl.Phys.A 75,437(2002)5X.Ding,Y .Kawaguchi,H.Niino,A.Yabe:Appl.Phys.A 75,641(2002)6X.Ding,Y .Kawaguchi,H.Niino,A.Yabe:SPIE Proc.4830,156(2003)7X.Ding,T.Sato,Y .Kawaguchi,H.Niino:Jpn.J.Appl.Phys.42,L176(2003)8H.Niino,Y .Yasui,X.Ding,A.Narazaki,T.Sato,Y .Kawaguchi,A.Yabe:J.Photochem.Photobiol.A:Chem.158,179(2003)9H.Niino,Y .Yasui,X.Ding,A.Narazaki,T.Sato,Y .Kawaguchi,A.Yabe:SPIE Proc.4977,269(2003)10Y .Kawaguchi,X.Ding,A.Narazaki,T.Sato,H.Niino:Appl.Phys.A,DOI 10.1007/s00339-003-2347-6(2003)11A.A.Oraevsky,S.L.Jacques,F.K.Tittel:J.Appl.Phys.78,1281(1995)12D.Kim,M.Ye,C.P.Grigoropoulos:Appl.Phys.A 67,169(1998)13A.G.Doukas,A.D.Zweig,J.K.Frisoli,R.Birngruber,T.F.Deutsch:Appl.Phys.B 53,237(1991)14J.Noack,A.V ogel:Appl.Opt.37,4092(1998)15J.Noack,D.X.Hammer,G.D.Noojin,B.A.Rockwell,A.V ogel:J.Appl.Phys.83,7488(1998)16J.-C.Isselin,A.-P.Alloncle,M.Autric:J.Appl.Phys.84,5766(1998)。