(精)济宁市兖州市2018届九年级上期中考试数学试题有答案

合集下载

【优选】山东省济宁市2018年中考数学试题(含解析)

【优选】山东省济宁市2018年中考数学试题(含解析)

山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.)A.1 B.﹣1 C.3 D.﹣3【解答】-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。

2018 年山东省济宁市初中九年级中考数学试卷含答案

2018 年山东省济宁市初中九年级中考数学试卷含答案

2018 年山东省济宁市初中九年级中考数学试卷含答案一、选择题:本大题共10 小题,每小题3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.)A.1 B.﹣1 C.3 D.﹣3【解答】.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50° B.60° C.80° D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点C 顺时针旋转90°,再向右平移3 个单位长度,则变换后点A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C 的坐标为(﹣1,0),AC=2,∴点A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中5 出现2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;方差为15故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共5 小题,每小题3 分,共15 分。

济宁市2018中考数学真题含答案

济宁市2018中考数学真题含答案

济宁市2018中考数学真题含答案济宁市二0一八年高中段学校招生考试数学试题注意事项:1.本试卷分第I卷和第I1卷两部分,共6页.第1卷为选择题,30分,第1卷为非选择题,70分;共100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名,准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第1卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动必须先用橡皮擦干净,再改涂其它答案.4,在答第11卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第|卷(选择题共30分)一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求3的值是1.√−1A.1B.-1C.3D.-32.为贯彻落实党中央、因务院关于推进城乡义务教育体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米.其中186000000用科学计数法表示是( )A.1.86x108B.186x106C.1.86x109D.0.186x1093.下列运算正确的是A.a8÷a4 =a2B.(a2)2=a4C.a2·a3=a6 D,a2+a2 =2a44.如图,点B,C,D 在⊙O上,若∠BCD=130º,则∠B0D的度数是A.50ºB.60ºC.80ºD.100º5.多项式4a-a3分解因式的结果是A.a(4-a2)B.a(2-a)(2+a)C.a(a-2)(a+2)D.a(2-a)26.如图,在平面直角坐标系中,点A.C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90”,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A.(2.2)B.(1,2)C.(-1,2)D.(2,-1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5B.中位数是5C.平均数是6D.方差是3.68.如图,在五边形ABCDE中,∠A+∠B+∠C=300º,DP,CP分别平分∠EDC,∠BCD,则∠P的度數是A.50ºB.55ºC.60ºD.65º9.-个几何体的三视图如图所示,则该几何体的表面积是(A.24+2πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )第Ⅱ卷(非选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分.11.若二次根式√x −1在实数范围内有意义,则x 的取值范围是 . 12.在平面直角坐标系中,已知一次函数y=-2x+1的图像经过P 1(x 1, y 1),P 2(x 2,y 2)两点,若x 1<x 2则y 1____y 2上(填“>”“<” 或“=”).13.在△ABC 中,点E,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接DE,DF,EF.请你添加一个条件 使△BED 与△FDE 全等.14.如图,在一笔直的海岸线l 上有相距2km 的A,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60 º的方向上,从B 站测得船C 在北偏东30 º的方向上,则船C 到海岸线l 的距离是 km.15.如图,点A 是反比例函数y=4x (x>0)图像上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是 . 三、解答题:本大题共7小题共55分. 16. (6分)化简: (y+2)(y-2)-(y-1)(y+5)17. (7分)某校开展研学旅行活动,准备去的研学基地有A (曲阜)、B (梁山)、C (汶上)、D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示). (1)求该班的总人数,并补全条形统计图: (2)求D (泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18. (7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图(保留作图痕迹,不写画法):(2)如图2,小华说:“我只用一个直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒5大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10m,请你求出这个环形花坛的面积.19. (7分)“绿水青山就是金山银山”,为保护生态环境,A. B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是名少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000 元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20、(8分)如图,在正方形ABCD中,点E、F分别是边AD、BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G,(1)猜想DG与CF的数量关系,并证明你的结论:(2)过点H作MN//CD,分别交AD, BC于点M, N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.21. (9分)知识背景 当a>0月x>0时,因为(√x −√a √x)2≥0,所以x −2√a +a x ≥0,从而x +ax≥2√a ,(当x=√a 时取等号)设函数y= x +ax (a>0, x>0), 由上述结论可知,当x=√a 时,该函数有最小值为2√a . 应用举例已知函数y 1=x(x>0)与函数y 2=4x(x>0),则当x=√4=2时,y 1+y 2=x+4x有最小值为2√4=4. 解决问题(1)已知函数y 1=x+3(x>-3)与函数y 2=(x+3)2+9(x>-3),当x 取何值时,y2y 1有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下部分:一是设备的安装调试费用,共400元;二是设备的租赁使用费用,每天200元:三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001,若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?22. (11分)如图,已知抛物线y=ax2+bx+c(a≠0),经过点A (3.0), B (-1,0), C (0.-3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M.求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C. Q, P为顶点的四边形是平行四边形?若存在,求点P的坐标:若不存在,请说明理由.参考答案选择题1-5 BABDB 6- -10 ADCDC填空题11.x≥1;12.>;13.EF=BD (∠B=∠EFD或∠BED=∠EDF);14.√3;15.2√3-2三、解答题16.原式=-4y+1;17. (1)总人数: 50人;图略;(2)圆心角度数100.8º;(3) P=138. (1)作图略(2) 25π平方米9. (1)清理养鱼网箱人均支出费用2000元,清理捕鱼网箱人均费用3000元:(2)设m人清理养鱼网箱,则(40-m) 人清理捕鱼网箱由题意得:2000m + 3000(40-m)≤102000m<40-m 解得: 18≤m< 20故两种方案,方案一: 18人清理养鱼网箱,22人清理捕鱼网箱;方案二: 19人清理养鱼网箱,21人清理捕鱼网箱.20. (1) DG=-CF,利用相似证明即可;(2)周长最小值: 2√26+1021. (1)当x=0时,有最小值6.(2)当x=700时,租赁使用成本最低,最低为201.4元.22. (1) y=x2-2x-3;(2)M(−35,−65)(3) P1(2,-3);P2(1+√7,3);P3(1-√7,3).。

2018-2019学年山东省济宁市九年级(上)期中数学试卷

2018-2019学年山东省济宁市九年级(上)期中数学试卷

2018-2019学年山东省济宁市九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点(3,﹣4)关于原点对称的点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形3.共享单车为市民出行带来了方便,某单车公式第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a 4.若关于x的一元二次方程x2+bx+c=0的两个根分别为x1=1,x2=2,那么抛物线y=x2+bx+c的对称轴为直线()A.x=1B.x=2C.x=D.x=﹣5.下列事件属于随机事件的是()A.任意写出一个二次函数,它的图象与x轴有交点B.将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等C.将一个圆分成n等份,顺次连接各分点得到一个正n边形D.若a为实数,则a2<06.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣37.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,OB=4,则AB的长为()A.2B.4C.6D.48.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为09.一件工艺品进价为100元,标价130元售出,每天平均可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出5件,某店为减少库存量,同时使每天平均获得的利润为3000元,每件需降价的钱数为()A.12元B.10元C.8元D.5元10.抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③b2﹣4ac<0;④b<2a.其中正确的结论是()A.①②B.②③C.②④D.③④二、填空题(共5小题,每小题3分,满分15分)11.抛掷一枚质地均匀的正方体骰子一次,骰子的六个面上分别刻有1到6的点数,观察向上的一面,点数为6的事件的概率是.12.已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根x1,x2,若x1,x2满足x1+x2=x1x2,则m的值为.13.如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE=.14.如图,是一个半径为4cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于cm.15.如图,点D,C的坐标分别为(﹣1,﹣4)和(﹣5,﹣4),抛物线的顶点在线段CD上运动(抛物线随顶点一起平移),与x轴交于A,B两点(A在B的左侧),点B的横坐标最大值为3,则点A的横坐标最小值为.三、解答题(共7小题,满分56分)16.(6分)解下列一元二次方程:(1)3x2+4x﹣7+0(2)(x﹣3)2=2x﹣617.(6分)如图,在平面直角坐标系网格中,△ABC的顶点都在格点上.(1)作出△ABC关于原点对称的△A1B1C1,并写出点A1的坐标;(2)把△ABC绕点O逆时针旋转90°得△A2B2C2,画出△A2B2C2,并写出点A2的坐标.18.(8分)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,将△ABC 绕点C 按逆时针方向旋转n 度后,得到△DEC ,点D 刚好落在AB 边上,(1)求n 的值;(2)若AC =4,求DF 的长.19.(8分)在“十一”黄金周期间,某商店购进一优质湖产品,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该湖产品一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系(1)填空:若这种湖产品的售价为30元/千克,则该湖产品的销售量是 . (2)如果某天销售这种湖产品获利150元,那么该天湖产品的售价为多少元? 20.(8分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为弧BC 的中点,作DE ⊥AC 于点E ,交AB 的延长线于点F ,连接DA(1)求证:EF 为半圆O 的切线;(2)连接OD ,若DA =DF =6,求扇形OBD 的面积(结果保留x )21.(9分)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用勾股定理得到结论:P1P2=;他还证明了线段P1P2的中点P(x,y)的坐标公式是:x=,y=;启发应用请利用上面的信息,解答下面的问题:如图,在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M 经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)判断点C与⊙M的位置关系,并说明理由.22.(11分)如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式及顶点D的坐标;(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.2018-2019学年山东省济宁市微山县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点(3,﹣4)关于原点对称的点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故选:C.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形【分析】根据轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.共享单车为市民出行带来了方便,某单车公式第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x,然后根据已知条件可得出方程.【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4.若关于x的一元二次方程x2+bx+c=0的两个根分别为x1=1,x2=2,那么抛物线y=x2+bx+c的对称轴为直线()A.x=1B.x=2C.x=D.x=﹣【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【解答】解:∵方程x2+bx+c=0的两个根分别为x1=1、x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x==.故选:C.【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x 轴的交点横坐标找出抛物线的对称轴是解题的关键.5.下列事件属于随机事件的是()A.任意写出一个二次函数,它的图象与x轴有交点B.将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等C.将一个圆分成n等份,顺次连接各分点得到一个正n边形D.若a为实数,则a2<0【分析】根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对各小题分析判断即可得解.【解答】解:A、任意写出一个二次函数,它的图象与x轴有交点是随机事件,此选项正确;B、将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等,是必然事件,此选项错误;C、将一个圆分成n等份,顺次连接各分点得到一个正n边形,是必然事件,此选项错误;D、若a为实数,则a2<0是不可能事件,此选项错误;故选:A.【点评】本题考查了随机事件,关键在于正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选:D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,OB=4,则AB的长为()A.2B.4C.6D.4【分析】先根据垂径定理得出AB=2BE,再由CE=2,OB=4得出OE的长,根据勾股定理求出BE的长即可得出结论.【解答】解:∵⊙O的直径CD垂直弦AB于点E,∴AB=2BE.∵CE=2,OB=4,∴OE=4﹣2=2,∴BE===2,∴AB=4.故选:D.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【分析】先利用新定义得到22•a+a<0,解得a<0,再计算判别式,利用a的范围可判断△>0,从而可判断方程根的情况.【解答】解:∵2☆a的值小于0,∴22•a+a<0,解得a<0,∴△=b2﹣4×2×a>0,∴方程有两个不相等的两个实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.一件工艺品进价为100元,标价130元售出,每天平均可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出5件,某店为减少库存量,同时使每天平均获得的利润为3000元,每件需降价的钱数为()A.12元B.10元C.8元D.5元【分析】设每件工艺品降价x元,则每天的销售量为(100+5x)件,根据每日的利润=每件的利润×日销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:设每件工艺品降价x元,则每天的销售量为(100+5x)件,根据题意得:(130﹣100﹣x)(100+5x)=3000,整理得:x2﹣10x=0,解得:x1=0,x2=10.∵要减少库存量,∴x=10.故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③b2﹣4ac<0;④b<2a.其中正确的结论是()A.①②B.②③C.②④D.③④【分析】①由抛物线的开口、对称轴的位置以及抛物线与y轴交点的位置,即可得出a>0,﹣<0,c<0,进而可得出abc<0,结论①错误;②由点(1,2)在抛物线上,利用二次函数图象上点的坐标特征,即可得出a+b+c=2,结论②正确;③由抛物线与x轴有两个交点,可得出b2﹣4ac>0,结论③错误;④由﹣>﹣1,a>0,可得出b<2a,结论④正确.综上此题得解.【解答】解:①∵抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,∴a>0,﹣<0,c<0,∴b>0,∴abc<0,结论①错误;②∵当x=1时,y=2,∴a+b+c=2,结论②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,结论③错误;④∵﹣>﹣1,a>0,∴b<2a,结论④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系以及二次函数图象上点的坐标特征,观察函数图象,逐一分析四条结论的正误是解题的关键.二、填空题(共5小题,每小题3分,满分15分)11.抛掷一枚质地均匀的正方体骰子一次,骰子的六个面上分别刻有1到6的点数,观察向上的一面,点数为6的事件的概率是.【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出点数是6的概率.【解答】解:根据概率公式P(向上一面点数是6)=.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.12.已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根x1,x2,若x1,x2满足x1+x2=x1x2,则m的值为0.【分析】根据根与系数的关系得出x1+x2=﹣2,x1•x2=m﹣2,代入求出即可.【解答】解:∵关于x的一元二次方程x2+2x+m﹣2=0有两个实数根x1,x2,∴x1+x2=﹣2,x1•x2=m﹣2,∵x1+x2=x1x2,∴m﹣2=﹣2,解得:m=0,经检验当m=0时,方程有两个解,故答案为:0.【点评】本题考查了根的判别式和根与系数的关系,能根据根与系数的关系得出关系式x1+x2=﹣2和x1•x2=m﹣2是解此题的关键.13.如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE=.【分析】根据旋转的性质,△CDP绕点B顺时针旋转得到△CBE,则可知旋转角度是90°,EC=PC,△CPE是等腰直角三角形,由勾股定理求出PE即可.【解答】解:∵△CDP绕点C顺时针旋转得到△CBE,其旋转中心是点C,旋转角度是90°,∴∠PCE=90°,EC=PC=1,∴△CPE是等腰直角三角形,∴PE===.故答案为:.【点评】本题考查了旋转的性质、正方形的性质、等腰直角三角形的判定与性质、勾股定理;熟练掌握正方形和旋转的性质,得出三角形是等腰直角三角形是解决问题的关键.14.如图,是一个半径为4cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于3cm.【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷2,得到圆锥的弧长=2扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷2π求解.【解答】解:∵圆锥的弧长=2×12π÷4=6π,∴圆锥的底面半径=6π÷2π=3cm,故答案为3.【点评】考查了圆锥的计算,解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.15.如图,点D,C的坐标分别为(﹣1,﹣4)和(﹣5,﹣4),抛物线的顶点在线段CD上运动(抛物线随顶点一起平移),与x轴交于A,B两点(A在B的左侧),点B的横坐标最大值为3,则点A的横坐标最小值为﹣9.【分析】当顶点在D点时,B的横坐标最大,此时,DB两点的水平距离为4,故AB=8,同样当当顶点在C点时,A点的横坐标最小,即可求解.【解答】解:当顶点在D点时,B的横坐标最大,此时,DB两点的水平距离为4,∴AB=8,当顶点在C点时,A点的横坐标最小,∴A的横坐标最小值为﹣5﹣•AB═﹣9,故答案为﹣9.【点评】本题考查的是二次函数的性质,涉及到的对称轴位置,求解AB的长度是本题的关键.三、解答题(共7小题,满分56分)16.(6分)解下列一元二次方程:(1)3x2+4x﹣7+0(2)(x﹣3)2=2x﹣6【分析】(1)利用因式分解法解方程;(2)先变形得到(x﹣3)2﹣2(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)(3x+7)(x﹣1)=0,3x+7=0或x﹣1=0,所以x1=﹣,x2=1;(2)(x﹣3)2﹣2(x﹣3)=0,(x﹣3)(x﹣3﹣2)=0,x﹣3=0或x﹣3﹣2=0,所以x1=3,x2=5.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17.(6分)如图,在平面直角坐标系网格中,△ABC的顶点都在格点上.(1)作出△ABC关于原点对称的△A1B1C1,并写出点A1的坐标;(2)把△ABC绕点O逆时针旋转90°得△A2B2C2,画出△A2B2C2,并写出点A2的坐标.【分析】(1)分别作出A,B,C关于原点对称点A1,B1,C1即可,并写出点A1的坐标;(2)分别作出A,B,C的对应点A2,B2,C2即可,并写出点A2的坐标;【解答】解:(1)△A1B1C1如图所示,点A1的坐标为(4,﹣2);(2)△A2B2C2如图所示,点A2的坐标为(﹣2,﹣4).【点评】本题考查作图旋转变换,解题的关键是熟练掌握旋转变换的性质,正确画出图形,属于中考常考题型.18.(8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按逆时针方向旋转n度后,得到△DEC,点D刚好落在AB边上,(1)求n的值;(2)若AC=4,求DF的长.【分析】(1)由旋转的性质,证明△DAC是等边三角形,即可求得旋转角n的度数;(2)易得△DFC是含30°角的直角三角形,则可求得DF;【解答】解:(1)∵将△ABC绕点C按逆时针方向旋转n度后得到△EDC,∴AC=CD,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=90°﹣∠B=60°,∴△DAC是等边三角形,∴n=∠DCA=60°,(2)∵∠DCA=60°∴∠DCB=90°﹣∠DCB=90°﹣60°=30°,∵AC=4,∴DC=4,∵∠FDC=∠B=60°,∴∠DFC=90°,∴DF =DC=2,【点评】此题考查了旋转的性质、等边三角形的判定与性质、含30°角的直角三角形的性质以及勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)在“十一”黄金周期间,某商店购进一优质湖产品,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该湖产品一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系(1)填空:若这种湖产品的售价为30元/千克,则该湖产品的销售量是20.(2)如果某天销售这种湖产品获利150元,那么该天湖产品的售价为多少元?【分析】(1)根据表格中的数据,利用待定系数法可求出y与x之间的函数关系式,再利用一次函数图象上点的坐标特征,即可求出当售价为30元/千克时该湖产品的销售量;(2)根据总利润=每千克的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再由20≤x≤32,即可确定x的值,此题得解.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(24,32),(26,28)代入y=kx+b,得:,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=30时,y=﹣2×30+80=20.故答案为:20.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=25,x2=35.∵20≤x≤32,∴x=25.答:如果某天销售这种湖产品获利150元,那么该天湖产品的售价为25元.【点评】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一元二次方程的应用,解题的关键是:(1)根据表格中的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.20.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA(1)求证:EF为半圆O的切线;(2)连接OD,若DA=DF=6,求扇形OBD的面积(结果保留x)【分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)利用弧长公式计算即可.【解答】(1)证明:连接OD,∵D为的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)∵DA=DF,∴∠F=∠BAD,由(1)得:∠CAD=∠BAD,∴∠F=∠BAD=∠CAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°,∴∠BOD=2∠BAD=60°,OF=2OD,∵DF=6,∴(2OD)2﹣OD2=(6)2,解得:OD=6,==6π.∴S扇形OBD【点评】此题主要考查了切线的判定与性质以及弧长求法等知识,利用切线的判定方法结合圆心角定理分析得出OD⊥EF是解题关键.21.(9分)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用勾股定理得到结论:P1P2=;他还证明了线段P1P2的中点P(x,y)的坐标公式是:x=,y=;启发应用请利用上面的信息,解答下面的问题:如图,在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M 经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)判断点C与⊙M的位置关系,并说明理由.【分析】(1)先确定出AB=10,进而求出圆M的半径,最后用线段的中点坐标公式即可得出结论;(2)求出CM=5和圆M的半径比较大小,即可得出结论.【解答】解:(1)∵∠AOB=90°,∴AB是⊙M的直径,∵A(8,0),B(0,6),∴AB==10,∴⊙M的半径为5,由线段中点坐标公式x=,y=,得x=4,y=3,∴M(4,3),(2)点C在⊙M上,理由:∵C(1,7),M(4,3),∴CM==5,∴点C在⊙M上.【点评】本题主要考查了点与圆的位置关系,解题的关键是对两点间的距离公式的理解和掌握,灵活运用线段中点坐标公式和两点间距离公式.22.(11分)如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式及顶点D的坐标;(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.【分析】(1)利用一次函数是性质求得点A、C的坐标,然后把点A、B、C的坐标分别代入二次函数解析式,利用待定系数法求得二次函数解析式即可;将二次函数解析式转化为顶点式方程,可以直接得到答案;(2)利用分割法求得△PAC的面积为二次函数的形式,利用二次函数最值的求法进行解答;(3)利用轴对称﹣最短路径方法证得点G,结合一次函数图象上点的坐标特征求得点G的坐标.【解答】解:(1)把x=0代入y=x﹣2中得:y=﹣2.把y=0代入y=x﹣2中得:x=4.∴A(4,0),C(0,﹣2).把A(4,0),B(1,0),C(0,﹣2)分别代入y=ax2+bx+c,得,解得.则该抛物线的解析式为:y=﹣x2+x﹣2,∴y=﹣x2+x﹣2=﹣(x﹣)2+,∴顶点D(,);(2)在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.理由如下:如图1,过点P作PQ∥y轴交AC于Q,连接PC,PA.设P(x,﹣x2+x﹣2),则Q(x,x﹣2).∴PQ=﹣x2+x﹣2﹣(x﹣2)=﹣x2+2x=﹣(x﹣2)2+2.又∵S△PAC =S△PQC+S△PQA=x•PQ+(4﹣x)•PQ=2PQ,∴S△PAC=﹣(x﹣2)2+4.∴当x=2时,S△PAC最大值为4,此时﹣x2+x﹣2=1,∴在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4;(3)存在点G(0,)使得GD+GB的值最小.理由如下:如图1,作点B关于y轴的对称点B′,连接B′D交y轴于点G,则B′(﹣1,0).设直线B′D的解析式为y=kx+b.则,解得:.∴直线B′D的解析式为y=x+,把x=0代入,得y=,∴存在点G(0,)使得GD+GB的值最小.【点评】本题是二次函数综合题、一次函数的应用,轴对称、待定系数法等知识,解题的关键是,学会利用参数构建方程解决问题,学会用数形结合的思想思考问题,属于中考压轴题.。

(真题)2018年济宁市中考数学试卷(附答案)

(真题)2018年济宁市中考数学试卷(附答案)

山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.)A.1 B.﹣1 C.3 D.﹣3【解答】解:-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。

(精)山东省济宁市2018年中考数学真题试题

(精)山东省济宁市2018年中考数学真题试题

山东省济宁市2018年中考数学真题试题一、选择题:本大题共 10 小题,每小题3分,共 30分。

在每小题给出的四个选项中,只有一项符合题目要求。

ﻩ1. 31-的值是(ﻩ)ﻩA.1 B.﹣1 C.3 D.﹣3ﻩ【解答】ﻩﻩ解:31-=-1. 故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据 186000000用科学记数法表示是()A.1.86×107ﻩB.186×106ﻩC.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2ﻩB.(a2)2=a4ﻩC.a2•a3=a6 D.a2+a2=2a4ﻩ【解答】解:A、a8÷a6=a4,故此选项错误;ﻩB、(a2)2=a4,故原题计算正确; C、a2•a3=a5,故此选项错误; D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是( )ﻩA.50°B.60° C.80° D.100°ﻩﻩﻩ【解答】解:圆上取一点 A,连接 AB,AD,ﻩﻩﻩﻩ∵点A、B,C,D 在⊙O上,∠BCD=130°,ﻩﻩ∴∠BAD=50°,ﻩ∴∠BOD=100°,故选:D.ﻩ5. 多项式 4a﹣a3 分解因式的结果是() ﻩA.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3 ﻩ=a(4﹣a2)=a(2-a)(2+a). 故选:B.ﻩ6..如图,在平面直角坐标系中,点 A,C在 x 轴上,点C的坐标为ﻩ(﹣1,0),AC=2.将Rt△ABC 先绕点C顺时针旋转90°,再向右平移 3 个单位长度,则变换后点A的对应点坐标是(ﻩ)ﻩﻩﻩﻩA.(2,2) B.(1,2) C.(﹣1,2) D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2, ﻩ∴点 A 的坐标为(﹣3,0),ﻩﻩﻩ如图所示,将 Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2), ﻩﻩ再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.ﻩﻩﻩﻩ7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是(ﻩ)ﻩﻩA.众数是5ﻩB.中位数是 5 C.平均数是 6 D.方差是3.6ﻩ【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确; B、数据重新排列为3、5、5、7、10,则中位数为 5,此选项正确; C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;ﻩ故选:D.ﻩﻩﻩ8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=( )ﻩﻩﻩA.50° B.55° C.60° D.65°ﻩﻩﻩ【解答】解:∵在五边形 ABCDE中,∠A+∠B+∠E=300°,ﻩ∴∠ECD+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD, ﻩﻩ∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.ﻩﻩﻩﻩ9.一个几何体的三视图如图所示,则该几何体的表面积是( )ﻩﻩA.24+2πﻩB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为 2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D.ﻩﻩ10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是(ﻩ)ﻩﻩﻩﻩ【解答】解:由题意知,原图形中各行、各列中点数之和为 10, 符合此要求的只有ﻩﻩﻩﻩﻩ故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共 15 分。

山东济宁兖州区九年级上期中数学考试卷(解析版)(初三)期中考试.doc

山东济宁兖州区九年级上期中数学考试卷(解析版)(初三)期中考试.doc

山东济宁兖州区九年级上期中数学考试卷(解析版)(初三)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列汽车标志中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】分析:轴对称图形有对称轴,中心对称图形旋转180°后与原图形重合.解析:A选项是轴对称图形但不是中心对称图形;B选项既不是轴对称图形也不是中心对称图形;C选项是轴对称图形也是中心对称图形;D选项是轴对称图形但不是中心对称图形;故选C.【题文】如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为().A.3 B.2.5 C.4 D.3.5【答案】C.【解析】试题分析:连接OA,根据垂径定理得到AP=AB=×6=3,利用勾股定理得OP==4. 故选:C.考点:垂径定理;勾股定理.【题文】如图,在⊙O中,,∠AOB=40°,则∠ADC的度数是().评卷人得分A.40° B.30° C.20° D.15°【答案】C.【解析】试题分析:连接CO,先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出∠ADC=∠AOC=20°.故选:C.考点:圆心角、弧、弦的关系.【题文】用配方法解一元二次方程+4x﹣3=0时,原方程可变形为().A.=1 B.=7C.=13 D.=19【答案】B.【解析】l【题文】如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是().A.60° B.90° C.120° D.150°【答案】D.【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选:D.考点:旋转的性质.【题文】有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是().A.x(x﹣1)=45 B.x(x+1)=45C.x(x﹣1)=45 D.x(x+1)=45【答案】A.【解析】试题分析:先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.故选:A.考点:由实际问题抽象出一元二次方程.【题文】如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是().A.60 B.63 C.64 D.66【答案】C.【解析】试题分析:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为y,根据题意得:y=(16﹣x)x=+16x=+64,利用二次函数性质可得,当x=8m时,=64,则所围成矩形ABCD的最大面积是64.故选:C.考点:二次函数的应用.【题文】二次函数y=+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣11…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是().A.直线x=﹣3 B.直线x=﹣2C.直线x=﹣1 D.直线x=0【答案】B.【解析】试题分析:根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.考点:二次函数的图象.【题文】二次函数y=+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④>0,其中正确的个数是().A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=>0,故④正确,所以正确的有3个.故选:C.考点:二次函数图象与系数的关系.【题文】已知关于x的方程+x+2a﹣1=0的一个根是0,则a=.【答案】.【解析】试题分析:把x=0代入方程,即可得到一个关于a的方程,0+0+2a﹣1=0,解得a=.故答案为:.考点:一元二次方程的解.【题文】方程=4的根是.【答案】=3,=﹣1.【解析】试题分析:利用直接开平方法解答即可.∵x﹣1=±2,∴x=1±2,∴=3,=﹣1.故答案为:=3,=﹣1.考点:解一元二次方程——直接开平方法.【题文】若二次函数y=+2x+m的图象与x轴没有公共点,则m的取值范围是.【答案】m>1.【解析】试题分析:由题意可得二次方程无实根,得出判别式小于0,解不等式即可得到所求范围.∵二次函数y=+2x+m的图象与x轴没有公共点,∴方程+2x+m=0没有实数根,∴判别式△=﹣4×1×m<0,解得:m>1.故答案为:m>1.考点:抛物线与x轴的交点.【题文】如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=.【答案】140°.【解析】试题分析:在优弧AB上任取一点D,连接AD,BD,先由圆内接四边形的性质求出∠ADB=180°﹣∠C=180°﹣110°=70°,再由圆周角定理求出∠AOB=2∠ADB=2×70°=140°.故答案为:140°.考点:圆周角定理.【题文】如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=+6x上一点,且在x轴上方,则△BCD面积的最大值为.【答案】15.【解析】试题分析:设D(x,+6x),根据勾股定理求得OC=5,根据菱形的性质得出BC=OC=5,BC∥x轴,然后根据三角形面积公式得出=×5×(+6x﹣3)=,根据二次函数的性质即可求得有最大值,最大值为15.故答案为:15.考点:二次函数的性质;菱形的性质.【题文】关于x的一元二次方程+(2m+1)x+﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【答案】(1) m>;(2)若m=1,此时=0,=﹣3.【解析】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.试题解析:(1)∵关于x的一元二次方程+(2m+1)x+﹣1=0有两个不相等的实数根,∴△==4m+5>0,解得:m>;(2)m=1,此时原方程为+3x=0,即x(x+3)=0,解得:=0,=﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.【题文】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C (﹣1,3).(1)若△ABC经过平移后得到,已知点的坐标为(4,0),写出顶点,的坐标;(2)若△ABC和关于原点O成中心对称图形,写出的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到,写出的各顶点的坐标.【答案】(1)(2,2),(3,﹣2);(2) (3,﹣5),(2,﹣1),(1,﹣3);(3)(5,3),(1,2),(3,1).【解析】试题分析:(1)利用点C和点的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点,的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出,然后写出的各顶点的坐标.试题解析:(1)如图,即为所求,因为点C(﹣1,3)平移后的对应点的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到,所以点的坐标为(2,2),点的坐标为(3,﹣2);(2)因为△ABC和关于原点O成中心对称图形,所以(3,﹣5),(2,﹣1),(1,﹣3);(3)如图,即为所求,(5,3),(1,2),(3,1).考点:坐标与图形变化-旋转;坐标与图形变化——平移.【题文】为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【答案】(1) 20%;(2) 10368万元.【解析】试题分析:(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.试题解析:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000=8640,解得:=0.2=20%,=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.考点:一元二次方程的应用.【题文】如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【答案】(1)m=2 ;(1,4);(2) (1,2).【解析】试题分析:(1)首先把点B的坐标为(3,0)代入抛物线y=+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.试题解析:(1)把点B的坐标为(3,0)代入抛物线y=+mx+3得:0=+3m+3,解得:m=2,∴y=+2x+3=,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).考点:二次函数的性质.【题文】某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?【答案】(1) y=﹣80x+1200;(2) 2元.【解析】试题分析:(1)根据“每天利润=每天销售质量×每千克的利润”即可得出y关于x的函数关系式;(2)将y=960代入(1)中函数关系式中,得出关于x的一元二次方程,解方程即可得出结论.试题解析:(1)根据题意得:y=(200+20x)×(6﹣x)=﹣80x+1l【答案】(1)证明详见解析;(2)证明详见解析.【解析】试题分析:(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM=a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可l∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.考点:圆周角定理;等腰三角形的判定与性质;垂径定理.【题文】如图,抛物线y=+bx﹣4(a≠0)与x轴交于A(4,0),B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标.【答案】(1) y=﹣3x﹣4;(2) E(,).【解析】试题分析:(1)直接把点A(4,0),B(﹣1,0)代入抛物线y=+bx﹣4求出a、b的值,进而可得出抛物线的解析式;(2)先判断出周长最小时BE⊥AC,即作点B关于直线AC的对称点F,连接DF,交AC于点E,联立方程组即可.试题解析:(1)∵抛物线y=+bx﹣4与x轴交于两点A(4,0),B(﹣1,0),∴,解得,∴此抛物线的解析式为:y=﹣3x﹣4;(2)如图1,作点B关于直线AC的对称点F,连接DF交AC于点E,由(1)得,抛物线解析式为y=﹣3x﹣4,∴D(0,﹣4),∵直线y=﹣x+4交抛物线于点C,∴,解得,或,∴C(﹣2,6),∵A(4,0),∵直线AC解析式为y=﹣x+4,直线BF⊥AC,且B(﹣1,0),∴直线BF解析式为y=x+1,设点F(m,m+1),∴G(,),∵点G在直线AC上,∴+4=,∴m=4,∴F(4,5),∵D(0,﹣4),∴直线DF解析式为y=x﹣4,解得,∴直线DF和直线AC的交点E(,).考点:抛物线与x轴的交点;一次函数图象上点的坐标特征;待定系数法求二次函数解析式;轴对称-最短路线问题.。

2018-2019学年济宁市兖州市九年级上期中数学模拟试卷(含答案)

2018-2019学年济宁市兖州市九年级上期中数学模拟试卷(含答案)
18.(7 分)如图,△ABC 三个顶点的坐标分别为 A(2,4),B(1,1),C (4,3).
(1)请画出△ABC 关于 x 轴对称的△A1B1 C1 ,并写出点 A1 的坐标; (2)请画出△ABC 绕点 B 逆时针旋转 90°后的△A2 BC2 ; (3)求出(2)中 C 点旋转到 C2 点所经过的路径长(结果保留根号和 π); (4)求出(2)△A 2BC2 的面积是多少.
9.(3 分)抛物线 y=ax2+bx+3(a≠0)过 A(4,4),B(2,m)两点,点 B 到
抛物线对称轴的距离记为 d,满足 0<d≤1,则实数 m 的取值范围是
()
A.m≤2 或 m≥3 B.m≤3 或 m≥4 C.2<m<3 D.3<m<4
10.(3 分)已知二次函数 y=a2x +bx+c(a≠0)的图象如图,有下列 5 个结论:
A.
B.
C.
D.4
8.(3 分)已知学校航模组设计制作的火箭的升空高度 h(m)与飞行时间 t
(s)满足函数表达式 h=﹣2 t +24t+1.则下列说法中正确的是( )
A.点火后 9s 和点火后 13s 的升空高度相同
B.点火 后 24s 火箭落于地面
C.点火后 10s 的升空高度为 139m
D.火箭升空的最大高度为 145m
A.4
B.5
C.6
D.6
4.(3 分)一个等腰三角形的 两条边长分别是方程 x2﹣7x+10=0 的两根,则该等
腰三角形的周长是( )
A.12
B.9
C.13
D.12 或 9
5.(3 分)下列关于二次函数 y=﹣2(x﹣2)2+1 图象的叙述,其中错误的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年山东省济宁市兖州市九年级(上)期中数学试卷
一、选择题:本大题共10小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分、不选或选出的答案超过一个均记零分,本大题共30分.1.一元二次方程x2﹣6x﹣6=0配方后化为()
A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3
2.下列图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
3.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()
A.10cm B.16cm C.24cm D.26cm
4.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()
A.12 B.13 C.14 D.12或14
5.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()
A.对称轴是直线x=1,最小值是2
B.对称轴是直线x=1,最大值是2
C.对称轴是直线x=﹣1,最小值是2
D.对称轴是直线x=﹣1,最大值是2
6.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()
A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40
C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+40
7.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()
A.55°B.60°C.65°D.70°
8.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣
x2+x+,则该运动员此次掷铅球的成绩是()
A.6m B.12m C.8m D.10m
9.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x
轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()
A.3 B.4 C.5 D.6
10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()
A.1 B.2 C.3 D.4
二、填空题:本大题共5道小题,每小题3分,共15分,要求只写出最后结果.
11.已知x=1是关于x的方程ax2﹣2x+3=0的一个根,则a=.
12.方程3x(x﹣1)=2(x﹣1)的根为.
13.如图,AB为⊙O的直径,C、D为⊙O上的点,=.若∠CAB=40°,则∠CAD=.
14.如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D 分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为.
15.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.
三、解答题:本大题共7道小题,满分55分,解答应写出文字说明和推理步骤.
16.(8分)解方程:
(1)(x﹣3)(x﹣1)=3;
(2)x2+4x﹣1=0.
17.(6分)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.
18.(7分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
19.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.
(1)求该企业从2014年到2016年利润的年平均增长率;
(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
20.(8分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0
(1)求证:方程有两个不相等的实数根;
(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.
21.(9分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
22.(9分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y 轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
(1)求抛物线C1,C2的函数表达式;
(2)求A、B两点的坐标;
(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
2017-2018学年山东省济宁市兖州市九年级(上)期中数学试卷
参考答案
一、选择题:本大题共10小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分、不选或选出的答案超过一个均记零分,本大题共30分.1.A;2.D;3.C;4.C;5.B;6.D;7.C;8.D;9.C;10.C;
二、填空题:本大题共5道小题,每小题3分,共15分,要求只写出最后结果.
11.﹣1;12.x=1或x=;13.25°;14.(1,0);15.3;18;
三、解答题:本大题共7道小题,满分55分,解答应写出文字说明和推理步骤.
16.
17.
18.
19.
20.
21
22.。

相关文档
最新文档