微生物及代谢PPT教学课件
合集下载
微生物的营养代谢PPT课件

基本营养物质的培养基。
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
微生物的新陈代谢优秀PPT

生物固氮主要在三方面进行研究: 用实验的方法提高主要农作物的固氮能力。 模拟固氮酶,使工业生产N肥在常温、常压下进行。 选择利用高效、优质的固氮微生物做为生物肥料 (根瘤菌肥料和固氮菌肥料)。
2020/4/28
9
(一) 固氮微生物
80余属,全部为原核生物(包括古生菌),主要包 括细菌、放线菌和蓝细菌。根据固氮微生物与高等 植物及其他生物的关系,可将它们分为以下3类:
但大多数固氮菌都是好氧菌。
微生物如何解决既需要氧又须 防止氧对固氮酶损伤的矛盾?
2020/4/28
21
(三) 固氮微生物的避氧害机制
长期进化过程中,各种固氮微生物已进化出适 合在不同条件下保护固氮酶免受氧害的机制。
1. 好氧性自生固氮菌的抗氧保护机制 (1)呼吸保护
固氮菌科的菌种能以极强的呼吸作用迅速将周围环境中
18
固氮酶
固氮酶的特点:
1)还原N2、H+、C2H2等生物活性;
2)由固氮酶(组分I;钼铁蛋白;固二氮酶)和固氮
酶还原酶(组分II;铁蛋白;固二氮酶还原酶来自共同组成时才具有生物活性;
3)氧不可逆失活作用。
2020/4/28
19
固氮的生化途径细节
2020/4/28
20
思考
固氮酶对氧极端敏感(不可逆的失活); 组分II(铁蛋白):在空气中暴露45s后失活一半; 组分I(钼铁蛋白):活性半衰期10 min;
第三节 微生物独特合成代谢 途径举例
2020/4/28
1
一. 自养微生物的CO2固定 二. 生物固氮 三. 肽聚糖的合成 四. 次生代谢
2020/4/28
2
一. 自养微生物的CO2固定
各种自养微生物在其生物氧化中获取的能量主要用于CO2的 固定。在微生物中,至今已了解的CO2固定的途径有4条。
微生物的代谢

转移和循环。当微生物死亡后,其细胞内的磷元素可被其他微生物再次
利用,从而实现磷在生态系统中的循环。
硫的代谢及循环
硫的获取
微生物通过吸收环境中的硫酸盐、硫化物和有机硫化合物 来获取硫元素。其中,硫酸盐是微生物硫代谢的主要来源 。
硫的还原
在厌氧条件下,一些微生物可将硫酸盐还原为硫化物,这 个过程被称为硫酸盐还原作用。硫化物可被其他微生物进 一步还原为硫元素或氧化为硫酸盐。
3
生物技术应用
利用微生物代谢产生的各种代谢产物,如抗生素 、酶、有机酸等,广泛应用于医药、农业、工业 等领域。
微生物代谢的研究历史与现状
研究历史
自19世纪中期以来,随着微生物学的建立和发展,人们对微生物代谢的研究逐渐深入,揭示了多种代 谢途径和调控机制。
研究现状
目前,微生物代谢研究已成为生命科学领域的热点之一,涉及代谢组学、代谢工程、合成生物学等多 个分支领域。同时,随着高通量测序、代谢组学等技术的发展,人们对微生物代谢的认识不断加深。
铁的代谢
一些微生物可通过氧化还原反应将铁元素从铁矿石中释放出来,这个过程被称为生物冶金。此外,微生物还可通过铁 载体等机制获取和利用铁元素。
锰的代谢
一些微生物可氧化锰离子为高价态的锰氧化物,这些氧化物在环境中具有较高的稳定性和氧化能力。同 时,微生物也可通过还原作用将高价态的锰还原为低价态的锰离子。
碳代谢途径多样性
01
02
03
04
糖酵解途径(Glycolysis): 将葡萄糖等单糖分解为丙酮酸
,并产生少量ATP。
三羧酸循环(Tricarboxylic acid cycle, TCA cycle):在 有氧条件下,将丙酮酸等中间 产物进一步氧化分解为CO2和
微生物学最完整经典ppt课件

疫苗研制原理
利用微生物或其代谢产物,经过人工减毒、灭活或利用基因工程等方法制成,用于预防传染病的生物制品。 疫苗可以刺激机体产生特异性免疫反应,从而预防相应疾病的发生。
疫苗类型与特点
包括灭活疫苗、减毒活疫苗、亚单位疫苗、基因工程疫苗等。不同类型的疫苗具有不同的特点和适用范围, 如灭活疫苗安全性较高,但免疫效果相对较弱;减毒活疫苗免疫效果较好,但存在一定的安全隐患。
微生物防治技术的发展趋势
01
新型疫苗的研发与应用
随着生物技术的不断发展,新型疫苗的研发和应用成为微 生物防治领域的重要趋势。如基于mRNA技术的疫苗、重 组蛋白疫苗等,具有更高的安全性和有效性。
02 03
微生物组学在防治中的应用
微生物组学是研究微生物群落结构和功能的科学,其在微 生物防治领域具有广阔的应用前景。通过解析微生物群落 的组成和功能,可以为微生物感染的预防和治疗提供新的 思路和方法。
微生物的生长曲线
包括延滞期、对数期、稳定期和衰亡 期。
影响微生物生长的因素
温度、pH、氧气、渗透压等。
微生物的代谢类型与特点
微生物的代谢类型
01
包括发酵、呼吸和光合磷酸化等。
微生物的代谢特点
02
代谢旺盛、代谢途径多样、代谢产物独特等。
微生物的次级代谢产物
03
抗生素、维生素、酶等。
微生物的能量转换与物质运
真菌的基本形态
菌丝、孢子等。
真菌的繁殖方式
无性繁殖和有性繁殖。
真菌的结构
细胞壁、细胞膜、细胞质、细胞核等。
真菌的特殊结构
菌丝体、子实体等。
其他微生物的形态与结构
原生动物的形态与结构
藻类的形态与结构
单细胞生物,具有细胞膜、细胞质和细胞 核。
利用微生物或其代谢产物,经过人工减毒、灭活或利用基因工程等方法制成,用于预防传染病的生物制品。 疫苗可以刺激机体产生特异性免疫反应,从而预防相应疾病的发生。
疫苗类型与特点
包括灭活疫苗、减毒活疫苗、亚单位疫苗、基因工程疫苗等。不同类型的疫苗具有不同的特点和适用范围, 如灭活疫苗安全性较高,但免疫效果相对较弱;减毒活疫苗免疫效果较好,但存在一定的安全隐患。
微生物防治技术的发展趋势
01
新型疫苗的研发与应用
随着生物技术的不断发展,新型疫苗的研发和应用成为微 生物防治领域的重要趋势。如基于mRNA技术的疫苗、重 组蛋白疫苗等,具有更高的安全性和有效性。
02 03
微生物组学在防治中的应用
微生物组学是研究微生物群落结构和功能的科学,其在微 生物防治领域具有广阔的应用前景。通过解析微生物群落 的组成和功能,可以为微生物感染的预防和治疗提供新的 思路和方法。
微生物的生长曲线
包括延滞期、对数期、稳定期和衰亡 期。
影响微生物生长的因素
温度、pH、氧气、渗透压等。
微生物的代谢类型与特点
微生物的代谢类型
01
包括发酵、呼吸和光合磷酸化等。
微生物的代谢特点
02
代谢旺盛、代谢途径多样、代谢产物独特等。
微生物的次级代谢产物
03
抗生素、维生素、酶等。
微生物的能量转换与物质运
真菌的基本形态
菌丝、孢子等。
真菌的繁殖方式
无性繁殖和有性繁殖。
真菌的结构
细胞壁、细胞膜、细胞质、细胞核等。
真菌的特殊结构
菌丝体、子实体等。
其他微生物的形态与结构
原生动物的形态与结构
藻类的形态与结构
单细胞生物,具有细胞膜、细胞质和细胞 核。
微生物学 第七章 微生物的代谢(共81张PPT)

特点:
a 、不经EMP途径和TCA循环而得到彻底氧化,无ATP生成,
b、产大量的NADPH+H+还原力 ; c、产各种不同长度的重要的中间物(5-磷酸核糖、4-磷酸-赤藓糖 ) d、单独HMP途径较少,一般与EMP途径同存
e、HMP途径是戊糖代谢的主要途径。
3)ED途径
——2-酮-3-脱氧-6-磷酸-葡萄糖酸裂解途径 1952年 Entner-Doudoroff :嗜糖假单胞菌
过程: (4步反应) 1 葡萄糖 6-磷酸-葡萄糖
6-磷酸-葡糖酸
6-磷酸-葡萄糖-脱水酶
特点:
a、步骤简单 b、产能效率低:1 ATP
KDPG KDPG醛缩酶
3--磷酸--甘油醛 + 丙酮酸
c、关键中间产物 KDPG,特征酶:KDPG醛缩酶
细菌:铜绿、荧光假单胞菌,根瘤菌,固氮菌,农杆菌,运动发酵单胞 菌等。
——严格厌氧菌进行的 唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1) ——丙酮丁醇梭菌(Clostridium acetobutyricum)
2丙酮酸
2乙酰-CoA
缩合
乙酰-乙酰 CoA
(CoA转移酶)
丙酮 +CO2 丁醇
5)氨基酸的发酵产能(stickland反应)
发酵菌体:生孢梭菌、肉毒梭菌、斯氏梭菌、双 酶梭环(TCA 循环支路)
乙酸
乙酰-CoA
(乙酰--CoA合成酶)
异柠檬酸
(异柠檬酸裂合酶)
苹果酸 (苹果酸合成酶) 琥珀酸 + 乙醛酸
Ii 丙酮酸 、PEP等化合物固定CO2的方法 Iii 厌氧、兼性厌氧微生物获得TCA 中间产物方式
------通过TCA的逆过程
a 、不经EMP途径和TCA循环而得到彻底氧化,无ATP生成,
b、产大量的NADPH+H+还原力 ; c、产各种不同长度的重要的中间物(5-磷酸核糖、4-磷酸-赤藓糖 ) d、单独HMP途径较少,一般与EMP途径同存
e、HMP途径是戊糖代谢的主要途径。
3)ED途径
——2-酮-3-脱氧-6-磷酸-葡萄糖酸裂解途径 1952年 Entner-Doudoroff :嗜糖假单胞菌
过程: (4步反应) 1 葡萄糖 6-磷酸-葡萄糖
6-磷酸-葡糖酸
6-磷酸-葡萄糖-脱水酶
特点:
a、步骤简单 b、产能效率低:1 ATP
KDPG KDPG醛缩酶
3--磷酸--甘油醛 + 丙酮酸
c、关键中间产物 KDPG,特征酶:KDPG醛缩酶
细菌:铜绿、荧光假单胞菌,根瘤菌,固氮菌,农杆菌,运动发酵单胞 菌等。
——严格厌氧菌进行的 唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1) ——丙酮丁醇梭菌(Clostridium acetobutyricum)
2丙酮酸
2乙酰-CoA
缩合
乙酰-乙酰 CoA
(CoA转移酶)
丙酮 +CO2 丁醇
5)氨基酸的发酵产能(stickland反应)
发酵菌体:生孢梭菌、肉毒梭菌、斯氏梭菌、双 酶梭环(TCA 循环支路)
乙酸
乙酰-CoA
(乙酰--CoA合成酶)
异柠檬酸
(异柠檬酸裂合酶)
苹果酸 (苹果酸合成酶) 琥珀酸 + 乙醛酸
Ii 丙酮酸 、PEP等化合物固定CO2的方法 Iii 厌氧、兼性厌氧微生物获得TCA 中间产物方式
------通过TCA的逆过程
微生物的代谢ppt课件

酶制剂发酵
利用微生物产生各种酶类的代谢过程 ,将酶提取后广泛应用于食品加工、 洗涤剂等领域。
微生物代谢在环境保护中应用
废水处理
利用微生物降解有机污染物的代 谢能力,将废水中的有害物质转 化为无害物质,达到废水处理的
目的。
生物脱硫脱氮
利用微生物分解有机垃圾的代谢 过程,将有机垃圾转化为稳定的 腐殖质,实现有机垃圾的资源化
也最快。
酸碱度对微生物代谢影响
酸碱度(pH值)对微生物的生长和 代谢有很大影响。
pH值通过影响微生物细胞膜的通透 性、酶的活性以及营养物质的吸收等 方式来影响微生物的代谢。
不同微生物对pH值的适应性不同, 有些微生物只能在酸性或碱性环境中 生长。
微生物在适宜的pH值范围内,其代 谢活动才能正常进行。
医疗健康
微生物代谢与人类健康密切相 关,研究微生物代谢有助于了 解疾病的发生机制并开发新的 治疗方法。
农业领域
微生物代谢在农业领域也有重 要作用,如生物肥料、生物农
药的研制和应用等。
02
微生物能量代谢
能量代谢基本概念
能量代谢
指生物体内能量的转移和转换过程, 包括能量的释放、传递、储存和利用 。
氧化还原反应
通过改变酶分子的数量来调节代谢速率,如酶合成和降解的速
率控制。
基因表达调控机制
转录水平调控
通过控制基因转录的速率来调节基因表达,如启动子和转录因子的 相互作用。
翻译水平调控
通过控制mRNA的翻译速率来调节基因表达,如核糖体结合位点和 翻译起始因子的作用。
转录后和翻译后调控
通过控制mRNA和蛋白质的修饰、加工和降解来调节基因表达,如 RNA剪接和蛋白质磷酸化。
微生物的代谢ppt课件
微生物的代谢途径(微生物学与操作技术)pptx

三羧酸循环的生理意义
三羧酸循环是生物体获取能量的 主要途径之一,也是生物体内有 机物质彻底氧化分解的主要场所。
乙醛酸循环与脂肪酸代谢
01
乙醛酸循环的定义与 过程
乙醛酸循环是某些植物和微生物体内存 在的代谢途径,可以将脂肪酸转化为糖 类。该过程包括一系列酶促反应,将乙 酰辅酶A逐步转化为苹果酸。
02
一些微生物能够将大气中的硫化 氢固定为细胞内的硫元素,参与 蛋白质等生物大分子的合成。
其他矿物质代谢
铁代谢
微生物通过分泌铁载体等机制获取环境中的铁 元素,参与细胞呼吸、电子传递等过程。
锰代谢
部分微生物能够氧化或还原锰元素,参与细胞 内的氧化还原反应。
锌、铜等微量元素的代谢
微生物通过特定的转运蛋白获取这些微量元素,参与酶的组成和催化反应。
ATP分解作用
ATP作为细胞内能量传递的“通货”,在需要能量的反应中被分解,释放出能 量以供细胞生命活动所需。
呼吸链与氧化磷酸化
呼吸链组成
呼吸链是由一系列递氢反应和递电子反应按一定的顺序排列所 组成的连续反应体系,它将代谢物脱下的成对氢原子交给氧生 成水,同时产生ATP。
氧化磷酸化过程
在呼吸链电子传递过程中,伴随着ADP磷酸化生成ATP的过程 称为氧化磷酸化。该过程与电子传递偶联,通过一系列酶的作 用将底物氧化释放的能量用于ATP的合成。
侧链修饰。
其他次生代谢产物合成
氨基酸合成
酶类合成
微生物可通过不同的氨基酸生物合成途径合 成各种氨基酸,如谷氨酸棒杆菌通过谷氨酸 合成途径合成谷氨酸。
微生物可产生多种酶类,如蛋白酶、淀粉酶、 脂肪酶等,这些酶在微生物代谢和工业生产 中具有重要作用。
毒素合成
微生物学课件 第六章 微生物代谢

ATP ADP+P
Fd
(Fe4S4)2
FeMoCo N2
3、CO2同化
①乙醛酸循环 ②丙酮酸羧化支路 ③甘油酸途径:乙醇酸、草酸、甘氨酸底物, 转化为乙醛酸,缩合成羟基丙酮酸半醛,还原成甘 油酸进入EMP途径。
4、糖类的合成
单糖的合成;多糖的合成。
5、氨基酸的合成
氨基化作用;转氨基作用;前体碳骨架合成。
e-
e- Bph
e- QA e- QB e-
Q库
ADP+Pi Cyt.bc1 ATP
逆电子传递 外源H2
NAD(P) NAD(P)H2
P700 e- Cyt.c2
外源电子供体H2S等
非环式光合磷酸化 (non-cyclic photophosphorylation)
1/202 2H+
叶绿素b
e- Ⅱ
③膜透性调节; ④能荷调节; ⑤诱导作用:类似物诱导; ⑥磷酸盐调节。
(1)CO2的固定:空气中的CO2同化成细胞物质的 过程。
①卡尔文循环
②还原性三羧酸循环固定CO2
乙酰CoA
丙酮酸
磷酸烯醇式丙酮酸
草酰乙
酸
琥珀酰CoA
α-酮戊二酸
柠檬酸
乙酸
乙酰CoA
③还原单酸循环
不消耗能量,Fd由H2或NADH2提供电子,由乙酰
CoA 丙酮酸
草酰乙酸
乙酸
2、生物固氮
固氮微生物(nitrogen –fixing organisms, diazotrophs)
代谢调控:利用遗传学方法或其它生物学方法,人 为地改变和控制生物的代谢途径,生产有用物质或进行 有益服务。
二、微生物产能代谢
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
种群数量增长曲线 微生物群体生长曲线
研究 区 范围 别
纵轴 含义
只研究种群数量增 研究微生物群体从出现 长阶段的变化规律 到衰亡的数量变化规律
种群的实际数量 微生物数目的对数,不 代表实际数量
①“J”型曲线也有调整期和对数期,即微生物群体生
联 长曲线的调整期和对数期类似于“J”型曲线
系
②“S”型曲线也分为三个阶段:对环境的适应期、快 速增长期、数目稳定期,曲线总体趋势和微生物群体 生长曲线的调整期、对数期和稳定期相一致
微生物及代谢
微生物ห้องสมุดไป่ตู้类群
知识梳理 几种特殊微生物的新陈代谢特点
种群数量增长曲线和微生 物群体生长曲线的分析
典例精析
(一)微生物的类群 :
微 病毒界 (噬菌体、动植物病毒) 生 原核生物界 (细菌、放线菌、蓝藻) 物 种 真菌界 (酵母菌、霉菌、大型真菌) 类 原生生物界 (草履虫、变形虫、绿眼虫)
D.用于生产酒精的小麦、玉米等植物中含有较多的脂肪,可以分 解成酒精,因此选用这些植物生产酒精
【解析】
基因工程的原理是利用DNA重组而不是基因突变来改变生物的遗传 性状。生产酒精时,先通入空气,目的是让酵母菌进行有氧呼吸, 从而能快速繁殖,此过程不会产生酒精.接着再密闭装置,让其进 行无氧呼吸从而产生大量的酒精。生产酒精时,常用小麦、玉米等 农作物,是由于此类植物中含有较多的淀粉,可以被酵母菌发酵产 生酒精。转基因农作物的培养利用的是DNA重组的原理来有目的的培 养农作物的新品种。
【例】下列关于用农作物生产酒精的说法中正确的是(B)
A.在生产酒精过程中,一般是先往装置中通入空气,这时有利于 酵母菌繁殖,同时产生大量的酒精
B.生产酒精过程中,要保持适宜的温度,温度过高或过低,都会 影响酶的活性
C.某些科学家将一些基因植入某些农作物体内,使这些农作物细 胞产生石油的类似物,这是利用了基因突变的原理
【变式】右图表示葡萄糖浓度与细菌生长速率的关系。 下列有关解释中,不合理的是 ( D ) A.bc段表示随着葡萄糖浓度的增大,细菌生长加快 B.cd段可能是细胞膜运输葡萄糖的能力趋于饱和 C.de段葡萄糖浓度过高,细菌渗透失水,影响细菌生长 D.这类细菌的代谢类型一定是异养需氧型
【解析】
注意纵坐标表示的是细菌生长速率,而非细菌数目的对数。自养微 生物也能够利用葡萄糖作为碳源进行生长,且图中葡萄糖浓度为0时 ,该细菌就具有一定的生长速率,说明该细菌同化作用最有可能是自 养型;对于是否属于需氧型,仅从题中信息是不能作出判定的。
(二)几种特殊微生物的新陈代谢特点 : 4.病毒 :
病毒是不是生物?
SARS病毒的电镜照片
SARS病毒模式图
(二)几种特殊微生物的新陈代谢特点 : 4.病毒 :
蛋白质外壳
SARS病毒
遗传物质
病毒:是一种专性寄生的无细胞结构的微生物,自身没 有独立的新陈代谢能力,依赖于宿主细胞进行新陈代谢 和繁殖,因此,一旦离开宿主细胞将很快死亡。 病毒尽管不具有细胞结构,但它可以寄生在活细胞中, 利用活细胞中的物质生活和繁殖。
(1)“J”型曲线是在理想条件下的种群数量增长曲线; 而“S”型曲线和微生物生长曲线都是在有限环境 中的数量变化曲线。
(2)“J”型曲线无K值,种群增长率始终不变;“S”型曲 线和生长曲线有K值,种群增长率在各阶段是不相 同的,当环境条件变化时,K值也会随之变化。
(三)种群数量增长曲线和微生物群体生长曲线的分析: 2. A、B曲线和C曲线的区别与联系:
自养厌氧型: 极少种类
固氮微生物均为原核生物,包括固氮细菌、固氮 蓝藻及固氮放线菌等,自生固氮微生物大多为异 养型,共生固氮微生物也有自养的,如鱼腥藻 (与满江红共生的一种蓝藻)。
(二)几种特殊微生物的新陈代谢特点 :
2.硝化细菌(化能合成细菌):
O2
H2O
NH3
HNO2
能量
CO2 H2O
O2
HNO3
(二)几种特殊微生物的新陈代谢特点 : 5.其他典型微生物的代谢类型 :
• 绿硫细菌: 光能自养厌氧型 • 红螺细菌: 兼性光能自养厌氧型 • 硫细菌: 化能自养需氧型 • 酵母菌: 化能异养兼性厌氧型 • 乳酸菌: 化能异养厌氧型 • 肺炎双球菌: 化能异养需氧型
(三)种群数量增长曲线和微生物群体生长曲线的分析: 1. A曲线与B、C曲线的区别:
谢 谢!
特点:形体微小、结构简单,通常要用光学显微镜或 电子显微镜才能看到,有的甚至没有细胞结构。
微生物是包含除植物界和动物界以外的所有生物。
(二)几种特殊微生物的新陈代谢特点 : 1.固氮微生物
根瘤菌(共生固氮菌) 异养需氧型
圆褐固氮菌(自生固氮菌)
异养厌氧型: 巴氏梭菌(自生固氮菌)
自养需氧型: 固氮蓝藻
C6H12O6 O2
硝化作用:NH3+3O2 硝化细菌 2HNO2+2H2O+能量
2 HNO2+O2 硝化细菌 2 HNO3+能量
化能合成作用:CO2+H2O 化能 C6H12O6+O2
(二)几种特殊微生物的新陈代谢特点 : 3.光合细菌:
光合细菌是自养需氧型微生物,本身无叶绿 体等复杂的细胞器,但在细胞膜上附着有进 行光合作用和有氧呼吸的酶系,因此可进行 光合作用与呼吸作用。