高三数学知识点方法总结

合集下载

高三数学知识点总结(3篇)

高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。

高三数学知识点总结3篇

高三数学知识点总结3篇

高三数学知识点总结一、函数与极限函数的定义、函数的性质、基本初等函数的图像及性质、反函数、函数的运算、函数的极限及连续性、无穷小量和无穷大量、函数的单调性、函数的最值、函数的单侧极限与无穷小量、函数的间断点、洛必达法则、泰勒公式与函数的近似。

二、导数与微分导数的定义、求导公式、导数法则、高阶导数、隐函数求导、参数方程求导、函数的微分、中值定理、洛必达法则、泰勒公式与函数的近似、函数的单调性与极值点判定、函数图形的几何特征。

三、积分与微积分应用反导数、基本积分公式及换元法、分部积分法、有理函数的积分、三角函数的积分、定积分的定义、定积分的性质、定积分的计算、变限积分、微积分基本定理、换元积分法、分步积分法、无穷小量和无穷大量的比较、定积分的应用与面积计算、定积分的物理应用、微积分中值定理及其应用、微积分求极值点和最值的方法、微积分的物理和几何应用。

以上便是高三数学知识点总结的第一篇,其中包含了函数与极限、导数与微分、积分与微积分应用。

这些都是非常基础的数学知识点,在高三数学的课程中占据了相当的重要性,希望同学们掌握好这些基础知识,并且能够在这些知识的基础之上更好地学习高三的数学课程。

四、坐标系与空间几何平面直角坐标系、空间直角坐标系、极坐标系、柱面坐标系、球面坐标系、点的坐标表示、平面图形的方程、空间图形的方程、空间图形的投影、高中平面几何初步、直线的坐标表示与性质、平面的解析式及其方程、空间直线与平面的解析式、空间平面的方程。

五、解析几何与向量向量的概念及其表示、向量的运算、平面向量的坐标表示、向量的数量积与数量积的应用、向量积及其几何意义、坐标系中向量积的计算、空间向量及其坐标表示、混合积及其计算、多面体的体积、平面上的解析几何、立体几何初步。

六、概率与统计概率的基本概念、概率模型、条件概率、独立性、全概率公式与贝叶斯公式、离散型随机变量、连续型随机变量、期望与方差、正态分布、中心极限定理、参数估计、假设检验、相关系数、回归分析。

高三数学怎么总结知识点

高三数学怎么总结知识点

高三数学怎么总结知识点高三数学知识点总结在高三阶段,数学作为一门重要科目,对于学生的学业成绩和升学有着重要的影响。

因此,对于高三数学知识点的总结是非常必要的。

下面将介绍如何总结高三数学知识点。

一、复习全年知识点在总结高三数学知识点之前,首先要对全年的知识点进行复习。

可以根据学校的教材或者自己整理的学习计划,逐章节、逐知识点进行复习。

可以借助习题集来巩固理解和记忆。

在复习过程中,要动手做题,特别是一些经典的例题和典型题目,通过反复练习,加深对知识点的理解和记忆。

二、整理知识点脑图在复习知识点的过程中,可以运用脑图来整理知识结构,将重要的概念、公式、定理等有机地组织在一起。

可以采用分支结构,将不同章节的知识点分别标注,再将每个知识点的细节逐步展开。

这样的脑图可以使知识点之间的联系更加清晰,便于记忆和理解。

三、做总结性笔记在复习和整理知识点的过程中,可以逐步形成总结性的笔记。

可以将每个知识点的要点、定义、性质等写下来,并使用关键词或者记忆口诀等方式帮助记忆。

同时可以结合示例题或者典型题目,归纳出解题的一般步骤或者技巧。

这样的笔记可以作为复习时的重要参考资料,也方便快速回顾和回忆知识点。

四、制作知识点小抄在复习过程中,可以将重要的知识点制作成小抄,方便日常随身携带,随时翻看。

可以将每个知识点的关键内容、公式等写在一张小纸片上,便于快速查阅。

这样可以利用碎片时间进行复习,也可以在考前最后时刻再次温习。

五、做错题整理在复习过程中,不可避免地会遇到一些做错的题目。

对于这些错题,要进行仔细分析和总结。

可以找出错题的原因,总结错误的规律和不足之处,并列出解题的正确步骤和方法。

这样可以帮助弥补知识的漏洞,避免再犯同样的错误。

六、利用教辅资料和网络资源在总结高三数学知识点的过程中,可以借助教辅资料和网络资源。

可以通过阅读相关的教辅书籍,查找互联网上的数学学习资源,寻找更多的例题和解题技巧。

这些资源可以帮助丰富知识的广度和深度,提高对知识点的理解和掌握。

高三数学的知识点大全总结

高三数学的知识点大全总结

高三数学的知识点大全总结一、函数与方程1. 一次函数与二次函数1.1 一次函数的性质与图像1.2 二次函数的性质与图像2. 指数与对数函数2.1 指数函数的性质与图像2.2 对数函数的性质与图像3. 三角函数3.1 基本三角函数的定义与性质3.2 三角函数的图像与周期性4. 组合与逆函数4.1 组合函数的定义与性质4.2 逆函数的定义与性质5. 一元二次方程5.1 一元二次方程的解法及性质5.2 二次函数与一元二次方程的关系6. 高次方程与不等式6.1 高次方程的基本概念与解法6.2 不等式的基本概念与解法二、几何与向量1. 平面几何1.1 点、直线、平面的基本性质1.2 三角形、四边形的特性与性质2. 三维几何2.1 空间中的点、直线、平面2.2 空间图形的投影与旋转3. 二次曲线3.1 抛物线的性质与图像3.2 椭圆、双曲线的性质与图像4. 向量与坐标4.1 向量的定义与运算4.2 坐标系与向量的坐标表示5. 空间向量5.1 空间中的向量运算5.2 点、直线、平面与向量的关系三、概率与统计1. 概率1.1 事件与概率的基本概念1.2 条件概率与概率的加法规则2. 统计2.1 数据的收集与整理2.2 统计指标与统计图表的应用3. 随机变量与分布3.1 随机变量的概念与性质3.2 常见离散与连续分布的特点与应用四、数列与级数1. 数列1.1 数列的基本概念与性质1.2 等差数列与等比数列的应用2. 数列极限2.1 数列极限的定义与性质2.2 数列极限的计算方法与应用3. 级数3.1 级数的基本概念与性质3.2 等比级数与调和级数的求和五、导数与微分1. 导数的基本概念1.1 导数的定义与性质1.2 高阶导数与隐函数的导数2. 导数的计算与应用2.1 基本函数的导数2.2 最值与最优化问题的求解3. 微分学的应用3.1 泰勒展开与近似计算3.2 曲线的切线方程与法线方程六、积分与定积分1. 不定积分1.1 不定积分的基本概念与性质1.2 常见函数的不定积分公式2. 定积分2.1 定积分的基本概念与性质2.2 近似计算与定积分的应用3. 定积分的计算与应用3.1 函数的面积与曲线的长度3.2 物理问题与定积分的关系综上所述,以上是高三数学的知识点大全总结,包括函数与方程、几何与向量、概率与统计、数列与级数、导数与微分以及积分与定积分等内容。

高三数学知识点全集总结

高三数学知识点全集总结

高三数学知识点全集总结一、基本数学概念1. 数与数线数的分类:自然数、整数、有理数、无理数、实数数线上的点与坐标2. 运算与代数四则运算代数表达式与代数式的化简与计算方程与不等式的解与性质3. 几何基础知识点、线、面及其相互关系角度的概念及其相互关系平行线与垂直线的性质二、函数与方程1. 函数的概念与性质函数的定义域和值域奇函数与偶函数函数的图像和性质2. 一次函数线性函数的表示与性质函数方程的解法与应用3. 二次函数二次函数的表示与性质抛物线的图像与性质二次函数方程的解法与应用4. 指数与对数函数指数函数与对数函数的定义与性质对数函数的换底公式指数与对数的运算性质与应用5. 三角函数正弦函数、余弦函数、正切函数的定义与性质三角函数的图像与周期性质三角函数的运算与应用6. 三角方程与三角恒等式的证明与应用三角方程的解法三角恒等式的基本性质与应用三、平面几何1. 三角形的基本性质三角形的分类与性质三角形的内角和定理与外角和定理2. 三角形的相似与共线相似三角形的判定与性质利用相似三角形解决问题共线定理与应用3. 四边形的性质平行四边形的性质矩形、菱形和正方形的性质4. 圆与圆的相交性质圆的性质与定义切线与弦的性质圆内切与外切的性质四、空间几何1. 空间几何体的性质点、直线、平面与空间几何体的性质与关系空间几何体的投影与投影性质2. 空间向量的概念与运算空间向量的线性运算与数量积向量的共线与垂直性质3. 空间几何体的位置关系分析夹角的定义与判定直线与平面的位置关系平面与平面的位置关系五、概率与统计1. 随机事件与概率的概念样本空间、随机事件与概率概率的运算与应用2. 排列与组合排列与组合的定义与性质应用于实际问题的排列组合3. 统计与误差分析数据的收集与整理数据的表达与分析误差的来源与处理以上是高三数学知识点的全集总结,希望对你的学习有所帮助。

请按照自己的学习进度,在每个知识点上进行深入理解和掌握。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考高三数学总复习知识点归纳总结

高考高三数学总复习知识点归纳总结

高考高三数学总复习知识点归纳总结一、函数与方程1. 一次函数- 定义及性质- 斜率公式- 常见应用2. 二次函数- 定义及性质- 抛物线及图像特点- 判别式与根的情况- 常见应用3. 指数函数与对数函数- 定义及性质- 指数函数的图像特点- 对数函数的定义与性质- 常见应用4. 三角函数- 基本概念及性质- 常用三角函数的周期性、奇偶性、函数值范围- 三角函数的图像特点- 常见应用5. 方程与不等式- 一元一次方程与一元一次不等式- 一元二次方程与一元二次不等式- 三角方程与三角不等式- 常见应用二、数列与数学归纳法1. 等差数列- 定义及性质- 常见应用2. 等比数列- 定义及性质- 常见应用3. 斐波那契数列- 定义及性质- 常见应用4. 数学归纳法- 原理及应用步骤- 常见应用三、几何与三角形1. 直线与角- 基本概念及性质- 常见应用2. 三角形- 定义及性质- 各类三角形的特点- 常见应用3. 圆- 基本概念及性质- 圆的切线与切点- 弧度制- 常见应用4. 三角函数与解三角形- 正弦定理- 余弦定理- 解三角形的步骤与技巧- 常见应用四、概率与统计1. 随机事件与概率- 基本概念及性质- 概率计算方法- 常见应用2. 排列与组合- 基本概念及性质- 常见应用3. 统计与统计图- 数据的收集与整理- 统计图的绘制与分析- 常见应用五、导数与微分1. 导数的概念与性质- 导数的定义- 常见函数的导数- 常见应用2. 微分的概念与性质- 微分的定义- 高阶导数- 常见应用3. 函数的极值与最值- 极值与最值的概念- 极值与最值的判定条件- 常见应用总结本文档对高考高三数学总复习的知识点进行了归纳总结,涵盖了函数与方程、数列与数学归纳法、几何与三角形、概率与统计、导数与微分等内容。

希望能帮助您系统复习数学知识,取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高三数学知识点方法总结
广大高中生要想顺利通过高考,接受更好的教育,就要做好考试前的复习准备。

小编带来高三数学知识点方法总结,希望大家认真阅读。

当问到学生类似于函数主要有哪些内容?等问题时,学生的回答大多是一些零散的数学名词或局部的细节,这说明学生对知识还缺少整体把握。

所以复习的首要任务是立足于教材,将高中所学的函数知识进行系统梳理,用简明的图表形式把基础知识进行有机的串联,以便于找出自己的缺漏,明确复习的重点,合理安排复习计划。

就函数部分而言,大体分为三个层次的内容:1、函数的概念与基本性质,主要有函数的概念与运算、单调性、奇偶性与对称性、周期性、最值与值域、图像等。

2、一些简单函数的研究,主要是二次函数、幂、指、对函数等。

3、函数综合与实际应用问题,如函数-方程-不等式的关系与应用,用函数思想解决的实际应用问题等。

当然,在这个过程中也发现,学生梳理知识的过程过于被动、机械,只是将课本或是参考书中的内容抄在本子上,缺少了自己的认识与理解,将知识与方法割裂开来,整理的东西成了空中楼阁,自然没什么用。

这时,就需对每一个内容细化,问问自己复习这个内容时需要解决好哪些问题,以此为载体
来提炼与总结基本方法。

以函数的单调性为例,可以从哪些问题入手复习呢?问题一:什么是函数的单调性?可以借助一些概念的辨析题来帮助理解。

问题二:如何判断和证明一个函数在某个区间上的单调性?对这个问题的解决,需要的知识基础有:理解函数单调性的概念,熟知所学习过的各种基本函数(如一次函数、二次函数、反比例函数、幂、指、对函数等)的单调性,和函数(如y=x+ax(a0))以及简单的复合函数单调性等。

基本的方法主要是利用单调性的定义、以及不等式的性质进行判断和证明。

问题三:函数的单调性有哪些简单应用?主要的应用是求函数的最值,此外还可能涉及到不等式、比较大小等问题。

最后还可以进一步总结易错、易漏点,如讨论函数的单调性必须在其定义域内进行,两个单调函数的积函数的单调性不确定等。

以上就是高三数学知识点方法总结。

相关文档
最新文档