Draft P802.11p_D3.03

合集下载

摩托罗拉AP7131说明文档1

摩托罗拉AP7131说明文档1
相关法规
EU 2.412 to 2.472 GHz 5.150 to 5.250 GHz 5.250 to 5.350 GHz 5.470 to 5.725 GHz (视各个国家/地区 具体情况而定)
管理套件提供了全面的规划工具,借助这些工具,能 络简化的、经济高效的规划、部署和监控。
够轻松创建经过精心设计的 802.11n 无线 LAN,从而 有效避免与迭代试错方法和频繁现场调查相关的高昂 成本。摩托罗拉专业服务可提供专业技术以帮助您评 估和实施移动解决方案。一旦部署了摩托罗拉移动解 决方案,我们的客户服务能够为您提供及时的帮助,
重量:
2.22 磅/9.98 千克
外壳:
金属、阻燃材料外壳 (UL2043)
安装方式:
无需其他硬件即可进行安装
配置:
吊顶上、吊顶下或墙上安装
LED:
6 个顶置式 LED,1 个底置式 LED,具 有多种模式,分别指示 802.11a/802.11g 活动、电源状态、以太网使用、无线 IPS 和系统错误
Mesh 网络 将现有有线或无线网络扩展到室 外或远程位置
802.11i、WPA2、WPA 和 IPSec 加密 端到端企业级有线和无线网络 安全
摩托罗拉能够为您的 802.11n 移动部署提供完整的生 罗拉的 RF 管理套件 (RFMS),您可以尽享对您所有
命周期支持,从网络设计到日常支持。摩托罗拉 RF AP-7131 接入点的统一管理,实现对大型 AP-7131 网
双段感应 — 通常由独立的传感器提供。
Mesh:经济高效的网络,适应各类苛刻的应用环境 借助 mesh 强大的功能,能够经济高效地将企业网络 扩展到因成本或其他原因无法有效部署以太网或光纤 网络的地方。mesh 功能强大,支持一系列应用(包 括多节点、多链接网络,以及简单的可连接两个有线 网络的 P2P 网桥)。自动修复功能可确保在有线或无 线网络出现故障时依然能够保持服务连续性。VLAN 和 WMM QoS 感知型 mesh 技术具有自动组网和较 高弹性,企业能够以无线方式为远程和室外环境的工 作人员提供可靠的高性能语音、数据和视频服务。

802.11总结

802.11总结

802.11总结802.11a协议笔记:1、OFDM PHY包含两个协议功能:phy会聚功能(由plcp⽀持)、能将psdu映射成适合在两个或多个pmd系统的sta间发送和接收数据及管理信息的成帧格式,pmd系统,定义了多个采⽤ofdm系统的sta之间通过⽆线媒体发送和接收数据的特性和⽅法ofdm phy 包含三个功能实体:PMD功能、 PHY会聚功能、层管理功能ofdm phy服务通过phy服务原语提供给MAC层2、ofdm phy功能PLCP ⼦层PLCP ⼦层的作⽤是使MAC 层操作对PMD ⼦层的依赖性最⼩化。

该功能简化了PHY 层到MAC 层的服务接⼝。

PMD ⼦层PMD ⼦层为在两个或多个STA 之间发送和接收数据提供了⼀种⽅法PHY 管理实体(PLME)PLME 与MAC 管理实体共同完成对本地PHY 功能的管理层或⼦层的服务是⼀组能⼒,它提供给下⼀个较⾼层(或⼦层)的⽤户。

通过描述代表每⼀个服务的服务原语和参数来规定抽象的服务3、OFDM PHY 特定服务参数本部分MAC 层的结构设计与PHY 层⽆关。

在特定的PMD 实现中,MLME可能需要作为标准PHY SAP原语的⼀部分与PLME 相互作⽤。

对于每个PMD 层,这些参数列表以及它们的可能取值在特定的PHY规范中都有定义。

TXVECTOR 参数长度(LENGTH) 表⽰MAC 层请求PHY 层发送的MPDU 的⼋位位组数PHY-TXSTART.request(TXVECTOR) 1~4095数据速率(DATARATE)PHY-TXSTART.request(TXVECTOR)6,9,12,18,24,36,48 和54 (单位为Mbit/s;6,12 和24 是必备的)服务(SERVICE)PHY-TXSTART.request(TXVECTOR)对加扰器进⾏初始化;7 个空⽐特+9 个保留的空⽐特发射功率等级(TXPWR_LEVEL)PHY-TXSTART.request(TXVECTOR) 1~8RXVECTOR 参数长度指⽰在PLCP 报头中包含的LENGTH 字段的值(LENGTH) PHY-RXSTART.indicate 1~4095接收信号强度指⽰(RSSI)PHY-RXSTART.indicate(RXVECTOR) 0~RSSI 最⼤值数据速率(DATARATE)PHY-RXSTART.request(RXVECTOR)6,9,12,18,24,36,48和54 (单位为Mbit/s)服务(SERVICE)PHY-RXSTART.request(RXVECTOR)空4、OFDM PLCP ⼦层PSDU 和PPDU 相互转化的会聚过程。

RTL8189FTV设计WiFi模块(RL-SM12BD-8189FTV)

RTL8189FTV设计WiFi模块(RL-SM12BD-8189FTV)

Date:
Customer Approve Auditing Admit
Provider Approve Auditing Admit
Customer: Add: Tel: Fax: Attn: E-mail:
Provider:HK NATER TECH LIMITED Add: 2F,NO.27,2 Baomin Rd.,Baoan Dist.SZ City,China Tel:0086-755-61522172/13510620050 Fax:0086-755-61522171 Attn:Lingo E-mail:hsdgood@
WLAN PHY Features IEEE 802.11n OFDM One Transmit and one Receive path (1T1R) Host Interface 20MHz and 40MHz bandwidth Complies with SDIO 1.1/ 2.0 for transmission WLAN with clock rate up to 100MHz GSPI interface for configurable endian Short Guard Interval (400ns) DSSS with DBPSK and DQPSK, CCK for WLAN modulation with long and short preamble OFDM with BPSK, QPSK, 16QAM, and Standards Supported 64QAM modulation. Convolutional IEEE 802.11b/g/n compatible WLAN Coding Rate: 1/2, 2/3, 3/4,and 5/6 IEEE 802.11e QoS Enhancement Maximum data rate 54Mbps in 802.11g (WMM) and 150Mbps in 802.11n 802.11i (WPA, WPA2). Open, shared Fast receiver Automatic Gain Control key,and pair-wise key authentication (AGC) services On-chip ADC and DAC Switch diversity for DSSS/CCK Hardware antenna diversity in per packet base Peripheral Interfaces General Purpose Input/Output (4 pins) Selectable receiver FIR filters Programmable scaling in transmitter and receiver to trade quantization noise against increased probability of clipping

IEEE 802标准

IEEE 802标准

IEEE 802.11IEEE 802.11是无线局域网通用的标准,它是由IEEE所定义的无线网络通信的标准。

虽然有人将Wi-Fi与802.11混为一谈,但两者并不一样。

目录802.11为IEEE(美国电气和电子工程师协会,The Institute of Electrical and Electronics Engineers)于1997年公告的无线区域网路标准,适用于有线站台与无线用户或无线用户之间的沟通连结。

编辑本段历史IEEE 802.11无线通讯一直发展,但缺乏广泛的通讯标准。

于是,IEEE在1997年为无线局域网制定了第一个版本标准──IEEE 802.11。

其中定义了媒体存取控制层(MAC层)和物理层。

物理层定义了工作在2.4GHz的ISM频段上的两种展频作调频方式和一种红外传输的方式,总数据传输速率设计为2Mbit/s。

两个设备之间的通信可以设备到设备(ad hoc)的方式进行,也可以在基站(Base Station, BS)或者访问点(Access Point,AP)的协调下进行。

为了在不同的通讯环境下取得良好的通讯质量,采用 CSMA/CA (Carrier Sense MultiAccess/Collision Avoidance)硬件沟通方式。

1999年加上了两个补充版本:802.11a定义了一个在5GHz ISM频段上的数据传输速率可达54Mbit/s的物理层,802.11b定义了一个在2.4GHz的ISM频段上但数据传输速率高达11Mbit/s的物理层。

2.4GHz的ISM频段为世界上绝大多数国家通用,因此802.11b得到了最为广泛的应用。

苹果公司把自己开发的802.11标准起名叫AirPort。

1999年工业界成立了Wi-Fi联盟,致力解决符合802.11标准的产品的生产和设备兼容性问题。

802.11标准和补充。

编辑本段规格说明802.11 -- 初期的规格采直接序列展频(扩频)技术(Direct Sequence Spread Spectrum,DSSS)或跳频展频(扩频)技术(Frequency Hopping Spread Spectrum,FHSS),制定了在RF射频频段2.4GHz上的运用,并且提供了1Mbps、2Mbps和许多基础讯号传输方式与服务的传输速率规格。

DSRC_draft_review

DSRC_draft_review
Submission Slide 7 WKFisher/ARINC
September 2004
doc.: IEEE 802.11-04/1074r0
Implementing WAVE Mode, 5
• Roadside Units initiate a link by sending a Provider Service Table (PST) in Beacon Frames on the Control Channel • Onboard Units initiate a link by sending a PST in Action Frames on the Control Channel
• 7.1.2 General frame format • Insert the following text at the end of subclause 7.1.2: • For WAVE implementation the QoS Control field shall be used as defined in IEEE 802.11e, Clause 7.1.3.5.
– Multi-device configurations have the advantage of being able to listen for safety messages on the Control Channel and simultaneously conduct an application transaction on one of the two Service Channels at the edge of the DSRC band or in the U-NII band.
Submission

IEEE_802.11无线协议中文

IEEE_802.11无线协议中文

5350 [MHz]
中央频率 =5000 + 5*信道号 [MHz]
149 153 157 161 信道
8 + 4 个非重叠信道
5725 5745 5765 5785 5805 5825 [MHz] 16.6 MHz
15
OFDM的基本原理

子载波之间正交
子载波频率间隔紧密 每个子载波的功率谱密度的尖峰发生在其他子载波功率的零点. 子载波间隔 (∆f) 等于1/Ts (符号传输周期) 例如 802.11a

天花板反射可用于整个房间的覆盖范围

不能穿越墙壁
更容易确保安全防止窃听 不同的房间之间干扰极少


室内环境将遭受红外背景辐射
阳光和室内光 一个红外接收器周围的辐射如噪声般出现A 需要高功率发射器


受限于关系到人眼的安全和过度的电力消耗

有限的范围
11
IEEE 802.11b
扩展的 802.11 DSSS


子载波之间正交

子载波频率间隔紧密
频率选择性衰减
弱子载波上的强衰减通过贯穿子载波的前向纠错(回旋编码)来处理 Coded OFDM编码正交频分复用

17
IEEE 802.11a中的OFDM
带 52个已用子载波的OFDM 48 个数据+ 4 个引导 (加上12个虚拟子载波) 312.5 kHz 间隔 (= 20MHz/64)
基本服务组 (BSS)
STA1

BSS1 入口 访问点 分布式系统
访问点

入口

ESS BSS2
访问点
分布式系统

3无线网络技术标准(new)

3无线网络技术标准(new)

注: 基波——正弦波 基波 正弦波
DQPSK为四级编码机制,相较于两级编码机制DBPSK,可以提供较高 为四级编码机制,相较于两级编码机制 为四级编码机制 , 的吞吐量。 的吞吐量。 DQPSK抗多径干扰能力差。 抗多径干扰能力差。 抗多径干扰能力差
DS PMD子层 子层
以1Mbps进行传输 进行传输 使用DBPSK以1Mbps的速率传送 以 使用 的速率传送 以2Mbps进行传输 进行传输 PLCP前导码和标头使用 前导码和标头使用DBPSK以1Mbps的速率进行传送 前导码和标头使用 以 的速率进行传送 负载用DQPSK以2Mbps的速率传送 的速率传送。 负载用DQPSK以2Mbps的速率传送。
PMD Sublayer PLCP Layer
PMD SAP
MAC Layer
PHY SAP
802.11 物理层
无线网络技术标准
WLAN标准概述 标准概述 IEEE 802.11 IEEE 802.11b IEEE 802.11a IEEE 802.11g IEEE 802.11n
IEEE 802.11
差分二进制相移键控( 差分二进制相移键控(DBPSK) )
相移0 0——相移0 相移
1——相移180度 相移180度 1 相移180
差分二进制相移键控( 差分二进制相移键控(DBPSK) )
对字母M( 以DBPSK对字母 (1001101)进行编码 对字母 )
相移0 0——相移0 相移
1——相移180度 相移180度 1 相移180
IEEE 802标准 标准
802.1——网络管理 网络管理 802.2——逻辑链路控制 逻辑链路控制 802.3——以太网 以太网 802.4——令牌总线网 令牌总线网 802.5——令牌环网 令牌环网 802.6——城域网 城域网 802.7——宽带局域网 宽带局域网 802.8——光纤局域网 光纤局域网 802.9——语音与数据综合局域网 语音与数据综合局域网 802.10——局域网信息安全 局域网信息安全

WLAN技术白皮书-802.11n D2.0

WLAN技术白皮书-802.11n D2.0

WLAN技术白皮书802.11n Draft2.0福建星网锐捷网络有限公司未经本公司同意,严禁以任何形式拷贝 修订记录日期 修订版本 修改章节 修改描述 作者0.9 Draft 黄赞福建星网锐捷网络有限公司未经本公司同意,严禁以任何形式拷贝 目录1. 概述 (4)1.1. 技术背景 (4)1.2. 技术特点 (4)1.3. 本书阅读说明 (5)2. 名词解释 (5)3. 技术分析 (6)3.1. 帧格式变更 (6)3.1.1. MPDU帧格式变更 (6)3.1.2. PPDU帧格式变更 (7)3.2. MAC效率提升 (9)3.2.1. 帧聚合(Aggregation) (10)3.2.2. 块确认(Block Acknowledgement) (12)3.2.3. RIFS(Reduced InterFrame Space) (13)3.3. MIMO技术 (14)3.3.1. MIMO基本概念 (14)3.3.2. MIMO系统组成 (15)3.3.3. 空间复用 (17)3.3.4. 信道探测评估 (18)3.3.5. 波束成形(BeamForming) (19)3.4. OFDM改进 (22)3.4.1. 副载波增加 (22)3.4.2. FEC编码速率提高 (23)3.4.3. 短防护间隔(SGI) (23)3.5. 带宽扩充 (24)3.6. PHY保护机制 (25)4. 附录 (26)4.1. 各种技术对速率提升的贡献 (26)4.2. 802.11nMCS一览表 (27)1.概述1.1. 技术背景802.11n是IEEE802.11协议族中的一部分,提供了MAC子层的部分修改和全新的PHY子层。

目的是在802.11旧有技术基础上改进射频稳定性、传输速率和覆盖范围。

在802.11g标准化之后,IEEE 802.11成立了任务n工作组——TGn。

在过去几年时间里,TGn 的提案一直未能完成标准化,主要原因是以芯片厂家主导的TGnSync阵营和以设备制造厂家主导的WWiSE阵营的争端无法达成一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Copyright © 2008 by the IEEE.Three Park AvenueNew York, New York 10016-5997, USA All rights reserved.This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to change. USE AT YOUR OWN RISK! Because this is an unapproved draft, this document must not be uti-lized for any conformance/compliance purposes. Permission is hereby granted for IEEE Standards Commit-tee participants to reproduce this document for purposes of international standardization consideration. Prior to adoption of this document, in whole or in part, by another standards development organization permission must first be obtained from the Manager, Standards Intellectual Property, IEEE Standards Activities Depart-ment. Other entities seeking permission to reproduce this document, in whole or in part, must obtain permis-sion from the Manager, Standards Intellectual Property, IEEE Standards Activities DepartmentIEEE Standards Activities Department Manager, Standards Intellectual Property 445 Hoes LanePiscataway, NJ 08854, USAIEEE P802.11p TM /D3.03, February 2008IEEE P802.11p TM /D3.03Draft Standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements -Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specificationsAmendment 9: Wireless Access in Vehicular EnvironmentsPrepared by the IEEE 802.11 Working Group of the IEEE 802 CommitteeAbstract: This amendment specifies the extensions to IEEE Std 802.11™ for Wireless Local Area Net-works providing wireless communications while in a vehicular environment.Keywords: 5.9 GHz, wireless access in vehicular environments, WA VE.Copyright © 2008 IEEE. All rights reserve d.ii This is an unapproved IEEE Standards Draft, subject to changeIntroductionWA VE is a mode of operation for use by IEEE Std 802.11™ devices in environments where the physical layer properties are rapidly changing and where very short-duration communications exchanges are required. The purpose of this standard is to provide the minimum set of specifications required to ensure interoperability between wireless devices attempting to communicate in potentially rapidly changing com-munications environments and in situations where transactions must be completed in time frames much shorter than the minimum possible with infrastructure or ad hoc 802.11 networks. In particular, time frames that are shorter than the amount of time required to perform standard authentication and association to join a BSS are accommodated in this amendment.This specification accomplishes the following:•Describes the functions and services required by WA VE-conformant stations to operate in arapidly varying environment and exchange messages either without having to join a BSS orwithin a WA VE BSS.•Defines the WA VE signaling technique and interface functions that are controlled by the IEEE802.11 MACThis amendment to IEEE Std 802.11™ is based on extensive testing and analyses of wireless communica-tions in a mobile environment. The results of these efforts were documented in ASTM E 2213-03, "Stan-dard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5.9 GHz Band Wireless Access in Vehicular Environments (WAVE) / Dedicated Short Range Com-munications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications". This docu-ment is available from: ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken,PA, 19428. This amendment to IEEE 802.11 is based on the ASTM E 2213-03 document.Please see document, 11-07-2045-00-000p-Development of DSRC/WA VE Standards, (latest version) for additional information on the development of the amendment for WA VE.Notice to usersErrataErrata, if any, for this and all other standards can be accessed at the following URL:/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.InterpretationsCurrent interpretations can be accessed at the following URL:/reading/ieee/interp/index.html.PatentsAttention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying pat-This introduction is not part of IEEE P802.11p, Draft Amendment to Standard for Information Technology - Telecommunications and information exchange between systems - Local and Metropolitan networks - specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifica-tions: Amendment : Wireless Access in Vehicular Environmentsents or patent applications for which a license may be required to implement an IEEE standard or for con-ducting inquiries into the legal validity or scope of those patents that are brought to its attention. A patent holder or patent applicant has filed a statement of assurance that it will grant licenses under these rights without compensation or under reasonable rates and nondiscriminatory, reasonable terms and conditions to applicants desiring to obtain such licenses. The IEEE makes no representation as to the reasonableness of rates, terms, and conditions of the license agreements offered by patent holders or patent applicants. Further information may be obtained from the IEEE Standards Department.ParticipantsThe following is a list of officers in the 802.11 Working Group.Stuart J. Kerry, ChairAl Petrick and Harry Worstell, Vice ChairsStephen McCann, SecretaryAt the time this amendment to the standard was submitted to Sponsor Ballot, the WA VE task group had the following officers:Lee Armstrong, ChairSusan Dickey, Secretary*Wayne Fisher, Editor*Note, Filip Weytjens was TGp Secretary until March 2007.Major contributions were received from the following individuals:Guillermo AcostaLee Armstrong Broady CashKen CookSusan Dickey Peter Ecclesine Tim Godfrey Mary Ann Ingram Daniel Jiang Carl KainDoug KavnerKeiichiro KogaThomas KuriharaJerry LandtSheung LiJason LiuAlastair MalarkyJustin McNewAndrew MylesRick NoensSatoshi OyamaEd RingRandy RoebuckJon RosdahlRichard RoyFrancois SimonRobert SorannoLothar StiborBryan WellsFilip WeytjensJeffrey ZhuCopyright © 2008 IEEE. All rights reserved.This is an unapproved IEEE Standards Draft, subject to change iiiThe following members of the balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.To be supplied by IEEE staff.Copyright © 2008 IEEE. All rights reserve d.iv This is an unapproved IEEE Standards Draft, subject to changeTable of Contents1.Overview (2)1.2Purpose (2)3.Definitions (2)4.Abbreviations and acronyms (3)5.General Description (3)5.2Components of the IEEE 802.11 architecture (3)5.2.2a WAVE mode and WAVE BSSs (3)5.2.3Distribution system (DS) concepts (3)5.2.3.3DS concepts in a WAVE BSS (4)5.4Overview of the services (4)5.4.1Distribution of messages within a DS (4)5.4.1.1Distribution (4)7.Frame formats (4)7.1MAC frame formats (4)7.1.3Frame fields (4)7.2Format of individual frame types (4)7.2.3Management frames (4)7.2.3.1Beacon frame format (4)7.3Management frame body components (5)7.3.1Fields that are not information elements (5)7.3.1.3Beacon interval field (5)7.3.1.10Timestamp field (5)7.3.2Information elements (5)7.3.2.27Extended Capabilities information element (5)7.3.2.29EDCA Parameter Set element (6)7.3.2.36 WAVE Information element (WIE) (7)7.5Frame usage (7)yer management (7)10.3MLME SAP interface (7)10.3.2.2MLME-SCAN.confirm (7)10.3.3Synchronization (7)10.3.3.1 MLME-JOIN.request (8)10.3.3.2MLME-JOIN.confirm (8)10.3.9Reset (8)10.3.9.1MLME-RESET.request (8)10.3.25a Get TSF timer (8)10.3.25a.1 MLME-GETTSFTIME.request (8)10.3.25a.2 MLME-GETTSFTIME.confirm (9)10.3.25b Set TSF timer (9)10.3.25b.1 MLME-SETTSFTIME.request (10)10.3.25b.2 MLME-SETTSFTIME.confirm (10)Copyright © 2008 IEEE. All rights reserved.This is an unapproved IEEE Standards Draft, subject to change v10.3.25b.3 MLME-SETTSFTIME.indication (11)10.3.25c Increment TSFtime (11)10.3.25c.1 MLME-INCTSFTIME.request (11)10.3.25c.2 MLME-INCTSFTIME.confirm (12)10.3.42 On-demand beacon (13)10.3.42.1MLME-ONDEMANDBEACON.request (13)10.3.42.2MLME-ONDEMANDBEACON. confirm (14)10.3.42.3MLME-ONDEMANDBEACON. indication (14)11.MLME (16)11.1 Synchronization (16)11.2.2 Power management in an IBSS (16)11.18 WAVE mode management (16)11.18.1 Initializing a WAVE BSS (17)11.18.2 Joining a WAVE BSS (17)11.18.3 TSF in WAVE mode (18)17.Orthogonal frequency division multiplexing (OFDM) PHY specification for the 5 GHz band (18)17.3 OFDM PLCP sublayer (18)17.3.8PMD operating specifications (general) (18)17.3.8.8Transmit and receive operating temperature range (18)17.3.9PMD transmit specifications (18)17.3.9.4Transmit center frequency tolerance (18)17.3.9.5Symbol clock frequency tolerance (18)17.3.10.2Adjacent channel rejection (19)17.3.10.3Nonadjacent channel rejection (19)17.4 OFDM PLME (19)17.4.1PLME_SAP sublayer management primitives (19)Annex A (20)(normative) Protocol Implementation Conformance Statement (PICS) proforma (20)A.4 PICS proforma--IEEE Std 802.11™—2007 Edition (20)A.4.3 IUT Configuration (20)A.4.8 OFDM PHY function (22)A.4.15 QoS enhanced distributed channel access (EDCA) (23)Annex D (23)(normative) ANS.1 encoding of the MAC and PHY MIB (23)Annex I (28)(informative) Regulatory classes (28)I.1 External regulatory references (28)I.2.2 Transmit power levels (29)I.2.3 Transmit spectrum mask (29)Annex J (33)(normative) Country information element and regulatory classes (33)Copyright © 2008 IEEE. All rights reserve d.vi This is an unapproved IEEE Standards Draft, subject to changeFigure 7-76a Capabilities field first octet (6)Figure 7-95a WAVE Information element format (7)Figure 11-23 WAVE Announcement process (17)Figure I.3 Class A transmit spectrum mask (31)Figure I.4 Class B transmit spectrum mask (31)Figure I.5 Class C transmit spectrum mask (32)Figure I.6 Class D transmit spectrum mask (32)Copyright © 2008 IEEE. All rights reserved.This is an unapproved IEEE Standards Draft, subject to change viiTable 7-8 Beacon frame body (5)Table 7-26 Element IDs (5)Table 7-37a Default EDCA parameter set for WAVE BSS (6)Table 17 -13a WAVE enhanced receiver performance requirements (19)Table 17 -14 MIB attribute default values/ranges (19)Table I.1 Regulatory requirement list (28)Table I.2 Emissions limits sets (28)Table I.3 Behavior limits sets (29)Table I.4 Transmit power level by regulatory domain (29)Table I.7 Class A thru Class D spectrum masks (30)Table J.1 Regulatory classes in the USA (33)Copyright © 2008 IEEE. All rights reserve d.viii This is an unapproved IEEE Standards Draft, subject to changeIEEE P802.11p TM/D3.03Draft Standard for Information Technology - Telecommunications and information exchange between systems -Local and metropolitan area networks -Specific requirements -Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specificationsAmendment 9: Wireless Access in Vehicular Environments[This amendment is based on IEEE Std 802.11TM -2007 as amended by P802.11k-D9.0, P802.11r-D8.0, P802.11y-D6.0, P802.11w-D3.0, P802.11n-D3.0, P802.11u-D1.0, and P802.11s-D1.0.]NOTE—The editing instructions contained in this amendment define how to merge the material contained therein into the existing base standard and its amendments to form the comprehensive standard.The editing instructions are shown in bold italic. Four editing instructions are used: change, delete, insert, and replace. Change is used to make corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strikethrough (to remove old mate-rial) and underscore (to add new material). Delete removes existing material. Insert adds new material with-out disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. Replace is used to make changes in figures or equations by removing the existing figure or equation and replacing it with a new one. Editing instructions, change markings, and this NOTE will not be carried over into future editions because the changes will be incorporated into the base standard.Copyright © 2008 IEEE. All rights reserved.This is an unapproved IEEE Standards Draft, subject to change.Wireless Access in Vehicular Environments Draft P802.11p/D3.03, February 2008Copyright © 2008 IEEE. All rights reserved .2This is an unapproved IEEE Standards Draft, subject to change.1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 1. Overview 1.2 Purpose Change the first indented statement as follows:— Describes the functions and services required by an IEEE 802.11™-compliant device to operate within ad hoc and infrastructure networks including the aspects of STA mobility (transition) within those networks and the functions and services required by an IEEE 802.11™-compliant device to operate in rapidly varying environments (Wireless Access in Vehicular Environments (WA VE)).3. Definitions Change the text as follows:3.16 basic service set (BSS): A set of stations (STAs) that have successfully synchronized using the JOIN service primitives and one STA that has used the START primitive or the ONDEMANDBEACON primitive. Membership in a BSS does not imply that wireless communication with all other members of the BSS is possible.Insert the following new definitions:3.168a WAVE basic service set (WAVE BSS): A set of cooperating stations operating in WA VE mode consisting of a single WA VE STA that transmits a WA VE beacon and zero or more WA VE STAs that join this WA VE BSS. 3.168b WAVE information element (WIE): An information element that contains information provided by the MAC through the MLME_SAP.Note — Zero or more WIEs are included in the WA VE beacon.3.168c WAVE mode: A station (STA) is in WA VE mode when the MIB attribute dot11WA VEEnabled is true. Note — Two WA VE mode STAs may communicate within the context of a WA VE BSS or may communicate without belonging to a BSS.3.168d On-demand beacon: A beacon frame for which the On-demand beacon bit of the Extended Capabilities information element (see 7.3.2.27) is set to 1. Note — Only one On-demand beacon frame is transmitted per MLME-ONDEMANDBEACON.request from the SME. 3.168e WAVE beacon: An On-demand beacon frame for which the WA VE indication bit of the Extended Capabilities information element is set to 1, sent by a WA VE mode STA.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 544. Abbreviations and acronymsInsert the following new abbreviations and acronyms in alphabetical order:WA VE wireless access in vehicular environmentsWIE WA VE information element5. General Description5.2 Components of the IEEE 802.11 architectureInsert a new subclause (5.2.2a) after 5.2.2 renumbering as necessary:5.2.2a WAVE mode and WAVE BSSsWireless Access in Vehicular Environments (WA VE) is a mode of operation that enables the use of IEEE Std 802.11™ devices in vehicular environments. These rapidly changing environments typically involve mobile STAs that move much faster (up to 200 km/h) than a STA participating in an infrastructure BSS or IBSS. Additionally, the interval over which the communication exchanges take place may be of very short-duration (e.g measured in milliseconds). A STA is in WA VE mode if and only if the MIB attribute dot11WA VEEnabled is true. The need to enter WA VE mode is determined by upper layers, which are also responsible for system management and security. WA VE communication may take place in a frequency band that is dedicated for its use. Such a band may require licensing depending on the regulatory domain.A STA in WA VE mode may send a data frame in the context of a WA VE BSS, using the WA VE BSS's BSSID. It may also send a data frame outside of the context of a BSS, using the wildcard BSSID (see 7.1.3.3.3), and it may alternate between the two on a frame-by-frame basis.•Communication within a WA VE BSS allows a LAN to be setup quickly, a capability required in a rapidly changing communication environment. A WA VE beacon establishes or maintains a WA VE BSS (see subclause 11.18.1). A STA in WA VE mode may elect to join an established WA VE BSS (see 11.18.2), and may optionally synchronize to the WA VE BSS (See 11.18.3). Each WA VE BSS consists of the STA that establishes the WA VE BSS and zero or more STAs that have joined the WA VE BSS.The delay in joining a WA VE BSS is reduced compared to an infrastructure BSS because MAC level authentication and association do not apply to a WA VE BSS. Security services are deferred to higher layers.•WA VE mode allows communication outside the context of a BSS. A STA in WA VE mode may simply send a data frame directly over the wireless medium, to one or more STAs in WA VE mode, using an individual or broadcast/multicast MAC address.5.2.3 Distribution system (DS) conceptsInsert the following new subclause (5.2.3.3) after subclause 5.2.3.2:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 535.2.3.3 DS concepts in a WAVE BSSMAC sub-layer authentication and association services may be provided by a station management entity or protocol layer above the MAC. Neither function is required in order for a WA VE BSS STA to communicate over a DS. A STA that is a member of a WA VE BSS may access a DS directly.A STA using a non-BSS approach sets the "To DS" and "From DS" bits to 0 (Table 7-7). i.e.; it does not communicate directly with a DS.5.4 Overview of the services5.4.1 Distribution of messages within a DS5.4.1.1 DistributionChange the first paragraph of 5.4.1.1 as follows:This is the primary service used by IEEE 802.11 STAs. It is conceptually invoked by every data message to or from an IEEE 802.11 STA operating in an ESS (when the frame is sent via the DS). Distribution is via the DSS. WA VE BSSs do not use the DSS supported by the IEEE 802.11 MAC (see 5.2.3.3).7. Frame formats7.1 MAC frame formats7.1.3 Frame fields7.1.3.3.3 BSSID fieldInsert after the second paragraph of 7.1.3.3.3The value of the BSSID field in a WA VE BSS shall be a locally administered IEEE MAC address. Change the last sentence of the last paragraph of 7.1.3.3.3 to:A wildcard BSSID shall not be used in the BSSID field except for management frames of subtype probe request in the following two cases:1. Management frames of subtype Probe request2. Data frames transmitted in WA VE mode7.2 Format of individual frame types7.2.3 Management frames7.2.3.1 Beacon frame formatInsert the following after the last sentence of sub-clause 7.2.3.1In WA VE mode, the WA VE beacon includes zero or more WA VE information elements.1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54Insert the following information elements into Table 7-8:Table 7-8—Beacon frame body7.3 Management frame body components7.3.1 Fields that are not information elements7.3.1.3 Beacon interval fieldInsert the following after the first sentence of subclause7.3.1.3:This field is not specified in WA VE mode.7.3.1.10 Timestamp fieldChange the first sentence as follows:This field represents the value of the timing synchronization function (TSF) timer (see 11.1 and 11.18) of a frame's source.7.3.2 Information elementsInsert the WIE into Table 7-26 - Element IDs.Table 7-26—Element IDs7.3.2.27 Extended Capabilities information elementEDITORIAL NOTE - The changes made to this IEEE 802.11 Std 2007 subclause are consistent with changes made by TGn and TGy.Change the first paragraph of subclause 7.3.2.27 as follows:Order Information Notes24a Extended Capabilities The Extended Capabilities information element carries information of an802.11 STA to augment the Capability Information Field.24b WIE The WIE contains information provided to the MAC through theMLME_SAP. Zero or more WIEs may be included in the WA VEbeacon.Information Element Element ID Length (in octets)WIE (see 7.3.2.36)69 3 to 2571 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53The Extended Capabilities information element carries information about the capabilities of an IEEE 802.11 STA intended to and augments the Capability Information field (CIF) when these bits are fully allocated. The format of this information element is shown in Figure 7-76.Change the last paragraph of subclause 7.3.2.27 as follows:The Capabilities field is a bit field indicating the capabilities being advertised by the STA transmitting the information element. There are no capabilities defined for this field in this revision of the standard. One octet of extended information has been defined. The format of that octet is shown in Figure 7-76a.EDITORIAL NOTE—In Figure 7-76a bit B0 is reserved for TGn and bit B2 is reserved for TGy.Insert in Figure 7-76a B1 and B3 as follows:.Figure 7-76a—Capabilities field first octet— Bit 1: On-demand beacon. When the on-demand bit in the first octet of the Capabilities field is set to 1, the beacon transmission is initiated by the station management entity (SME) and indi-cates an On-demand beacon.— Bit 3: WA VE indication. If MIB attribute dot11WA VEEnabled = true, then the WA VE indication bit in the first octet of the Capabilities field is set to 1, otherwise it is set to 0.7.3.2.29 EDCA Parameter Set elementInsert the following new paragraph and table at the end of subclause 7.3.2.29:WA VE prioritized access operations uses the EDCA mechanism. The default EDCA parameter set used in the WA VE beacon is defined in Table 7-37a. The default EDCA parameter set shall be used for all STAs when transmitting data frames in the absence of a WA VE BSS. For data exchanges within a WA VE BSS, the EDCA parameter set received in the WA VE beacon shall be used.Table 7-37a—Default EDCA parameter set for WAVE BSSB0B1B2B3B4B7 Reserved On-demandbeaconReserved WA VEindicationReserved Bits11111111ACI CWmin CWmax AIFSNTXOP LimitOFDM/CCK-OFDM PHY00aCWmin aCWmax9001(aCWmin+1)/2 - 1aCWmin6010(aCWmin+1)/4 - 1(aCWmin+1)/2 - 13011(aCWmin+1)/4 - 1(aCWmin+1)/2 - 1201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54Insert the following new subclause (7.3.2.36) after subclause 7.3.2.35:7.3.2.36 WAVE Information element (WIE)The WIE is present only in the WA VE beacon frame. The WIE format is shown in Figure 7-95a..Figure 7-95a—WAVE Information element formatThe WIE content field contains management information indicating details to the Station Management Entity (SME) that are outside the scope of this standard. There may be multiple WIEs required to convey all the management information to the SME.7.5 Frame usageInsert, after Table 7-58, the following:The usage of frames subtypes while in WA VE mode is the same as shown in the IBSS columns of Table 7-58, except that ATIM, Authentication, Deauthentication, and Deassociation frames are not used. The WA VE beacon is transmitted on demand from protocol layers above the MAC. WA VE mode does not preclude the use of management frames that do not require authentication and association.10. Layer management10.3 MLME SAP interface10.3.2.2 MLME-SCAN.confirm10.3.2.2.2 Semantics of the service primitiveInsert the following row in the BSSDescription table:10.3.3 SynchronizationChange the subclause as follows:This mechanism supports the process of selection of a peer in the authentication process.Element ID Length ContentOctets11variableName TypeValidRange DescriptionExtended Capabilitiesinformation elementAs defined inframe formatAs definedin frameformatThe Extended Capabilities information elementcarries information about the capabilities of anIEEE 802.11 STA, to augment the CapabilityInformation field.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5310.3.3.1 MLME-JOIN.request10.3.3.1.1 FunctionChange the subclause as follows:This primitive requests synchronization with or setting parameters corresponding to a BSS.10.3.3.2 MLME-JOIN.confirm10.3.3.2.1 FunctionChange the subclause as follows:This primitive confirms synchronization with or setting parameters corresponding to a BSS.10.3.9 Reset10.3.9.1 MLME-RESET.request10.3.9.1.4 Effect of receiptInsert the following text at the end of 10.3.9.1.4:If the MIB attributes are not being set to their default values, WA VE MAC operation in WA VE capable STAs shall resume in less than 2 TUs after changing the value of the locally administered MAC address.Insert the following new subclauses (10.3.25a, 10.3.25b, and 10.3.25c) after subclause 10.3.25 adjusting the subclause numbers as necessary:10.3.25a Get TSF timerThis mechanism is used to request the current value of the TSF timer that the STA maintains.10.3.25a.1 MLME-GETTSFTIME.request10.3.25a.1.1 FunctionThis primitive is generated by the SME to request that the MLME return the value of its TSF timer. The value returned shall be the value of the TSF timer at the instant the MLME-GETTSFTIME.request is received as specified in 10.3.25a.2.1.10.3.25a.1.2 Semantics of the service primitiveThis primitive has no parameter.MLME-GETTSFTIME.request()1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5410.3.25a.1.3 When generatedThis primitive is generated by the SME to request the value of the TSF timer from the MLME.10.3.25a.1.4 Effect of receiptThe MLME issues an MLME-GETTSFTIME.confirm.10.3.25a.2 MLME-GETTSFTIME.confirm10.3.25a.2.1 FunctionThis primitive is generated by the MLME to report to the SME the result of a request to get the value of the TSF timer.10.3.25a.2.2 Semantics of the service primitiveThis primitive uses the following parameters:MLME-GETTSFTIME.confirm(ResultCode,TSFtime,)10.3.25a.2.3 When generatedThis primitive is generated by the MLME to report to the SME the result of an MLME-GETTSF-TIME.request.10.3.25a.2.4 Effect of receiptThe SME is notified of the result of an MLME-GETTSFTIME.request and, if successful, has the value of the TSF timer at the instant the MLME-GETTSFTIME.request was received by the MLME.NOTE—The TSF timer value can be used, along with other information, by higher layer functions to synchronize to external clock sources such as Universal Coordinated Time (UTC) from a Global Positioning System (GPS) unit.10.3.25b Set TSF timerThis mechanism is used to set the value of the TSF timer that the STA maintains.Name Type Valid Range DescriptionResultCode Enumeration SUCCESS,FAILUREReports the outcome of GETTSFTIME request. TSFtime Integer0 - (264 -1)Value of the TSF timer.。

相关文档
最新文档