2016年南京市玄武区中考二模数学试卷(含答案)
年江苏省南京市玄武区中考数学二模试卷

2017年江苏省南京市玄武区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2的相反数是()A.2ﻩB. C.﹣2ﻩD.﹣2.(2分)氢原子的半径大约是0.000 0077m,将数据0.000 0077用科学记数法表示为()A.0.77×10﹣5ﻩB.0.77×10﹣6 C.7.7×10﹣5ﻩD.7.7×10﹣63.(2分)﹣介于( )A.﹣4与﹣3之间ﻩB.﹣3与﹣2之间 C.﹣2与﹣1之间ﻩD.﹣1与0之间4.(2分)下列平面图形,既是中心对称图形,又是轴对称图形的是( )A.等腰三角形 B.正五边形ﻩC.平行四边形ﻩD.矩形5.(2分)如图是一个几何体的三视图,这个几何体是()A.四棱柱ﻩB.三棱柱 C.三棱锥ﻩD.圆锥6.(2分)如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E 点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A. B.ﻩC. D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)8的算术平方根是;8的立方根是.8.(2分)要使式子在实数范围内有意义,则x的取值范围是.9.(2分)计算=.10.(2分)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣1时,y= .11.(2分)某班的中考英语口语考试成绩如表:考试成绩/分3029282726学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多分.12.(2分)若方程x2﹣12x+5=0的两根分别为a,b,则a2b+ab2的值为.13.(2分)若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是cm2(结果保留π).14.(2分)若一个正多边形的每一个外角都是30°,则这个正多边形的边数为.15.(2分)如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E= °.16.(2分)如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)解不等式组并把它的解集在数轴上表示出来.(2)解方程=1﹣.18.(6分)先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的数代入求值.19.(8分)某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表查找方式频数频率搜索引擎1632%专题网站15a在线网校48%试题题库1020%其他b10%(1)频数分布表中a,b的值:a=;b=;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?20.(6分)从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生的概率为;(2)抽取2名,恰好是1名男生和1名女生.21.(8分)如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE =CF.(1)求证:△AFD≌△CEB;(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.22.(6分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?23.(8分)如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈,≈1.7)24.(8分)已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a为何值,该二次函数的图象与x轴一定有公共点;(2)当a=4时,该二次函数的图象顶点为A,与x轴交于B,D两点,与y轴交于C点,求四边形ABCD的面积.25.(9分)如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N 地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.(1)M、N两地之间的距离为km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.26.(9分)如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP交⊙O于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;②若点E是⊙O上一点,连接AE,BE,当AE=6时,BE= .27.(10分)(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB ⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为.2017年江苏省南京市玄武区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2的相反数是()A.2 B.ﻩC.﹣2ﻩD.﹣【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得2的相反数是:﹣2.故选:C.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(2分)氢原子的半径大约是0.000 0077m,将数据0.0000077用科学记数法表示为()A.0.77×10﹣5ﻩB.0.77×10﹣6ﻩC.7.7×10﹣5D.7.7×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077用科学记数法表示为7.7×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2分)﹣介于( )A.﹣4与﹣3之间ﻩB.﹣3与﹣2之间C.﹣2与﹣1之间ﻩD.﹣1与0之间【分析】首先由4<7<9,可估算出的取值范围,易得结果.【解答】解:∵4<7<9,∴2,∴﹣3<<﹣2,故选:B.【点评】本题考查了估算无理数的大小,利用“夹逼法”是解答此题的关键.4.(2分)下列平面图形,既是中心对称图形,又是轴对称图形的是()A.等腰三角形ﻩB.正五边形C.平行四边形D.矩形【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵等腰三角形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,故此选项错误;B、∵正五边形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、平行四边形旋转180°后能与原图形重合,此图形是中心对称图形,但不是轴对称图形,故此选项错误;D、∵矩形旋转180°后能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(2分)如图是一个几何体的三视图,这个几何体是()A.四棱柱B.三棱柱C.三棱锥 D.圆锥【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和俯视图为长方形可得此几何体为柱体,由左视图为三角形可得为三棱柱.故选:B.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.6.(2分)如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P 作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A.B. C.ﻩD.【分析】从给出的图象中看,中间位置的图象一致,只要计算两边取值中的图象即可作出判断;先计算点P从B到G时扫过的面积S,发现是二次函数,且开口向下,可以否定A 和B,再计算点P从9≤t≤12时扫过的面积为正六边形的面积﹣△EMN的面积,计算得到一个开口向下的二次函数,由此作判断.【解答】解:由题意得:BP=t,如图1,连接AC,交BE于G,Rt△ABG中,AB=6,∠ABG=60°,∴∠BAG=30°,∴BG=AB=3,由勾股定理得:AG==3,∴AC=2AG=6,当0≤t≤3时,PM=t,∴MN=2t,S=S△BMN=MN•PB==,所以选项A和B不正确;如图2,当9≤t≤12时,PE=12﹣t,∵∠MEP=60°,∴tan∠MEP=,∴PM=(12﹣t),∴MN=2PM=2(12﹣t),∴S=S正六边形﹣S△EMN,=2×(AF+BE)×AG﹣MN•PE,=(6+12)×3﹣×(12﹣t)(12﹣t),=54﹣(144﹣24t+t2),=﹣+24t﹣90,此二次函数的开口向下,所以选项C正确,选项D不正确;故选:C.【点评】本题考查了动点所在直线的运动问题,利用数形结合的思想,确定动直线扫过区域面积的几种可能,通过计算其解析式来判断.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)8的算术平方根是2;8的立方根是2 .【分析】依据算术平方根的性质和立方根的性质解答即可.【解答】解:8的算术平方根是2;8的立方根是2.故答案为:2;2.【点评】本题主要考查的是算术平方根、立方根的性质,熟练掌握算术平方根、立方根的性质是解题的关键.8.(2分)要使式子在实数范围内有意义,则x的取值范围是x≥2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2分)计算= 2.【分析】直接利用二次根式乘运算法则计算得出答案.【解答】解:原式====2.故答案为:2.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.10.(2分)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣1时,y= 6.【分析】直接把A(2,3)代入反比例函数y=求出k的值,进而可得出反比例函数的解析式,再把x=1代入求出y的值即可.【解答】解:∵反比例函数y=的图象经过点A(﹣2,3),∴3=,解得k=﹣6,∴反比例函数的解析式为y=﹣,∴当x=﹣1时,y=﹣=6.故答案为:6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(2分)某班的中考英语口语考试成绩如表:考试成绩/分3029282726学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多 1 分.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为:1.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(2分)若方程x2﹣12x+5=0的两根分别为a,b,则a2b+ab2的值为60.【分析】先根据根与系数的关系得到a+b=12,ab=5,再把a2b+ab2变形为ab(a+b),然后利用整体代入的方法计算.【解答】解:根据题意得a+b=12,ab=5,所以a2b+ab2=ab(a+b)=5×12=60.故答案为60.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.(2分)若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是60πcm 2(结果保留π).【分析】先利用勾股定理计算出圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算这个圆锥的侧面积.【解答】解:圆锥的底面圆的半径==6,所以这个圆锥的侧面积=×2π•6•10=60π(cm2).故答案为60π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.(2分)若一个正多边形的每一个外角都是30°,则这个正多边形的边数为12.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.【解答】解:这个正多边形的边数:360°÷30°=12,故答案为:12.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.(2分)如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E= 140°.【分析】连接BF,BD,根据已知条件得到的度数+的度数=440°,得到的度数=440°﹣360°=80°,根据圆内接四边形的性质即可得到结论.【解答】解:连接BF,BD,∵∠A+∠C=220°,∴的度数+的度数=440°,∴的度数=440°﹣360°=80°,∴∠DBF=40°,∴∠E=180°﹣∠DBF=140°,故答案为:140.【点评】本题考查了圆周角定理,多边形的内角与外角,正确的作出辅助线是解题的关键.16.(2分)如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是2≤MN<4.【分析】连接AM、AN、AP,过点A作AD⊥MN于点D,由对称性可知AM=AP=AN、△MAN等腰直角三角形,进而即可得出MN=AP,再根据AP的取值范围即可得出线段MN长的取值范围.【解答】解:连接AM、AN、AP,过点A作AD⊥MN于点D,如图所示.∵点P关于直线AB,AC的对称点分别为M,N,∴AM=AP=AN,∠MAB=∠PAB,∠NAC=∠PAC,∴△MAN等腰直角三角形,∴∠AMD=45°,∴AD=MD=AM,MN=AM.∵AB=4,∠B=60°,∴2≤AP<4,∵AM=AP,∴2≤MN<4.故答案为:2≤MN<4.【点评】本题考查了轴对称的性质,等腰直角三角形的判定和性质,解题的关键是证得△AMN是等腰直角三角形.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)解不等式组并把它的解集在数轴上表示出来.(2)解方程=1﹣.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),解不等式①•,得x≤1,解不等式 ②,得x>﹣1,则不等式组的解集是﹣1<x≤1;(2)方程两边同乘x﹣3得:3x=(x﹣3)+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,所以x=﹣1是原方程的解.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.(6分)先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的数代入求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.【解答】解:1﹣÷==1﹣==,当x=3时,原式=﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表查找方式频数频率搜索引擎1632%专题网站15a在线网校48%试题题库1020%其他b10%(1)频数分布表中a,b的值:a= 30%;b= 5 ;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?【分析】(1)由统计图和统计表可以分别求得a、b的值;(2)根据b的值即可画出直方图;(3)用样本估计总体的思想,即可解决问题;【解答】解:(1)16÷32%=50,a=×100%=30%,b=50×10%=5,故答案为30%;5;(2)频数分布直方图,如图所示,(3)1000×32%=320(名)答:该校利用搜索引擎查找学习资源的学生有320名.【点评】本题考查频数分布直方图、频数分布表、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(6分)从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生的概率为;(2)抽取2名,恰好是1名男生和1名女生.【分析】(1)根据概率的意义写出即可;(2)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)P(女)=;故答案为:;(2)画出树状图如下:共有20种情况,其中“恰好是1名男生和1名女生”的情况有12种,所以,P(恰好是1名男生和1名女生B)==.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE=CF.(1)求证:△AFD≌△CEB;(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.【分析】(1)求出AF=CE,再利用“边角边”证明即可;(2)根据全等三角形对应边相等可得AD=BC,全等三角形对应角相等可得∠BCE =∠DAF,再根据内错角相等,两直线平行证明AD∥BC,然后判断出四边形ABCD 是平行四边形,求出∠ABC=90°,最后根据有一个角是直角的平行四边形是矩形证明.【解答】证明:(1)∵BE⊥AC,DF⊥AC,∴∠AFD=∠CEB=90°.∵AE=FC,∴AE+EF=FC+EF,∴AF=CE,又∵BE=DF,∴△AFD≌△CEB;(2)四边形ABCD为矩形.∵△AFD≌△CEB,∴AD=BC,∠BCE=∠DAF.∴AD∥BC,∴四边形ABCD为平行四边形,∵∠CBE=∠BAC,又∵∠CBE+∠ACB=90°,∴∠BAC+∠ACB=90°,∴∠ABC=90°,∴四边形ABCD为矩形.【点评】本题考查了全等三角形的判定与性质,矩形的判定,熟练掌握三角形全等的判定方法并准确识图是解题的关键.22.(6分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?【分析】设衬衫的单价降了x元.根据题意等量关系:降价后的销量×每件的利润=1250,根据等量关系列出方程即可.【解答】解:设衬衫的单价降了x元.根据题意,得(20+2x)(40﹣x)=1250,解得:x1=x2=15,答:衬衫的单价降了15元.【点评】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.23.(8分)如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈,≈1.7)【分析】作AD⊥CB交CB所在直线于点D,利用锐角三角函数的定义求出CD及BD的长,利用BC=CD﹣BD即可得出结论.【解答】解:作AD⊥CB交CB所在直线于点D,由题知,∠ACD=35°,∠ABD=60°,∵在Rt△ACD中,∠ACD=35°,tan35°=≈,∴CD=AD.∵在Rt△ABD中,∠ABD=60°,tan60°==≈1.7,∴BD=AD,∴BC=CD﹣BD=AD﹣AD,∴AD﹣AD=100,解得AD=119m.答:热气球离地面的高119m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.(8分)已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a 为何值,该二次函数的图象与x 轴一定有公共点;(2)当a=4时,该二次函数的图象顶点为A,与x 轴交于B,D两点,与y 轴交于C 点,求四边形ABCD 的面积.【分析】(1)利用根的判别式符号进行证明;(2)由抛物线解析式求得点B 、C 、D 的坐标,然后利用分割法来求四边形ABCD 的面积.【解答】(1)证明:y=x 2﹣(a ﹣1)x+a ﹣2. 因为[﹣(a ﹣1)]2﹣4(a ﹣2)=(a﹣3)2≥0. 所以,方程x 2﹣(a ﹣1)x +a ﹣2=0有实数根. 所以,不论a 为何值,该函数的图象与x 轴总有公共点;(2)由题可知:当a=4时,y=x 2﹣3x+2,因为y=x2﹣3x +2=(x ﹣)2﹣,所以A (,﹣),当y=0时,x 2﹣3x +2=0,解得x 1=1,x 2=2,所以B(1,0),D(2,0), 当x=0时,y=2,所以C (0,2), 所以S四边形ABCD =S △ABD +S △BDC =+1=.【点评】本题考查了待定系数法,抛物线和坐标轴的交点、顶点坐标,四边形的面积的求法等,(2)利用分割法求四边形的面积是本题的关键.25.(9分)如图①,在一条笔直的公路上有M 、P 、N三个地点,M 、P 两地相距20km,甲开汽车,乙骑自行车分别从M、P 两地同时出发,匀速前往N 地,到达N 地后停止运动.已知乙骑自行车的速度为20km /h,甲,乙两人之间的距离y(km)与乙行驶的时间t (h )之间的关系如图②所示.(1)M、N两地之间的距离为80 km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.【分析】(1)根据路程=速度×时间,可求PM,再计算20即可求解;(2)由题意可知B(,0),C(1,40),根据待定系数法可求线段BC所表示的y 与t之间的函数表达式;(3)当甲开汽车返回M地时,甲,乙两人之间的距离y(km)最大为60;依此补全函数图象.【解答】解:(1)20×3+20=60+20=80(km).答:M、N两地之间的距离为80km;(2)由题意可知B(,0),C(1,40),设y与x之间的函数表达式为y=kx+b.根据题意得,当x=时,y=0;当x=1时,y=40.所以,解得.所以,y与x之间的函数表达式为y=60x﹣20;(3)如图所示:故答案为:80.【点评】此题主要考查了一次函数的应用,利用图表中数据得出汽车速度是解题关键.26.(9分)如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP 交⊙O于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;②若点E是⊙O上一点,连接AE,BE,当AE=6时,BE=3﹣3或3+3.【分析】(1)由PA切⊙O于点A得:∠PAO=90°,再证明△APO≌△BPO,所以∠PBO=∠PAO=90°,可得结论;(2)①先根据垂径定理得:BC=3,根据勾股定理求圆的半径OB的长,利用三角函数得:∠COB=60°,利用三角形的面积公式和扇形的面积公式分别求S和△OPBS扇形DOB的值,最后利用面积差得结论;②②分两种情况:i)当点E在上时,如图2,作辅助线,构建直角三角形和等腰直角三角形,利用同弧所对的圆周角与半径及勾股定理分别计算EH和BH的长,相加即可得BE的长;ii)当点E在劣弧上时,如图3,作辅助线,同理计算EH和BH的长,最后利用勾股定理求BE的长.【解答】(1)证明:如图1,连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O上,∴PB与⊙O相切于点B;(2)①解:如图1,∵OP⊥AB,OP经过圆心O,∴BC=AB=3,∵∠PBO=∠BCO=90°,∴∠PBC+∠OBC=∠OBC+∠BOC=90°,∴∠PBC=∠BOC, ∴△PBC ∽△BOC, ∴∴OC===3,∴在R t△OC B中,O B===6,tan ∠COB==,∴∠C OB=60°,∴S△OPB =×OP×B C=×=18,S 扇DOB ==6π,∴S 阴影=S △OPB ﹣S扇DOB =18﹣6π;②分两种情况: i)当点E在上时,如图2,作直径AF,交⊙O 于F,连接EF 、E B,过O作OG ⊥AE 于G,过F 作FH ⊥EB 于H, ∴EG=AG =AE=×=3,∵∠AOB=120°,OA =OB, ∴∠OA B=30°,∴∠BE F=∠OA B=30°, Rt △OGE 中,由①知:O A=6, ∴O G===3,∴AG=OG,∴△OGA 是等腰直角三角形, ∴∠OAE=45°,∴∠E BF=∠OAE=45°, ∵AF 是⊙O的直径, ∴∠AEF=90°,∴△AE F是等腰直角三角形, ∴EF=A E=6,Rt △E HF中,∠B EF=30°, ∴FH =EF=3,∴EH===3,Rt△BHF中,∵∠EBF=45°,∴△BHF是等腰直角三角形,∴BH=FH=3,∴BE=3+3,ii)当点E在劣弧上时,如图3,作直径AF,并⊙O于F,连接OB、OE、BF,过B作BH⊥OE于H,∵AF为⊙O的直径,∴∠ABF=90°,∵∠BAF=30°,∴∠F=∠BOF=60°,∵OA=OE=6,AE=6,∴OA2+OE2=AE2,∴∠AOE=90°,∴∠EOF=90°,∴∠EOB=30°,Rt△OHB中,BH=OB=3,∴OH==3,∴EH=6﹣3,∴BE====3﹣3;综上所述,BE的长为3+3或3﹣3;故答案为:3﹣3或3+3.【点评】本题考查了切线的性质和判定、垂径定理、三角函数、扇形的面积、三角形相似的性质和判定、圆周角定理,第2小问构建辅助线是关键,同时要采用分类讨论的思想.27.(10分)(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C 重合),求证:PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为.【分析】(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=OC,当BQ最小时,OC最小;【解答】(1)证明:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴QP=AP=QB+BP=PC+PB,∴AP=PC+PB.(2)解:如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB⊥AC∴∠BAC=90°由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC∴∠QAB+∠BAO=∠BAO+∠OAC=90°∴在Rt△OAQ中,OQ=3,AO=3∴在△OQB中,BQ≥OQ﹣OB=3﹣3即OC最小值是3﹣3(3)如图③中,作AQ⊥OA,使得AQ=OA,连接OQ,BQ,OB.∵∠QAO=∠BAC=90°,∠QAB=∠OAC,∵==,∴△QAB∽OAC,∴BQ=OC,。
2016年江苏省南京市玄武区中考数学一模试卷及参考答案

2016年江苏省南京市玄武区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列运算正确的是()A.a3+a3=a6 B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a22.(2分)下列各数中,是无理数的是()A.cos30°B.(﹣π)0 C.﹣ D.3.(2分)计算2﹣1×8﹣|﹣5|的结果是()A.﹣21 B.﹣1 C.9 D.114.(2分)体积为80的正方体的棱长在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间5.(2分)如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°6.(2分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ =S△OQC,则k的值为()A.﹣12 B.12 C.16 D.18二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是.8.(2分)计算:﹣=.9.(2分)有一组数据:1,3,3,4,4,这组数据的方差为.10.(2分)设x1,x2是方程x2+4x+3=0的两根,则x1+x2=.11.(2分)今年清明假期全国铁路发送旅客约41000000人次,将41000000用科学记数法表示为.12.(2分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是.13.(2分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,OH=8,则菱形ABCD的周长等于.14.(2分)如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=°.15.(2分)如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.16.(2分)若﹣2≤a<2,则满足a(a+b)=b(a+1)+a的b的整数值有个.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(12分)(1)解方程:3(x﹣1)=x(1﹣x);(2)化简:﹣;(3)解不等式组:,并将解集在数轴上表示.18.(7分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.19.(7分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.20.(7分)元宵节那天,李老师给他的微信好友群发了一个小调查:“元宵节,你选择吃大汤圆,还是小元宵呢?”12小时内好友回复的相关数据如图:(1)回复时间为5小时~12小时的人数为;(2)既选择大汤圆,又选择小元宵的人数为;(3)12小时后,又有40个好友回复了,如果重新制作“好友回复时间扇形统计图”,加入“12小时后”这一项,求该项所在扇形的圆心角度数.21.(7分)如图,点P、M、Q在半径为1的⊙O上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:(1)sin60°=;cos75°=;(2)若MH⊥x轴,垂足为H,MH交OP于点N,求MN的长.(结果精确到0.01,参考数据:≈1.414,≈1.732)22.(8分)二次函数y=ax2+bx+c的图象经过点(0,3),(3,6),(﹣2,11).(1)求该二次函数的关系式;(2)证明:无论x取何值,函数值y总不等于1;(3)如何平移该函数图象使得函数值y能等于1?23.(7分)如图,已知△ABC,△DCE是两个全等的等腰三角形,底边BC、CE 在同一直线上,且AB=,BC=1,BD与AC交于点P.(1)求证:△BED∽△DEC;(2)求△DPC的周长.24.(8分)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②当BD=5,CD=4时,DF=.25.(7分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q•)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.26.(8分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10000①平均步长(米/步)0.6②距离(米)60007020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.27.(10分)如图①,现有长度分别为a、b、1的三条线段.【加、减】图②所示为长为a+b的线段,请用尺规作出长为a﹣b的线段.【乘】在图③中,OA=a,OC=b,点B在OA上,OB=1,AD∥BC,交射线OC于点D.求证:线段OD的长为ab.【除】请用尺规作出长度为的线段.【开方】任意两个有理数的和、差、积、商(除数不为0)仍然是有理数,而开方运算则打开了通向无理数的一扇门.请用两种不同的方法,画出长度为的线段.注:本题作(画)图不写作(画)法,需标明相应线段长度.2016年江苏省南京市玄武区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列运算正确的是()A.a3+a3=a6 B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2【解答】解:A、a3+a3=2a3,故A选项错误;B、2(a+1)=2a+2≠2a+1,故B选项错误;C、(ab)2=a2b2,故C选项正确;D、a6÷a3=a3≠a2,故D选项错误.故选:C.2.(2分)下列各数中,是无理数的是()A.cos30°B.(﹣π)0 C.﹣ D.【解答】解:A、cos30=是无理数,B、(﹣π)0=1是有理数,C、﹣是有理数,故C错误;D、=8是有理数,故D错误;故选:A.3.(2分)计算2﹣1×8﹣|﹣5|的结果是()A.﹣21 B.﹣1 C.9 D.11【解答】解:原式=×8﹣5=4﹣5=﹣1.故选:B.4.(2分)体积为80的正方体的棱长在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【解答】解:∵,∴4<<5,故选:B.5.(2分)如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°【解答】设∠ABC的度数大小由60变为n,则AC=,由AC=AB,解得n=,故选D.6.(2分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ =S△OQC,则k的值为()A.﹣12 B.12 C.16 D.18【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=PA=OC=3.∵正方形OABC的边长为6,∴点C(0,6),点P(6,3),直线OB的解析式为y=x①,∴设直线CP的解析式为y=ax+6,∵点P(6,3)在直线CP上,∴3=6a+6,解得:a=﹣,故直线CP的解析式为y=﹣x+6②.联立①②得:,解得:,∴点Q的坐标为(4,4).将点Q(4,4)代入y=中,得:4=,解得:k=16.故选C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是x≠1.【解答】解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故答案为:x≠1.8.(2分)计算:﹣=.【解答】解:原式=﹣=.故答案为:.9.(2分)有一组数据:1,3,3,4,4,这组数据的方差为 1.2.【解答】解:这组数据的平均数是:(1+3+3+4+4)÷5=3,则这组数据的方差为:[(1﹣3)2+(3﹣3)2+(3﹣3)2+2(4﹣3)2]=1.2.故答案为:1.2.10.(2分)设x1,x2是方程x2+4x+3=0的两根,则x1+x2=﹣4.【解答】解:根据题意得x1+x2=﹣4.故答案为﹣4.11.(2分)今年清明假期全国铁路发送旅客约41000000人次,将41000000用科学记数法表示为 4.1×107.【解答】解:41 000 000=4.1×107,故答案为:4.1×107.12.(2分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是5.【解答】解:过O作OC⊥AB于C,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5,故答案为:5.13.(2分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,OH=8,则菱形ABCD的周长等于64.【解答】解:∵四边形ABCD是菱形,对角线AC、BD相交于点O,∴AC⊥BD,AB=AD=CD=BC.∵H为AD边中点,OH=8,∴AD=16,∴菱形ABCD的周长=4AD=64.故答案为:64.14.(2分)如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=54°.【解答】解:DE与B′C′相交于O点,如图,∵五边形ABCDE为正五边形,∴∠B=∠BAE=∠E==108°,∵正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),∴∠BAB′=α,∠B′=∠B=108°,∵DE⊥B′C′,∴∠B′OE=90°,∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°,∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°,即∠α=54°.故答案为54.15.(2分)如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.16.(2分)若﹣2≤a<2,则满足a(a+b)=b(a+1)+a的b的整数值有7个.【解答】解:由a(a+b)=b(a+1)+a可得b=a2﹣a=(a﹣)2﹣,∵﹣2≤a<2,∴﹣≤b≤6,则满足条件的b的整数值有0、1、2、3、4、5、6这7个,故答案为:7.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(12分)(1)解方程:3(x﹣1)=x(1﹣x);(2)化简:﹣;(3)解不等式组:,并将解集在数轴上表示.【解答】解:(1)3(x﹣1)=﹣x(x﹣1)3(x﹣1)+x(x﹣1)=0(x﹣1)(x+3)=0x1=1,x2=﹣3.(2)﹣=﹣===.(3)解不等式3x+1≤2,得x≤解不等式,得x<﹣1,将解集表示在数轴上如下:故不等式组的解集为x<﹣1.18.(7分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS);(2)解:四边形EBFD是矩形;理由如下:∵OB=OD,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.19.(7分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【解答】解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.20.(7分)元宵节那天,李老师给他的微信好友群发了一个小调查:“元宵节,你选择吃大汤圆,还是小元宵呢?”12小时内好友回复的相关数据如图:(1)回复时间为5小时~12小时的人数为10;(2)既选择大汤圆,又选择小元宵的人数为30;(3)12小时后,又有40个好友回复了,如果重新制作“好友回复时间扇形统计图”,加入“12小时后”这一项,求该项所在扇形的圆心角度数.【解答】解:(1)回复时间为5小时~12小时的人数为:200×(1﹣50%﹣30%﹣15%)=10(人);故答案为:10;(2)既选择大汤圆,又选择小元宵的人数为:(150+80)﹣200=30(人)故答案为:30;(3)根据题意得:×360°=60°.答:“12小时后”这一项所在扇形的圆心角度数为60°.21.(7分)如图,点P、M、Q在半径为1的⊙O上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:(1)sin60°=;cos75°=0.26;(2)若MH⊥x轴,垂足为H,MH交OP于点N,求MN的长.(结果精确到0.01,参考数据:≈1.414,≈1.732)【解答】解:(1)由图可知,sin60°=,cos75°==0.26,故答案为:;0.26;(2)在Rt△MHO中,sin∠MOH=,即MH=MO•sin∠MOH=1×=.∴OH=,设PA⊥x轴,垂足为A,如右图所示,∵∠NHO=∠PAO=90°,∴NH∥PA,∴△ONH∽△OPA,∴=,即=,∴NH≈0.134.∴MN=MH﹣MN=≈0.73.22.(8分)二次函数y=ax2+bx+c的图象经过点(0,3),(3,6),(﹣2,11).(1)求该二次函数的关系式;(2)证明:无论x取何值,函数值y总不等于1;(3)如何平移该函数图象使得函数值y能等于1?【解答】(1)解:由题意得:,解得:,∴该函数的函数关系式为:y=x2﹣2x+3.(2)证明:∵y=x2﹣2x+3=(x﹣1)2+2,∴当x=1时,y取最小值2,∴无论x取何值,函数值y总不等于1.(3)将该函数图象向下平移的距离大于等于1个单位长度.23.(7分)如图,已知△ABC,△DCE是两个全等的等腰三角形,底边BC、CE 在同一直线上,且AB=,BC=1,BD与AC交于点P.(1)求证:△BED∽△DEC;(2)求△DPC的周长.【解答】(1)证明:∵△ABC,△DCE是两个全等的等腰三角形,且底边BC、CE 在同一直线上,∴AB=AC=DC=DE=,BC=CE=1,∴BE=2BC=2,∵=,=,∴=.又∵∠BED=∠DEC,∴△BED∽△DEC;(2)解:∵△ABC,△DCE是两个全等的等腰三角形,且底边BC、CE在同一直线上,∴∠ACB=∠DEC,∴AC∥DE.∴==,∴PC=,PD=BD,过D作DM⊥CE于M,∵DC=DE,∴CM=ME=,在Rt△DMC中,由勾股定理得:DM==,在Rt△DMB中,由勾股定理得:BD==2,∴PD=BD=1,∴△DPC的周长=PC+PD+DC=+1+=+1.24.(8分)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②当BD=5,CD=4时,DF=2.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∴∠ABC+∠DAB=90°.∵∠DAC=∠AED,∠AED=∠ABC,∴∠DAC+∠DAB=90°,∴AC是⊙O的切线.(3分)(2)①证明:∵点E是的中点,∴=,∴∠BAE=∠DAE.∵∠DAC+∠DAB=90°,∠ABC+∠DAB=90°,∴∠DAC=∠ABC.∵∠CFA=∠ABC+∠BAE,∠CAF=∠DAC+∠DAE,∴∠CFA=∠CAF.∴CA=CF.②解:∵∠BAC=∠ADB=90°,∴∠ACD=∠BCA,∴△ADC∽△BAC.∴=.即AC2=BC×CD=(5+4)×4=36.解得AC=6.∴CA=CF=6,∴DF=CA﹣CD=2.故答案为2.25.(7分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q•)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.【解答】解:(1)当x≥6时,设y与x之间的函数关系式为y=kx+b.根据题意,当x=6时,y=9;当x=8时,y=12.所以,解得,所以,y与x之间的函数关系式为y=1.5x.(2)根据图象可得,当x=8时,y=12,又因为p=1,q=0.5,可得12=1×8+60×0.5×,解得:v=60.经检验,v=60是原方程的根.所以该车行驶的平均速度为60km/h.26.(8分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10000①10000(1+3x)平均步长(米/步)0.6②0.6(1﹣x)距离(米)60007020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.【解答】解:(1)①根据题意可得:10000(1+3x);②第二次锻炼的平均步长(米/步)为:0.6(1﹣x);故答案为:10000(1+3x);0.6(1﹣x);(2)由题意:10000(1+3x)×0.6(1﹣x)=7020解得:x1=>0.5(舍去),x2=0.1.则x=0.1,答:x的值为0.1;(3)根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000﹣23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.27.(10分)如图①,现有长度分别为a、b、1的三条线段.【加、减】图②所示为长为a+b的线段,请用尺规作出长为a﹣b的线段.【乘】在图③中,OA=a,OC=b,点B在OA上,OB=1,AD∥BC,交射线OC于点D.求证:线段OD的长为ab.【除】请用尺规作出长度为的线段.【开方】任意两个有理数的和、差、积、商(除数不为0)仍然是有理数,而开方运算则打开了通向无理数的一扇门.请用两种不同的方法,画出长度为的线段.注:本题作(画)图不写作(画)法,需标明相应线段长度.【解答】解:【加、减】如图①,线段AB长为a﹣b.【乘】证明:∵AD∥BC,∴=,即=.∴OD=ab.【除】如图②,OA=a,OC=b,点B在OC上,OB=1,BD∥AC,交OA于点D.则OD=.证明:∵BD∥AC,∴=,∴=,∴OD=.【开方】图③和图④中的MN均为.理由:如图3中,BM是直径,BM=a+b,AM=1,AN⊥BM,∵∠M=∠M,∠MAN=∠MNB=90°,∴△MAN∽△MNB,∴=,∴MN2=a+b,∴MN=.如图4中,AB是直径,AB=a+b+1,BM=1,MN⊥AB,由△AMN∽△NMB,∴=,∴MN2=a+b,∴MN=.析,能在头脑里形成生动而清晰的物理情景,找到解决问题的简捷办法,才能顺利地、准确地完成解题的全过程。
中考试题南京市玄武区二模试卷

2016年南京市玄武区中考二模数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算6×(-2)-12÷(-4)的结果是 A .10 B .0 C .-3 D .-92.小明从正面观察如图所示的两个物体,看到的是A .B .C .D .3.已知一粒米的质量约是0. 000 021千克,这个数字用科学记数法表示为 A .21×10-3 B .2.1×10-4 C .2.1×10-5D .2.1×10-64.如果把分式2xyx +y 中的x 和y 都扩大2倍,那么分式的值A .扩大为原来的4倍B .扩大为原来的2倍C .不变D .缩小为原来的12倍5.若关于x 的方程x 2-4x +k =0的一个根为2-3,则k 的值为A .1B .-1C .2D .-2 6.已知40°的圆心角所对应的扇形面积为169π cm 2,则这个扇形所在圆的直径为A .2 cmB .4 cmC .8 cmD .16 cm二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接 填写在答题卡相应位置.......上) 7.分解因式:2x 2-8= ▲ .8.如图,直线AB ,CD 相交于点E ,DF ∥AB ,若∠AEC =100°,则∠D = ▲ °. 9.若||a -3=a -3,则a = ▲ .(请写一个符合条件a 的值)正面 第2题图10.某班派6名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是 ▲ 千克.11.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °.12.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折销售,售价为120元,则这款羊毛衫的原价为 ▲ 元.13.已知圆柱的底面半径为3 cm ,母线长为5 cm ,则圆柱的侧面积是 ▲ cm 2.14.在同一直角坐标系中,点A 、B 分别是函数y =x -1与y =-3x +5的图像上的点,且点A 、B关于原点对称,则点A 的横坐标为 ▲ .15.如图,等腰Rt △ABC 的斜边BC 在x 轴上,顶点A 在反比例函数y =3x(x >0)的图像上,连接OA ,若OB =2,则点A 的坐标为 ▲ .16.如图,在四边形ABCD 中,AB ⊥BC ,AD ∥BC ,∠BCD =120°,BC =2,AD =DC .P 为四边形ABCD 边上的任意一点,当∠BPC =30°时,CP 的长为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)解方程组⎩⎪⎨⎪⎧3x +5y =8,2x -y =1.(2)解方程x 2-2x -1=0.18.(7分)先化简:⎝⎛⎭⎫x 2x -2+42-x ÷x +22x,再从2,-2,1,0,-1中选择一个合适的数进行计算.第8题图第11题图第16题图初中毕业生视力抽样调查频数分布表19.(8分)某区对即将参加中考的5 000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:视力 频数(人)频率 4.0≤x <4.3 20 0.1 4.3≤x <4.6 40 0.2 4.6≤x <4.9 70 0.35 4.9≤x <5.2 a 0.3 5.2≤x <5.5 10b(1)本次调查的样本为 ▲ ,样本容量为 ▲ ;(2)在频数分布表中,a = ▲ ,b = ▲ ,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?4.0 4.3 4.6 4.95.2 5.5 视力 (每组数据含最小值,不含最大值)20.(8分)如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D是BC的中点时,求证:四边形ADCE是矩形.第20题图21.(6分)某市在道路改造过程中,需要铺设一条管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各能铺设多少米.22.(6分)一个不透明的袋中装有2只红球和2只绿球,这些球除颜色外完全相同.(1)从袋中一次随机摸出1只球,则这只球是红球的概率为▲ ;(2)从袋中一次随机摸出2只球,求这2只球颜色不同的概率.23.(8分)如图,在△ABC中,AB=AC,点D、E分别在BC、AC上,且DC=DE.(1)求证:△ABC∽△DEC;(2)若AB=5,AE=1,DE=3,求BC的长.第23题图24.(8分)小明同学需测量一条河流的宽度(河岸两边互相平行).如图,小明同学在河岸一侧选取两个观测点A、B,在河对岸选取观测点C,测得AB=31m,∠CAB=37°,∠CBA=120°.请你根据以上数据,帮助小明计算出这条河的宽度.(结果精确到0.1,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)第24题图25.(9分)一个装有进水管和出水管的容器,根据实际需要,从某时刻开始的2分钟内只进水不出水,在随后的4分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图所示.(1)当2≤x≤6时,求y与x的表达式;(2)请将图像补充完整;(3)从进水管开始进水起,求该容器内的水量不少于7.5升所持续时间.x(分钟)15 第25题图102 626.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.连接CA、CD、CB.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.第26题图27.(10分)已知二次函数y=x2-2ax-2a-6(a为常数,a≠0).(1)求证:该二次函数的图象与x轴有两个交点;(2)设该二次函数的图象与x轴交于点A(-2,0)和点B,与y轴交于点C,线段BC的垂直平分线l与x轴交于点D.①求点D的坐标;②设点P是抛物线上的一个动点,点Q是直线l上的一个动点.以点B、D、P、Q为顶点的四边形是否可能为平行四边形?若能,直接写出点Q的坐标.2015~2016学年度第二学期九年级测试卷(二)数学参考答案①②说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 2(x +2) (x -2) 8.80 9. 4(不唯一) 10.62 11.130 12.150 13.30π 14.-1 15.(3,1) 16.2或23或4 三、解答题(本大题共11小题,共88分)17.(5分)(1)解方程组: ⎩⎪⎨⎪⎧3x +5y =8,2x -y =1.解: 由②得 y =2x —1 ③ 将③代入①得:3x +5(2x -1)=813x =13x =1 ………2分 将 x =1代入②得y =1 ………4分∴该方程组的解为:⎩⎪⎨⎪⎧x =1,y =1. ……5分(5分)(2)x 2-2x -1=0 解:∵ a =1,b =-2,c =-1∴ b 2-4ac =(-2)2-4×1×(-1)=8>0 ……2分 x =-b ±b 2-4ac 2a =2±82=1±2……4分∴ x 1=1+2,x 2=1- 2 ………5分(用配方法解方程酌情给分)18.(7分)解:原式= ⎝⎛⎭⎫x 2x -2 -4 x -2÷x +22x=x 2-4 x -2÷x +22x = ( x +2) ( x -2) x -2•2x x +2=2 x ……4分 ∵ x -2≠0、x ≠0 、x +2≠0,∴ x ≠2、x ≠0、x ≠-2, ………6分将x =1代入,得原式=2×1=2. ………7分19.(8分)(1)从中抽取的某区即将参加中考200名初中毕业生的视力情况;200 ……2分 (2)60;0.05 ……4分 补对图形 ………5分题号 1 2 3 4 5 6 答案DCCBAC(3)解:5000×0.7=3500(人) ………7分 答:估计全区初中毕业生中视力正常的学生有3500人. ………8分 20.(8分)(1)证明:∵ 将线段AB 平移至DE ∴AB =DE ,AB ∥DE . ∴∠EDC =∠B ∵ AB =AC∴∠B =∠ACB ,DE =AC ∴∠EDC =∠ACB在△ADC 与△ECD 中,⎩⎪⎨⎪⎧AC =DE ∠EDC =∠ACB DC =CD∴△ADC ≌△ECD . ……3分∴AD =EC ……4分 (2) ∵将线段AB 平移至DE∴AB =DE ,AB ∥DE . ∴四边形ABDE 为平行四边形. ∴BD =AE∵点D 是BC 的中点 ∴ BD =DC , ∴ AE =DC , ∵AD =EC∴四边形ADCE 为平行四边形. ……6分 ∵AB =AC ,点D 是BC 的中点 ∴∠ADC =90° ∴四边形ADCE 为矩形. ……8分21.(6分)解:设乙工程队每天能铺设x 米,则甲工程队每天能铺设(x +20)米 ……1分由题意,得 350 x+20=250x … …3分解得,x =50经检验 x =50是方程的解. ……5分 则x +20=70答:乙工程队每天能铺设50米,甲工程队每天能铺设70米. ……6分 22.(6分)解:(1)12……2分(2)将袋中的4个球分别记为:红1、红2、绿1、绿2,则从袋中随机抽取2个球,所有可能出现的结果有:(红1 , 红2)、(红1 ,绿1)、(红1 ,绿2)、(红2 ,绿1)、(红2 ,绿2)、(绿1 ,绿2),共有6种,它们出现的可能性相同.所有的结果中,满足“2只球颜色不同”(记为事件A )的结果只有4种,所以P(A )=46=23. ……6分(树状图或列表参照给分)EDD23.(8分)(1)证明:∵ AB =AC∴∠B =∠C∵ DC =DE∴∠DEC =∠C ∴∠DEC =∠B ∵∠C =∠C∴△ABC ∽△DEC ……4分 (2)∵ AB =AC =5,AE =1 ∴CE =AC -AE =4 ∵△ABC ∽△DEC∴53=BC 4. ∴BC =203……8分24.(8分)过点C 作CD ⊥AB ,垂足为点D在Rt △CAD 中,tan ∠CAD =CDAD∴AD =CD tan ∠CAD =CDtan37°在Rt △CBD 中,tan ∠CBD =CD BD∴B D =CD tan ∠CBD =CDtan60° ……4分∵AD -B D =AB∴CD tan37°-CD tan60°=31CD 0.75-CD3=31 ……6分 解得CD ≈41.0 ……7分 答:这条河的宽度约为41.0米. ……8分 25.(9分)(1)设y 与x 的函数表达式为y =kx +b , ……1分将点( 2,10 ),( 6,15) 代入y =kx +b 得:⎩⎪⎨⎪⎧2k +b =10,6k +b =15, 解得 ⎩⎨⎧k =54b = 52∴ 当2≤x ≤6时,y 与x 的函数表达式为y =54 x +215. ……3分(2)由题意可求出进水管每分钟的进水量为5升,出水管每分钟的出水量为3.75升, 故关闭进水管直到容器内的水放完需要4分钟.所以补充的图像为连接点( 6,15 )和点(10,0 )所得的线段. ……5分(3)由题意可求:当0≤x ≤2时,y 与x 的函数表达式为y =5 x(第24题)1542当6≤x ≤10时,y 与x 的函数表达式为y =-154x +752把y =7.5代入y =5 x , 得x 1=1.5把y =7.5代入y =-154x +752,得x 2=8 ……8分∴该容器内的水量不少于7.5升的持续时间为x 2-x 1=8-1.5=6.5(分钟) 答:该容器内的水量不少于7.5升的持续时间为6.5分钟. ……9分 26.(8分)证明:(1)连结OC.∵CF ⊥AB ,CE ⊥AD ,且CE =CF ∴∠CAE =∠CAB ∵ OC =OA∴ ∠CAB =∠OCA ∴∠CAE =∠OCA∴∠OCA +∠ECA =∠CAE +∠ECA =90° ∴ ∠OCE =90° 即OC ⊥CE ……3分 ∵OC 是⊙O 的半径,点C 为半径外端∴CE 是⊙O 的切线 ……4分 解(2)∵AD=CD∴∠DAC=∠DCA=∠CAB ∴DC//AB∵∠CA E =∠OCA ∴OC//AD∴四边形AOCD 是平行四边形 ∴OC=AD=6,AB =12 ∵∠CAE=∠CAB ∴ ⌒CD= ⌒CB ∴CD=CB =6 ∴CB=OC =OB∴△OCB 是等边三角形 ……6分 在R t △CFB 中,CF =CB 2-FB 2=33. ……7分 ∴ S 四边形ABCD =12(DC +AB )·CF =12×(6+12)×33=273. ……8分(其他解法酌情给分) 27.(10分)(1)证明:y =x 2-2ax -2a -6当a ≠0时,(-2a )2-4(-2a -6)= 4a 2+8a +24=4(a +1) 2 +20 ∵ 4(a +1) 2≥0∴ 4(a +1) 2 +20>0所以,该函数的图像与x 轴总有两个公共点. ………3分 (2)①把(2,0)代入y =x 2-2ax -2a -6 得a =1所以,y =x 2-2x -8.由此可求得B (4,0)、C (0,-8) ∵点D 在BC 的垂直平分线上(第26题)∴ DC =DB设OD =x ,则DC =DB =x +4,在Rt △ODC 中 OD 2+OC 2=DC 2即x 2+82=(x +4)2 解得x =6所以D (-6,0) ……6分 ② Q 1(223,-354)、Q 2(10,-8)、Q 3(-252,134)、Q 4(12,-134) ……10分 【附(2)②解答过程】设BC 的中点为E ,则点E (2, -4)可求直线l 的函数关系式为y =-12x -3 以点B 、D 、P 、Q 为顶点的四边形分以下两种情况讨论第一种情况:当DB 为四边形的边时当PQ ∥DB 且PQ =DB 时,四边形DPQB 为平行四边形若PQ 在x 轴下方时,设点Q (m ,-12m -3)则P (m -10,-12m -3) 因为点P 在抛物线上,所以-12m -3=(m -10)2-2(m -10)-8. 解得m 1=223, m 2=10 所以Q 1(223,-354)、Q 2(10,-8) 若PQ 在x 轴上方时,设点Q (m ,-12m -3)则P (m +10,-12m -3) 因为点P 在抛物线上,所以-12m -3=(m +10)2-2(m +10)-8. 解得m 1=-252, m 2=-6(舍去) 所以Q 3(-252,134) 第二种情况:当DB 为四边形的对角线时当DQ 4∥PB 且DQ 4=PB 时,四边形D Q 4BP 为平行四边形此时可发现DQ 4 =PB =DQ 3,即D 为Q 3Q 4的中点所以,可求出Q 4点(12,-134)初中数学试卷金戈铁骑制作。
2016南京玄武中考数学一模试题及答案

注意事项:1 •本试卷共6页•全卷满分120分•考试时间为120分钟•考生答题全部答在答题卡上,答在本试卷上无效.2 •请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用 0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3 •答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑•如需改动,请用橡皮擦干净后,再选涂其他答案•答非选择题必须用 0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4•作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分•在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡 相应位置 上)k 1函数y = X 的图象经过点Q ,若S ABPQ=产述,则k 的值为九年级数学1 •下列运算正确的是B • 2(a + 1) = 2a + 1 C• (ab)2= a 2b 2A • a 3+ a 3= a 6 2下列各数中,是无理数的是A • cos30 °B •(-n 0C• 1—33 • 计算2—1X 8 — |— 5|的结果; H . 是A • — 21B •—1 C •94体积为80的正方体的棱长在A • 3到4之间B •4到5之间 C •5到6之间D • a 6* a 3= a 2D • 64D • 11D • 6至U 7之BA 为半径的AC ,长度不变,AB 、BC 的长度也不变,则/ABC 的度数大小由60°变为90n6 •如图,正方形OABC 的边长为6, A , C 分别位于 x 轴、y 轴上,点P 在AB 上,CP 交OB 于点Q , A • —12B • 12C • 16D • 18二、填空题(本大题共 10小题,每小题2分,共20分•不需写出解答过程,请把答案直接填写在 答题卡相应位置上)1 7 .使式子1 + ----- 有意义的x 的取值范围是▲ x — 1------------9.有一组数据:1, 3, 3, 4, 4,这组数据的方差为 ▲ . 10 .设 X 1 , X 2 是方程 x 2+ 4x + 3 = 0 的两根,则 X 1 + X 2= ▲.11.今年清明假期全国铁路发送旅客约41 000 000人次,将41 000 000用科学记数法表示为 ▲12 .如图,已知O O 的半径为13,弦AB 长为24,则点O 到AB 的距离是▲ .13. 如图,菱形 ABCD 中,对角线 AC 、BD 相交于点 O , H 为AD 边中点,OH = 8,则菱形 ABCD 的周长等于 ▲.14. 如图,正五边形ABCDE 绕点A 顺时针旋转后得到正五边形 AB'CD E ',旋转角为若 DE 丄 B C ',则 / a= ▲15.如图,三个全等的小矩形沿“横一竖一横”排列在一个边长分别为5.7 , 4.5的大矩形中,图中一个小矩形的周长等于▲.(0°< a 90°,D5.7 (第 15 题)16. 若一2< a v2,则满足a(a+ b)= b(a + 1) + a的b的整数值有▲个.三、解答题(本大题共11小题,共88分•请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤)17. ( 12 分)(1)解方程:3(x — 1) = x(1 — x);(2)化简:孑&a — 9 1 —a — 3 ; 3x + 1 w 7, (3)解不等式组:2x — 1 并将解集在数轴上表示.> x , 318. (7分)如图, 口 ABCD 的对角线 AC 、BD 相交于点 O , AE = CF .(1) 求证:△ BOE ◎△ DOF ;(2) 若BD = EF ,连接DE 、BF ,判断四边形 EBFD 的形状,并说明理由19. (7分)从甲、乙、丙 3名同学中随机抽取一名同学参与问卷调查,求下列事件的概率:(1) 抽取1名,恰好是甲; (2) 抽取2名,甲在其中.20. ( 7分)元宵节那天,李老师给他的微信好友群发了一个小调查: 还是小元宵呢?” 12小时内好友回复的相关数据如下图:(第 20 题)(1) 回复时间为5小时~12小时的人数为 ▲ (2)既选择大汤圆,又选择小元宵的人数为 _▲“元宵节,你选择吃大汤圆,(第 18题)回复人数及选择情况条形统计图好友回复时间扇形统计图不超过 0.5小时(3) 12小时后,又有40个好友回复了,如果重新制作“好友回复时间扇形统计图”,加入“12小时后”这一项,求该项所在扇形的圆心角度数.21. ( 7分)如图,点P、M、Q在半径为1的O O上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:(1) sin60 = ▲; cos75°= ▲;(2) 若MH丄x轴,垂足为H , MH交0P于点N,求MN的长.(结果精确到0.01,参考数据:,2~ 1.414, 3 ~ 1.732)0, 3), (3, 6), (- 2, 11).22. (8分)二次函数y= ax2+ bx+ c的图象经过点(1)求该二次函数的关系式;(2)证明:无论x取何值,函数值y总不等于1;(3) 如何平移该函数图象使得函数值y能等于1 ?23. ( 7分)如图,已知△ ABC ,△ DCE是两个全等的等腰三角形,底边BC、CE在同一直线上,且AB = 2, BC = 1 . BD 与AC 交于点P.(1)求证:△ BDEDEC ;(第23 题)(2)求厶DPC的周长.24. ( 8分)如图,AB是O O的直径,点D、E在O O上,连接AE、ED、DA,连接BD并延长至点C,使得/ DAC = Z AED .(1)求证:AC是O O的切线;(2)若点E是BD的中点,AE与BC交于点F ,①求证:CA = CF ;②当BD = 5, CD = 4 时,DF = ▲.25. ( 7分)随着“互联网+ ”时代的到来,一种新型打车方式受到大众欢迎•该打车方式的计价规一、s则如图①所示,若车辆以平均速度v km/h行驶了s km,则打车费用为(ps+ 60q • j)兀(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y (元)与行驶里程x (km)的函数关系也可由如图②表示.(第25 题)(1) 当x> 6时,求y与x的函数关系式;(第24 题)(2) 若p= 1,q = 0.5,求该车行驶的平均速度.26. (8分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如下表•与第一次锻炼相比,王老师第二次锻炼步数增长.的百分率是其平均步长减少.的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x (0 v x v 0.5).项目第一次锻炼第二次锻炼步数(步)10000① ▲② ▲平均步长(米/步)0.6距离(米)60007020注:步数x平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.27. (10分)如图①,现有长度分别为a、b、1的三条线段.a【加、减】图②所示为长为a+ b的线段,请用尺规作出长为a-b的线段.b --------【乘】在图③中,OA = a, OC = b,点B在OA上,OB= 1, AD // BC,交射线OC于点D.求证:线段OD的长为ab.【除】请用尺规作出长度为a的线段.b【开方】任意两个有理数的和、差、积、商(除数不为0)仍然是有理数,而开方运算则打开了通向无理数的一扇门.请用两种不同的方法,画出长度为・.a+ b的线段. 注:本题作(画)图不写作(画)法,需标明相应线段长度.数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)、填空题(本大题共10小题,每小题2分,共20 分)9. 1.2 10.—412. 5 13. 64 14. 54°15. 6.8三、解答题(本大题共11小题,共88分)11. 4.1 X 107 16. 717.(本题12分)(1)(本题4分)解:3(x —1) =—X(X— 1)3(X—1) + X(X— 1) = 0(X—1) (X + 3) = 0X1 = 1 , X2=—3 .(2)(本题4分)解:2a — 1 = 2aa2 —9 a —3 (a—3)(a+ 3)1 = 2a—a + 3 = a + 3 = 1a—3 (a—3)( a+ 3) (a—3)(a+ 3) a—38分3X+ 1< 7,①(3)(本题 4 分)2X— 1 -3 >X,②解:解不等式①,得X W 2, 解不等式②,得x v—1,—3 — 2 — 1 0 1 2不等式组的解集为X V—1 .18.(本题7分)(1)证明:•••四边形ABCD为平行四边形••• BO= DO , AO = CO.•/ AE = CF ,• AO —AE = CO —CF,即EO= FO .在厶BOE与厶DOF中BO = DO/ BOE = Z DOFEO= FO•••△ BOE◎△ DOF .(2)四边形EBFD为矩形.12分•/ E0= FO , BO = DO ,•••四边形EBFD 为平行四边形. •/ BD = EF , •四边形EBFD 为矩形.7分19. (本题7分)1 解:(1)从甲、乙、丙3名同学中随机抽取1名同学参与问卷调查,恰好是甲的概率是1. 3分(2)从甲、乙、丙 3名同学中随机抽取 2名同学参与问卷调查,所有可能出现的结果有:(甲,乙)、(甲,丙)、(乙,丙),共有3种,它们出现的可能性相同.所有的结果中, 满足“甲在其中”(记为事件A )的结果只有2种,所以P (A ) = 37分 320. (本题7分)(1) 10 ; (2) 30; 40200+ 4o X 360 = 60 °答:“ 12小时后”这一项所在扇形的圆心角度数为21. (本题7分)解:(1) 23; 0.26;(2)在 Rt △ MHO 中,sin / MOH =器, 即 MH = MO • sin / MOH = 1 • OH = OM 2- MN 2=扌. 设PA 丄x 轴,垂足为A , •••/ NHO = / PAO = 90° • NH // FA ,1• NH = OH 即 Ni± =二…PA = OA ,即 0.26 = 0.97, • NH ~ 0.134.• MN = MH — MN 〜0.73.22. (本题8分)c = 3a = 1 (1)解:由题意得: 9a + 3b +c = 6,解得:b = —24a — 2b + c = 11 c = 3•该函数的函数关系式为: y = x 2— 2x + 3.(2)证明:T y = x 2— 2x + 3= (x — 1)2+ 2,•当x = 1时,y 取最小值2,•无论x 取何值,函数值 y 总不等于1 .(3)解:60 °(3)将该函数图象向下平移的距离大于等于 1个单位长度. 23.(本题7分)(1)证明: •••△ ABC ,^ DCE 是两个全等的等腰三角形,且底边BC 、CE 在同一直线上,AB = AC = DC = DE = 2, BC = CE = 1 , • B E = 2BC = 2. …DE 臣BE 2 CE - ,DE -, • DE BE …CE = DE . 又•••/ BED = Z DEC , •△ BED DEC .4 分(2)解: •••△ ABC ,^ DCE 是两个全等的等腰三角形,且底边BC 、CE 在同一直线上,• / ACB = / DEC ,• AC // DE .• P C =BC = 1 …DE = BE = 2 . • PC =¥,PD = 1,• △ DPC 的周长=PC + PD + DC = ¥ + 1+ 2 =孕 + 1 .7 分24. (本题8分)(1)证明:T AB 是O O 的直径,•••/ ADB = 90 ° •••/ ABC +Z DAB = 90°•••/ DAC = Z AED ,/ AED = Z ABC , •••/ DAC +Z DAB = 90°• AC 是O O 的切线.3分(2)①证明:•••点E 是BD 的中点,• B E = D E ,•••/ BAE = Z DAE .•••/ DAC +Z DAB = 90°, / ABC +Z DAB = 90° •••/ DAC = Z ABC .•••/ CFA =Z ABC + Z BAE ,Z CAF = Z DAC + Z DAE , •••/ CFA =Z CAF .• CA = CF . 6 分②DF = 2.8分25. (本题7分)解:(1 )当x > 6时,设y 与x 之间的函数关系式为 y = kx + b .根据题意,当x = 6时,y = 9;当x = 8时,y = 12. 所以,y 与x 之间的函数关系式为 y = 1.5x . (2)根据图象可得,当 x = 8时,y = 12,所以 9= 6k + b , 12= 8k + b . 解得k =1.5, b = 0.又因为 p = 1, q = 0.5,【乘】证明:T AD // BC ,「. OB = °C ,即—=~^ .二 OD = ab . 5 分OA OD a OD【除】如图②, OA = a , OC = b ,点B 在OC 上,OB = 1, BD // AC ,交OA 于点D . 贝U OD = a .7 分b【开方】图③和图④中的 MN 均为.a + b .10分可得 12= 1 • 8+ 60 • 0.5 •-,v解得v = 60.经检验,v = 60是原方程的根. 所以该车行驶的平均速度为60 km/h .26.(本题8分)(1)① 10000(1 + 3x):② 0.6(1 — x).(2)解: 由题意:10000(1 + 3x) X 0.6(1 — x)= 7020解得: 17X 1 =浙〉0.5 (舍去), X 2= 0.1.x = 0.1.(3)解:10000 + 10000(1 + 0.1 X 3) = 23000,500-( 24000 — 23000)= 0.5. 答:王老师这500米的平均步长为 0.5米27.(本题10分)【加、减】如图①,线段 AB 长为a — b .7分6分8分 2分 -a _____A __b T a — b ① A。
江苏省南京市数学中考二模试卷

江苏省南京市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七下·河源期中) 计算a4•a2÷a2等于()A . a3B . a2C . a4D . a52. (2分) (2019七下·普宁期末) 将0.00000918用科学记数法表示为()A . 0.918×10﹣5B . 9.18×10﹣5C . 9.18×10﹣6D . 91.8×10﹣73. (2分)下面简单几何体的主视图是()A .B .C .D .4. (2分)同时抛两枚质地均匀的硬币,有且只有一枚硬币正面朝上的概率是()A .B .C .D .5. (2分)(2016·嘉兴) 某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A . 平均数B . 中位数C . 众数D . 方差6. (2分)(2017·昆都仑模拟) 如图,△ABC中,∠B=90°,BC=2AB,则cosA=()A .B .C .D .7. (2分) (2018九上·十堰期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;③ ;④b<1.其中正确的结论个数是()A . 1个B . 2个C . 3个D . 4个8. (2分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1和S2 ,比较S1与S2的大小()A . S1>S2B . S1<S2C . S1=S2D . 不能确定二、填空题 (共8题;共8分)9. (1分)(2018·深圳模拟) 分解因式: ________.10. (1分) (2017九上·云南月考) 计算: ________.11. (1分) (2019九上·柘城月考) 已知关于x的方程x2+m2x−2=0的一个根是1,则m的值是________.12. (1分)(2019·永康模拟) 60°的圆心角所对的弧长为2πcm,则此弧所在圆的半径为________.13. (1分)a※b是新规定的一种运算法则:a※b=a2﹣b2 ,则方程(x+2)※5=0的解为________.14. (1分) (2017七上·下城期中) 已知有理数,满足:,且,则 ________.15. (1分) (2018九下·鄞州月考) 圆锥的底面半径为2,母线长为6,则圆锥的侧面积为________16. (1分) (2020七下·仪征期末) 如图,在 ABC 中,AD、CE 是中线,若四边形 BDFE 的面积是 6,则 ABC 的面积为________.三、解答题 (共10题;共77分)17. (5分)(2020·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满足a2+2a﹣15=0.18. (5分) (2019八上·长沙月考)(1)先化简,再求值:,其中 .(2)先化简,然后将、、、1、中,所有你认为合适的数作为的值,代入求值.19. (15分) (2019七下·南召期末) 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(三角形顶点是网格线的交点)和△A1B1C1 ,且△ABC与△A1B1C1 ,成中心对称.①画出△ABC和△A1B1C1的对称中心;②将△A1B1C1沿直线方向向上平移6格,得到△A2B2C2 ,画出△A2B2C2;③将△A2B2C2绕点C2顺时针方向旋转90°,得到△A3B3C3 ,画出△A3B3C3.①连接BB1、CC1 ,线段BB1与线段CC1的交点为O,点O就是所求的对称中心.②如图△A2B2C2就是所求的三角形.③如图△A3B3C3就是所求的三角形.20. (2分) (2017八上·莒南期末) 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?21. (10分) (2017八下·宜兴期中) 如图,□ABCD中,E、F为对角线BD上的两点,且DF=BE,连接AE,CF.(1)求证:∠DAE=∠BCF.(2)连接AC交于BD点O,求证:AC,EF互相平分.22. (11分) (2018九上·东台期中) 小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.(1)求小明在出发站点乘坐空调车的概率;(2)求小明到达植物园恰好花费3元公交费的概率.23. (10分)如图,把一根圆柱形的木头锯成正方体形的柱子,使截面正方形的四个顶点均在圆上.(1)正方形的对角线与圆的直径有什么关系?(2)设圆O的半径为2,求圆中阴影部分的面积之和.24. (2分)(2019·枣庄模拟) 如图,在平面直角坐标系中,直线y=- x与反比例函数y= (k#0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=- x向上平移后与反比例函数图象在个第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式。
初中数学 南京市玄武区中考模拟二模数学考试卷及答案(word版)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:2的相反数是A.-2B.-C.D .2试题2:等于A.-3B.3C.±3D.试题3:南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为A.10.2×105 B.1.02×105 C.1.02×106 D.1.02×107试题4:如图,∠1=50°,如果AB∥DE,那么∠D=A.40°B.50°C. 130°D.140°试题5:不等式组的解集在数轴上表示正确的是A.B.C.D.试题6:如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2-ax-a的图象,则下列关于x、y轴的叙述,正确的是A.l1为x轴,l 3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l 3为y轴D.l2为x轴,l4为y轴试题7:使式子有意义的x的取值范围是.试题8:一组数据:1,4,2,5,3的中位数是.试题9:分解因式:2x2-4x+2=.试题10:计算:sin45°+-=.试题11:小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程.试题12:已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.试题13:如图,ON⊥OM,等腰直角三角形ACB中,∠ACB=90°,边AC在OM上,将△ACB绕点A逆时针旋转75°,使得点B的对应点E恰好落在ON上,则=.试题14:如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使3CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为.试题15:如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D=°.试题16:函数y1=k1x+b的图象与函数y2=的图象交于点A(2,1)、B(n,2),则不等式-<-k1x+b的解集为.试题17:解方程组:试题18:先化简,再求值:÷-,其中a=1.试题19:如图,矩形花圃ABCD一面靠墙,另外三面用总长度是24m的篱笆围成.当矩形花圃的面积是40m2时,求BC的长.试题20:在一个不透明的口袋里装有四个球,这四个球上分别标记数字-3、-1、0、2,除数字不同外,这四个球没有任何区别.(1)从中任取一球,求该球上标记的数字为正数的概率;(2)从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.试题21:为了解南京市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:阅读时间0≤x<30 30≤x<60 60≤x<90 x≥90 合计x(min)频数450 400 ②50 ④频率①0.4 0.1 ③ 1 (1)补全表格中①~④的数据;(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有800万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?试题22:如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.试题23:游泳池完成换水需要经过“排水—清洗—注水”三个过程.如图,图中折线表示的是游泳池在换水过程中池中的水量y(m3)与时间t(min)之间的关系.(1)求注水过程中y与t的函数关系式;(2)求清洗所用的时间.试题24:在海上某固定观测点O处的北偏西60°方向,且距离O处40海里的A处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O处的北偏东45°方向的B处.在该货轮从A处到B处的航行过程中.(1)求货轮离观测点O处的最短距离;(2)求货轮的航速.试题25:如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:∠E=∠BCO;(2)若⊙O的半径为3,cos A=,求EF的长.试题26:已知二次函数y=x2—2x+c(c为常数).(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c的取值范围;(2)已知该二次函数的图象与x轴交于点A(-1,0)和点B,与y轴交于点C,顶点为D,若存在点P(m,0)(m>3)使得△CDP与△BDP面积相等,求m的值.试题27:如图,在△ABC中,∠A=90°,AB=AC=12cm,半径为4cm的⊙O与AB、AC两边都相切,与BC交于点D、E.点P从点A出发,沿着边AB向终点B运动,点Q从点B出发,沿着边BC向终点C运动,点R从点C出发,沿着边CA向终点A运动.已知点P、Q、R同时出发,运动速度分别是1cm/s、x cm/s、1.5cm/s,运动时间为t s.(1)求证:BD=CE;(2)若x=3,当△PBQ∽△QCR时,求t的值;(3)设△PBQ关于直线PQ对称的图形是△PB'Q,求当t和x分别为何值时,点B'与圆心O恰好重合.试题1答案:A试题2答案:B试题3答案:C试题4答案:C试题5答案:D试题6答案:A试题7答案:x≥-1;试题8答案:3试题9答案:2(x-1)2试题10答案:-2试题11答案:3x+2(x+15)=155 试题12答案:24试题13答案:试题14答案:8试题15答案:96试题16答案:x>0,-2<x<-1试题17答案:解:①+②,得 3x=3,解得x=1.将x=1代入①,得 1+y=-3,解得y=-4.所以原方程组的解为6分试题18答案:解:÷-=÷-=·-=-=-=-.当a=1时,原式=-1.7分试题19答案:解:设BC的长度为x m.由题意得x·=40.解得x1=4,x2=20.答:BC长为4m或20m.7分试题20答案:解:(1)正数为2,该球上标记的数字为正数的概率为. 3分(2)点(x,y)所有可能出现的结果有:(-3,-1)、(-3,0)、(-3,2)、(-1,0)、(-1,2)、(0,2)、(-1,-3)、(0,-3)、(2,-3)、(0,-1)、(2,-1)、(2,0).共有12种,它们出现的可能性相同.所有的结果中,满足“点(x,y)位于第二象限”(记为事件A)的结果有2种,所以P(A)=.8分试题21答案:解:(1)①0.45;②100;③0.05;④1000;4分(2)800×(0.1+0.05)=120(万人)答:我市能称为“阅读爱好者”的市民约有120万人. 7分试题22答案:解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∵∠DAE=∠DCG,∠AED=∠CGD,DE=DG,∴△AED≌△CGD,∴AE=CG.4分(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,AB=CD,∴∠BAE=∠DCG.又∵AE=CG,∴△AEB≌△CGD,∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴ BE∥DF.9分解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴ BE∥DF.9分试题23答案:解:(1)设注水过程中y与t之间的函数关系式为y=kt+b.根据题意,当t=95时,y=0;当t=195时,y=1000.所以解得所以,y与t之间的函数关系式为y=10t-950. 4分(2)由图象可知,排水速度为=20m3/min.则排水需要的时间为=75min.清洗所用的时间为95-75=20min.8分试题24答案:解:(1)如图,作OH⊥AB,垂足为H.在Rt△AOH中,∵cos∠AOH=.∴OH=cos60°·AO=20.即货轮离观测点O处的最短距离为20海里. 4分(2)在Rt△AOH中,∵sin∠AOH=,∴AH=sin60°·AO=20,在Rt△BOH中,∵∠B=∠HOB=45°,∴HB=HO=20.∴AB=20+20,∴货轮的航速为=10+10(海里/小时). 8分试题25答案:(1)证明:连接BO.∵OE∥BD,∴∠E=∠ABD.∵AE与⊙O相切于点B,∴OB⊥AE.∴∠ABD+∠OBD=90°.∵CD是⊙O的直径,∴∠CBO+∠OBD=90°.∴∠ABD=∠CBO.∵OB=OC,∴∠CBO=∠BCO.∴∠E=∠BCO.4分(2)解:在Rt△ABO中,cos A==,可设AB=4k,AO=5k,BO==3k.∵⊙O的半径为3,∴3k=3,∴k=1.∴AB=4,AO=5.∴AD=AO-OD=5-3=2.∵BD∥EO,∴==,∴AE=10.∴EB=AE-AB=6.在Rt△EBO中,EO==3.∵OE∥BD,∴∠EFB=∠DBF=90°.∵∠FEB=∠BEO,∠EFB=∠EBO,∴△EFB∽△EBO.∴=,即=.∴EF=.9分试题26答案:解:(1)由题意可得,该二次函数与x轴有两个不同的交点,也就是当y=0时,方程x2—2x+c=0有两个不相等的实数根,即b2-4ac>0,所以4-4c>0,c<1.又因为该二次函数与两个坐标轴有三个不同的交点,所以c≠0.综上,若该二次函数的图象与两坐标轴有三个不同的交点,c的取值范围为c<1且c≠0.4分(2)因为点A(-1,0)在该二次函数图象上,可得0=(-1)2-2×(-1)+c,c=-3.所以该二次函数的关系式为y=x2—2x-3,可得C(0,-3).由x=-=1,可得B(3,0),D(1,-4).若点P(m,0)(m>3)使得△CDP与△BDP面积相等,可得点C、B到DP的距离相等,此时,CB∥DP.设过点C、B的直线的函数关系式为y=kx+b,即解得设过点D、P的直线的函数关系式为y=x+n,即-4=1+n.解得n=-5.即y=x-5,当y=0时,x=5,即m=5.9分试题27答案:(1)证明:连接AO并延长交BC于点H.连接OE、OD.∵⊙O与AB、AC两边都相切,∴点O到AB、AC两边的距离相等.∴AH是∠CAB的平分线.∵AB=AC,∴AH⊥BC,AH平分BC.∵OE=OD,OH⊥ED,∴OH平分ED.∵CE=CH-EH,BD=BH-DH,且CH=BH,EH=DH,∴ BD=CE.3分(2)解:在Rt△ABC中,BC==12.∵△PBQ∽△QCR,∴=,即=.解得t=. 6分(3)解:设⊙O与AB相切于点M,连接OM、OB、OP、OQ,H参考(1)中作法.∵点O与点B关于PQ对称,∴PQ垂直平分BO.∴OP=BP,OQ=BQ.∵⊙O与AB相切于点M,∴OM⊥AB.设BP=a,在Rt△OMP中,(12-4-a)2+42=a2,解得a=5;设BQ=b,在Rt△OHB中,(6-b)2+(2)2=b2,解得b=.t==7s.x==cm.。
南京市玄武区中考二模数学试卷及答案

6. 如图,在正八边形 ABCDEFGH 中,若四边形 ADEH 的面积等于 20,则阴影部分的面
积等于( )
A.10 2
B.20
C.18
D. 20 2
35% B
A C
D 20% 15%
(第 3 题)
A
P
O
C
B (第 5 题)
A B
H G
C
F
DE (第 6 题)
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.)
∴四边形 ABCD 是平行四边形
∴ OA = 1 AC , OB = 1 BD
2
2
∵ ∠OAB = ∠OBA
∴ OA = OB
∴ AC = BD
∴平行四边形 ABCD 是矩形.
20. (8 分)
⑴甲:6 乙:6
⑵甲: (5 − 6)2 + (6 − 6)2 + (7 − 6)2 + (6 − 6)2 + (6 − 6)2 = 2
11
答案
±3 ;3
x≤ 2
3
4( x − y)2
45
题号
12
13
14
15
16
答案
−3
−8 < x < −2
51
3
3
2
9
三、解答题(本大题共 11 小题,共 88 分.) 17. (10 分)
⑴解: 2x = x − 3 + 1 x = −2 当 x = −2 时, x − 3 =−5 ≠ 0 ∴ x = −2 是原分式方程的解
上.参考数据:sin75°≈0.97,cos75°≈0.26, 2 ≈1.41,结果精确到 0.1)
江苏省南京市玄武区2016年中考数学二模试卷含答案解析

2016年江苏省南京市玄武区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算6×(﹣2)﹣12÷(﹣4)的结果是()A.10 B.0 C.﹣3 D.﹣92.小明从正面观察如图所示的物体,看到的是()A.B.C.D.3.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣64.如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大为原来的4倍 B.扩大为原来的2倍C.不变 D.缩小为原来的倍5.若关于x的方程x2﹣4x+k=0的一个根为2﹣,则k的值为()A.1 B.﹣1 C.2 D.﹣26.已知40°的圆心角所对应的扇形面积为πcm2,则这条弧所在圆的直径为()A.2cm B.4cm C.8cm D.16cm二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.分解因式:2x2﹣8= .8.如图,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于.9.若|a﹣3|=a﹣3,则a= .(请写一个符合条件a的值)10.某班派6名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是千克.11.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD= .12.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为.13.已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是cm2.14.在同一直角坐标系中,点A、B分别是函数y=x﹣1与y=﹣3x+5的图象上的点,且点A、B关于原点对称,则点A的横坐标为.15.如图,等腰Rt△ABC的斜边BC在x轴上,顶点A在反比例函数的图象上,连接OA,若OB=2,则点A的坐标为.16.如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程组(2)解方程x2﹣2x﹣1=0.18.先化简:( +)÷,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.19.某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为,样本容量为;(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?20.如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D是BC的中点时,求证:四边形ADCE是矩形.21.某市在道路改造过程中,需要铺设一条管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲工程队每天能铺设多少米?22.一个不透明的袋中装有2只红球和2只绿球,这些球除颜色外完全相同.(1)从袋中一次随机摸出1只球,则这只球是红球的概率为;(2)从袋中一次随机摸出2只球,求这2只球颜色不同的概率.23.如图,在△ABC中,AB=AC,点D、E分别在BC、AC上,且DC=DE.(1)求证:△ABC∽△DEC;(2)若AB=5,AE=1,DE=3,求BC的长.24.小明同学需测量一条河流的宽度(河岸两边互相平行).如图,小明同学在河岸一侧选取两个观测点A、B,在河对岸选取观测点C,测得AB=31m,∠CAB=37°,∠CBA=120°.请你根据以上数据,帮助小明计算出这条河的宽度.(结果精确到0.1,参考数据:si n37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)25.一个装有进水管和出水管的容器,根据实际需要,从某时刻开始的2分钟内只进水不出水,在随后的4分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图所示.(1)当2≤x≤6时,求y与x的表达式;(2)请将图象补充完整;(3)从进水管开始进水起,求该容器内的水量不少于7.5升所持续时间.26.如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且 CE=CF.连接CA、CD、CB.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.27.已知二次函数y=x2﹣2ax﹣2a﹣6(a为常数,a≠0).(1)求证:该二次函数的图象与x轴有两个交点;(2)设该二次函数的图象与x轴交于点A(﹣2,0)和点B,与y轴交于点C,线段BC的垂直平分线l与x 轴交于点D.①求点D的坐标;②设点P是抛物线上的一个动点,点Q是直线l上的一个动点.以点B、D、P、Q为顶点的四边形是否可能为平行四边形?若能,直接写出点Q的坐标.2016年江苏省南京市玄武区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算6×(﹣2)﹣12÷(﹣4)的结果是()A.10 B.0 C.﹣3 D.﹣9【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=﹣12+3=﹣9,故选D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.小明从正面观察如图所示的物体,看到的是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选C.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.3.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 021=2.1×10﹣5.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大为原来的4倍 B.扩大为原来的2倍C.不变 D.缩小为原来的倍【考点】分式的基本性质.【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式扩大为原来的2倍.故选B.【点评】本题主要考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5.若关于x的方程x2﹣4x+k=0的一个根为2﹣,则k的值为()A.1 B.﹣1 C.2 D.﹣2【考点】一元二次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把已知方程的根代入方程计算即可求出k的值.【解答】解:把x=2﹣代入方程得:7﹣4﹣8+4+k=0,解得:k=1.故选A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.已知40°的圆心角所对应的扇形面积为πcm2,则这条弧所在圆的直径为()A.2cm B.4cm C.8cm D.16cm【考点】扇形面积的计算.【分析】利用扇形的面积的公式=进行计算可得.【解答】解:∵扇形的面积的公式=,n=40°,扇形面积为πcm2,∴π=,解得;r=±4(负数舍去),∴这条弧所在圆的直径为8cm.故选;C.【点评】本题主要考查了扇形面积公式的应用,准确记忆扇形面积公式是解题关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解﹣提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.8.如图,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于80°.【考点】平行线的性质.【专题】计算题.【分析】首先由邻补角的定义求得∠CEB的度数,进而根据平行线的同位角相等得到∠D的度数.【解答】解:∵∠CEA=100°,∴∠CEB=180°﹣∠CEA=80°;又∵AB∥DF,∴∠CEB=∠D=80°;故答案为:80.【点评】此题主要考查了平行线的性质:两直线平行,同位角相等.9.若|a﹣3|=a﹣3,则a= 4 .(请写一个符合条件a的值)【考点】绝对值.【分析】当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a;当a 是零时,a的绝对值是零.依此即可求解.【解答】解:∵|a﹣3|=a﹣3,∴a﹣3≥0,解得a≥3,故a可以取4.故答案为:4(不唯一).【点评】考查了绝对值,绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.10.某班派6名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是62 千克.【考点】中位数.【分析】首先将数据按从小到大排列,进而找出最中间求出答案.【解答】解:数据从小到大排列为:57,59,61,63,66,67,则最中间为:61和63,故这组数据的中位数是: =62.故答案为:62.【点评】此题主要考查了中位数,正确把握中位数的定义是解题关键.11.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD= 130°.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的对角互补求得∠A的度数,再根据圆周角定理求解即可.【解答】解:∵∠BOD=100°∴∠A=50°∠BCD=180°﹣∠A=130°故答案为:130°.【点评】此题主要考查了圆周角定理和圆内接四边形,关键是掌握圆内接四边形的对角互补.12.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为150元.【考点】一元一次方程的应用.【专题】销售问题;方程思想.【分析】此题的相等关系为,原价的80%等于销售价,依次列方程求解.【解答】解:设这款羊毛衫的原销售价为x元,依题意得:80%x=120,解得:x=150,故答案为:150元.【点评】此题考查的是一元一次方程的应用,关键是确定相等关系列方程求解.13.已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是30πcm2.【考点】圆柱的计算.【分析】圆柱侧面积=底面周长×高.【解答】解:π×2×3×5=30πcm2,故答案为30π.【点评】本题考查了圆柱的计算,掌握圆柱侧面积的计算方法是解题的关键.14.在同一直角坐标系中,点A、B分别是函数y=x﹣1与y=﹣3x+5的图象上的点,且点A、B关于原点对称,则点A的横坐标为﹣1 .【考点】关于原点对称的点的坐标;一次函数图象上点的坐标特征.【分析】设点A的坐标为(a,a﹣1),根据关于原点对称的点的横坐标与纵坐标都互为相反数表示出点B 的坐标,然后代入y=﹣3x+5计算即可得解.【解答】解:∵点A在y=x﹣1的图象上,∴设点A的坐标为(a,a﹣1),∵点A、B关于原点对称,∴点B(﹣a,1﹣a),∴﹣3×(﹣a)+5=1﹣a,解得a=﹣1,∴点A的横坐标为﹣1,故答案为:﹣1.【点评】本题考查了一次函数图象上点的坐标特征,关于原点对称的点的横坐标与纵坐标都互为相反数,用点A的坐标表示出点B的坐标是解题的关键.15.如图,等腰Rt△ABC的斜边BC在x轴上,顶点A在反比例函数的图象上,连接OA,若OB=2,则点A的坐标为(3,1).【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】过点A作AD⊥x轴于点D,设点A的坐标为(m,)(m>0).由等腰直角三角形的性质可得出BD=AD,再根据线段间的关系可得出OD=OB+BD,从而得出关于m的分式方程,解方程求出m值,代入A点的坐标,此题得解.【解答】解:过点A作AD⊥x轴于点D,如图所示.设点A的坐标为(m,)(m>0).∵△ABC为等腰直角三角形,∴BD=AD=,∴OD=OB+BD=2+=m,解得:m=3,或m=﹣1(舍去),经验证m是方程2+=m的解.∴点A的坐标为(3,1).故答案为:(3,1).【点评】本题考查了等腰直角三角形的性质、反比例函数图象上点的坐标特征以及解分式方程,解题的关键是找出2+=m.本题属于基础题,难度不大,解决该题型题目时,根据线段间的关系找出关于m的分式方程是关键.16.如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为2或2或4 .【考点】勾股定理;含30度角的直角三角形.【专题】分类讨论.【分析】如图,连接AC.首先证明△ACD是等边三角形,分三种情形讨论即可解决问题.【解答】解:如图,连接AC.∵BC∥AD,∠DCB=120°,∴∠D+∠DCB=180°,∴∠D=60°,∵DC=DA,∴△ACD是等边三角形,∴∠DAC=60°,∵AB⊥BC,∴∠CBA=∠BAD=90°,∴∠BAC=30°,∴当P3与A重合时,∠BP3C=30°,此时CP3=4,作CP2⊥AD于P2,则四边形BCP2A是矩形,易知∠CP2B=30°,此时CP2=2,当CB=CP1时,∠CP1B=∠CBP1=30°,此时CP1=2,综上所述,CP的长为2或2或4.故答案为2或2或4.【点评】本题考查等边三角形的判定、矩形的判定、30度的直角三角形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程组(2)解方程x2﹣2x﹣1=0.【考点】解二元一次方程组;解一元二次方程﹣公式法.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程利用公式法求出解即可.【解答】解:(1),由②得:y=2x﹣1③,将③代入①得:3x+5(2x﹣1)=8,整理得:13x=13,解得:x=1,将x=1代入③得y=1,则该方程组的解为;(2)∵a=1,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,x===1±,∴x1=1+,x2=1﹣.【点评】此题考查了解二元一次方程组,以及解一元二次方程﹣公式法,熟练掌握运算法则是解本题的关键.18.先化简:( +)÷,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的x的值代入进行计算即可.【解答】解:原式=(﹣)÷=÷=•=2x,∵x﹣2≠0、x≠0、x+2≠0,∴x≠2、x≠0、x≠﹣2,将x=1代入,得原式=2×1=2.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意x的取值要保证分式有意义.19.某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为200名初中毕业生的视力情况,样本容量为200 ;(2)在频数分布表中,a= 60 ,b= 0.05 ,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题.【分析】(1)用第1组的频数除以它所占的百分比即可得到样本容量,然后根据样本的定义写出样本;(2)用样本容量乘以0.3得到a的值,用10除以10得到b的值;(3)用样本值后面三组的频率和乘以5000可估计全区初中毕业生中视力正常的学生数.【解答】解:(1)20÷0.1=200(人),所以本次调查的样本为200名初中毕业生的视力情况,样本容量为200;(2)a=200×0.3=60,b=10÷200=0.05;故答案为 200名初中毕业生的视力情况,200;60,0.05;(2)5000×(0.35+0.3+0.05)=3500(人),估计全区初中毕业生中视力正常的学生有3500人.【点评】本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.也考查了用样本估计总体.20.如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D是BC的中点时,求证:四边形ADCE是矩形.【考点】矩形的判定;等腰三角形的性质;平移的性质.【分析】(1)利用SAS证得△ACD≌△ECD后即可证得AD=EC;(2)当点D是BC中点时,四边形ADCE是矩形;首先证得四边形ADCE是平行四边形,然后证得AD⊥BC即可利用有一个角是直角的平行四边形是矩形判定矩形.【解答】(1)证明:∵将线段AB平移至DE,∴AB=DE,AB∥DE.∴∠EDC=∠B∵AB=AC∴∠B=∠ACB,DE=AC∴∠EDC=∠ACB,在△ADC与△ECD中,∴△ADC≌△ECD(SAS),∴AD=EC;(2)∵将线段AB平移至DE,∴AB=DE,AB∥DE.∴四边形ABDE为平行四边形.∴BD=AE,∵点D是BC的中点.∴BD=DC,∴AE=DC,∵AD=EC,∴四边形ADCE为平行四边形.∵AB=AC,点D是BC的中点∴∠ADC=90°,∴四边形ADCE为矩形.【点评】本题考查了矩形的判定,平行四边形的性质及全等三角形的判定与性质,能够正确的结合图形理解题意是解答本题的关键,难度不大.21.某市在道路改造过程中,需要铺设一条管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲工程队每天能铺设多少米?【考点】分式方程的应用.【分析】直接利用甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,即可得出等式求出答案.【解答】解:设甲工程队每天能铺设x米,则乙工程队每天能铺设(x﹣20)米.根据题意得:解之得x=70.经检验,x=70是原分式方程的解,且符合题意,答:甲工程队每天分别能铺设70米.【点评】本题主要考查的是分式方程的应用,根据题意找出正确等量关系是解题的关键.22.一个不透明的袋中装有2只红球和2只绿球,这些球除颜色外完全相同.(1)从袋中一次随机摸出1只球,则这只球是红球的概率为;(2)从袋中一次随机摸出2只球,求这2只球颜色不同的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出这2只球颜色不同的结果数,然后根据概率公式计算.【解答】解:(1)从袋中一次随机摸出1只球,则这只球是红球的概率==,故答案为;(2)画树状图为:共有12种等可能的结果数,其中这2只球颜色不同的结果数为8,所以这2只球颜色不同的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,在△ABC中,AB=AC,点D、E分别在BC、AC上,且DC=DE.(1)求证:△ABC∽△DEC;(2)若AB=5,AE=1,DE=3,求BC的长.【考点】相似三角形的判定与性质.【分析】(1)与等腰三角形的性质得出∠B=∠C,∠DEC=∠C,得出∠DEC=∠B,即可得出△ABC∽△DEC;(2)求出CE,由相似三角形的对应边成比例得出,即可求出BC的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵DC=DE,∴∠DEC=∠C,∴∠DEC=∠B,∵∠C=∠C,∴△ABC∽△DEC;(2)解:∵AB=AC=5,AE=1,∴CE=AC﹣AE=4,∵△ABC∽△DEC,∴,即=.解得:BC=.【点评】本题考查了相似三角形的判定与性质、等腰三角形的性质;熟记等腰三角形的性质,证明三角形相似是解决问题的关键.24.小明同学需测量一条河流的宽度(河岸两边互相平行).如图,小明同学在河岸一侧选取两个观测点A、B,在河对岸选取观测点C,测得AB=31m,∠CAB=37°,∠CBA=120°.请你根据以上数据,帮助小明计算出这条河的宽度.(结果精确到0.1,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)【考点】解直角三角形的应用.【专题】应用题.【分析】要求CD的长,需要构造直角三角形,作CD⊥AB于点D,然后根据题目中的条件可以求得CD的长,本题得以解决.【解答】解:过点C作CD⊥AB,垂足为点D,如右图所示,在Rt△CAD中,tan∠CAD=,∴AD==,在Rt△CBD中,tan∠CBD=,∠CBA=120°,∴∠CBD=60°,∴BD==,∵AD﹣BD=AB,∴﹣=31,﹣=31,解得,CD≈41.0,即这条河的宽度约为41.0米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.25.一个装有进水管和出水管的容器,根据实际需要,从某时刻开始的2分钟内只进水不出水,在随后的4分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图所示.(1)当2≤x≤6时,求y与x的表达式;(2)请将图象补充完整;(3)从进水管开始进水起,求该容器内的水量不少于7.5升所持续时间.【考点】一次函数的应用.【分析】(1)利用待定系数法即可解决.(2)求出关闭进水管直到容器内的水放完需要的时间,画出图象即可解决问题.(3)根据0≤x≤2时,y与x的函数表达式为y=5 x,以及6≤x≤10时,y与x的函数表达式为y=﹣x+,分别求出y=7.5时的时间,求出两个时间的差即可解决问题.【解答】解:(1)设y与x的函数表达式为y=kx+b将点( 2,10 ),( 6,15)代入y=kx+b得:解得∴当2≤x≤6时,y与x的函数表达式为y= x+.(2)由题意可求出进水管每分钟的进水量为5升,出水管每分钟的出水量为3.75升,故关闭进水管直到容器内的水放完需要4分钟.所以补充的图象为连接点( 6,15 )和点(10,0 )所得的线段.图象如图所示,(3)由题意可求:当0≤x≤2时,y与x的函数表达式为y=5 x当6≤x≤10时,y与x的函数表达式为y=﹣x+把y=7.5代入y=5 x,得x1=1.5把y=7.5代入y=﹣x+,得x2=8,∴该容器内的水量不少于7.5升的持续时间为x2﹣x1=8﹣1.5=6.5(分钟)答:该容器内的水量不少于7.5升的持续时间为6.5分钟.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是学会构建一次函数,利用一次函数解决实际问题,属于中考常考题型.26.如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且 CE=CF.连接CA、CD、CB.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.【考点】切线的判定;垂径定理.【分析】(1)连接OC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【解答】(1)证明:如图,连结OC.∵CF⊥AB,CE⊥AD,且CE=CF,∴∠CAE=∠CAB,∵OC=OA,∴∠CAB=∠OCA,∴∠CAE=∠OCA,∴OC∥AE,∴∠AEC+∠OCE=90°,∴∠OCE=90°,即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线;(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=6,AB=12,∵∠CAE=∠CAB,∴CD=CB=6,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF==3,∴S四边形ABCD=(DC+AB)•CF=×(6+12)×3=27.【点评】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.27.已知二次函数y=x2﹣2ax﹣2a﹣6(a为常数,a≠0).(1)求证:该二次函数的图象与x轴有两个交点;(2)设该二次函数的图象与x轴交于点A(﹣2,0)和点B,与y轴交于点C,线段BC的垂直平分线l与x 轴交于点D.①求点D的坐标;②设点P是抛物线上的一个动点,点Q是直线l上的一个动点.以点B、D、P、Q为顶点的四边形是否可能为平行四边形?若能,直接写出点Q的坐标.【考点】二次函数综合题.【分析】(1)根据根的判别式,可得答案;(2)根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得B、C坐标,①根据线段垂直平分线的性质,可得DC=DB,根据勾股定理,可得答案;②根据平行四边形的对边相等,可得关于m的方程,解方程,可得答案.【解答】(1)证明:y=x2﹣2ax﹣2a﹣6当a≠0时,(﹣2a)2﹣4(﹣2a﹣6)=4a2+8a+24=4(a+1)2+20∵4(a+1)2≥0∴4(a+1)2+20>0所以,该函数的图象与x轴总有两个公共点.(2)①如图1,把(2,0)代入y=x2﹣2ax﹣2a﹣6得a=1所以,y=x2﹣2x﹣8.当x=0时,y=﹣8,即C(0,﹣8),当y时,x2﹣2x﹣8=0,解得x=2(不符合题意,舍),x=4,即B(4,0),B(4,0)、C(0,﹣8)∵点D在BC的垂直平分线上∴DC=DB设OD=x,则DC=DB=x+4,在Rt△ODC中 OD2+OC2=DC2,即x2+82=(x+4)2,解得x=6所以D(﹣6,0)②Q1(,﹣)、Q2(10,﹣8)、Q3(﹣,)、Q4(,﹣).设BC的中点为E,则点E (2,﹣4),直线l的函数关系式为y=﹣x﹣3,以点B、D、P、Q为顶点的四边形分以下两种情况讨论第一种情况:当DB为四边形的边时,如图2,当PQ∥DB且PQ=DB时,四边形DPQB为平行四边形,若PQ在x轴下方时,设点Q(m,﹣ m﹣3)则P(m﹣10,﹣ m﹣3),因为点P在抛物线上,所以﹣m﹣3=(m﹣10)2﹣2(m﹣10)﹣8.解得m1=,m2=10所以Q1(,﹣)、Q2(10,﹣8)若PQ在x轴上方时,设点Q(m,﹣ m﹣3)则P(m+10,﹣ m﹣3)因为点P在抛物线上,所以﹣m﹣3=(m+10)2﹣2(m+10)﹣8.解得m1=﹣,m2=﹣6(舍去)所以Q3(﹣,)第二种情况:当DB为四边形的对角线时当DQ4∥PB且DQ4=PB时,四边形D Q4BP为平行四边形此时可发现DQ4=PB=DQ3,即D为Q3Q4的中点所以,可求出Q4点(,﹣).【点评】本题考查了二次函数综合题,利用根的判别式是解题关键;利用勾股定理得出关于m的方程是解题关键,利用平行四边形的对边相等得出关于m的方程是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设BC的中点为E,则点E(2,-4)
可求直线l的函数关系式为y=- x-3
以点B、D、P、Q为顶点的四边形分以下两种情况讨论
第一种情况:当DB为四边形的边时
当PQ∥DB且PQ=DB时,四边形DPQB为平行四边形
若PQ在x轴下方时,设点Q(m,- m-3)则P(m-10,- m-3)
20.(8分)如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.
(1)求证:AD=EC;
(2)当点D是BC的中点时,求证:四边形ADCE是矩形.
21.(6分)某市在道路改造过程中,需要铺设一条管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各能铺设多少米.
12.150 13.30π14.-1 15.(3,1)16.2或2 或4
三、解答题(本大题共11小题,共88分)
17.(5分)(1)解方程组:
解:由得y=2x—1
将代入得:3x+5(2x-1)=8
13x=13
x=1………2分
将x=1代入得y=1………4分
∴该方程组的解为: ……5分
(5分)(2) 2-2 -1=0
11.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=°.
12.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折销售,售价为120元,则这款羊毛衫的原价为元.
13.已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是cm2.
14.在同一直角坐标系中,点A、B分别是函数y=x-1与y=-3x+5的图像上的点,且点A、B关于原点对称,则点A的横坐标为.
(其他解法酌情给分)
27.(10分)
(1)证明:y=x2-2ax-2a-6
当a0时,(2a)24(-2a-6)=4a2+8a+24=4(a+1)2+20
∵4(a+1)2≥0
∴4(a+1)2+20>0
所以,该函数的图像与x轴总有两个公共点.………3分
(2)①把(2,0)代入y=x2-2ax-2a-6得a=1
2015~2016学年度第二学期九年级测试卷(二)
数学参考答案
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
D
C
C
B
A
C
二、填空题(本大题共10小题,每小题2分,共20分)
7.2(x+2)(x-2) 8.80 9.4(不唯一)10.62 11.130
∴BD=AE
∵点D是BC的中点
∴BD=DC,
∴AE=DC,
∵AD=EC
∴四边形ADCE为平行四边形.……6分
∵AB=AC,点D是BC的中点
∴∠ADC=90°
∴四边形ADCE为矩形.……8分
21.(6分)
解:设乙工程队每天能铺设x米,则甲工程队每天能铺设(x+20)米……1分
由题意,得 = … …3分
所以,y=x2-2x-8.由此可求得B(4,0)、C(0,8)
∵点D在BC的垂直平分线上
∴DC=DB
设OD=x,则DC=DB=x+4,
在Rt△ODC中OD2+OC2=DC2
即x2+82=(x+4)2解得x=6
所以D(-6,0)……6分
②Q1( ,- )、Q2(10,-8)、Q3(- , )、Q4( ,- )……10分
22.(6分)一个不透明的袋中装有2只红球和2只绿球,这些球除颜色外完全相同.
(1)从袋中一次随机摸出1只球,则这只球是红球的概率为;
(2)从袋中一次随机摸出2只球,求这2只球颜色不同的概率.
23.(8分)如图,在△ABC中,AB=AC,点D、E分别在BC、AC上,且DC=DE.
(1)求证:△ABC∽△DEC;
27.(10分)已知二次函数y=x2-2ax-2a-6(a为常数,a≠0).
(1)求证:该二次函数的图象与x轴有两个交点;
(2)设该二次函数的图象与x轴交于点A(-2,0)和点B,与y轴交于点C,线段BC的垂直平分线l与x轴交于点D.
①求点D的坐标;
②设点P是抛物线上的一个动点,点Q是直线l上的一个动点.以点B、D、P、Q为顶点的四边形是否可能为平行四边形?若能,直接写出点Q的坐标.
(2)若AB=5,AE=1,DE=3,求BC的长.
24.(8分)小明同学需测量一条河流的宽度(河岸两边互相平行).如图,小明同学在河岸一侧选取两个观测点A、B,在河对岸选取观测点C,测得AB=31m,∠CAB=37°,∠CBA=120°.请你根据以上数据,帮助小明计算出这条河的宽度.
(结果精确到0.1,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.41, ≈1.73)
因为点P在抛物线上,所以- m-3=(m-10)2-2(m-10)-8.
解得m1= ,m2=10
证明:(1)连结OC.
∵CF⊥AB,CE⊥AD,且CE=CF
∴∠CAE=∠CAB
∵OC=OA
∴∠CAB=∠OCA
∴∠CAE=∠OCA
∴∠OCA+∠ECA=∠CAE+∠ECA=90°
∴∠OCE=90°即OC⊥CE……3分
∵OC是⊙O的半径,点C为半径外端
∴CE是⊙O的切线……4分
解(2)∵AD=CD
∴∠DAC=∠DCA=∠CAB
频数(人)
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0 .3
5.2≤x<5.5
10
b
(1)本次调查的样本为,样本容量为;
(2)在频数分布表中,a=,b=,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
25.(9分)一个装有进水管和出水管的容器,根据实际需要,从某时刻开始的2分钟内只进水不出水,在随后的4分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图所示.
(1)当2≤x≤6时,求y与x的表达式;
当6≤x≤10时,y与x的函数表达式为y=- x+
把y=7.5代入y=5x,得x1=1.5
把y=7.5代入y=- x+ ,得x2=8 ……8分
∴该容器内的水量不少于7.5升的持续时间为x2-x1=8-1.5=6.5(分钟)
答:该容器内的水量不少于7.5升的持续时间为6.5分钟.……9分
26.(8分)
(2)请将图像补充完整;
(3)从进水管开始进水起,求该容器内的水量不少于7.5升所持续时间.
26.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.连接CA、CD、CB.
(1)求证:CE是⊙O的切线;
(2)若AD=CD=6,求四边形ABCD的面积.
∴DC//AB
∵∠CA E=∠OCA
∴OC//AD
∴四边形AOCD是平行四边形
∴OC=AD=6,AB=12
∵∠CAE=∠CAB
∴ =
∴CD=CB=6
∴CB=OC=OB
∴△OCB是等边三角形……6分
在Rt△CFB中,CF= =3 .……7分
∴S四边形ABCD= (DC+AB)·CF= ×(6+12)×3 =27 .……8分
20.(8分)
(1)证明:∵将线段AB平移至DE
∴AB=DE,AB∥DE.
∴∠EDC=∠B
∵AB=AC
∴∠B=∠ACB,DE=AC
∴∠EDC=∠ACB
在△ADC与△ECD中,
∴△ADC≌△ECD.……3分
∴AD=EC……4分
(2)∵将线段AB平移至DE
∴AB=DE,AB∥DE.
∴四边形ABDE为平行四边形.
解得
∴当2≤x≤6时,y与x的函数表达式为y= x+ .……3分
(2)由题意可求出进水管每分钟的进水量为5升,出水管每分钟的出水量为3.75升,
故关闭进水管直到容器内的水放完需要4分钟.所以补充的图像为连接点( 6,15 )
和点(10,0)所得的线段.……5分
(3)由题意可求:当0≤x≤2时,y与x的函数表达式为y=5x
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接
填写在答题卡相应位置上)
7.分解因式:2x2-8=.
8.如图,直线AB,CD相交于点E,DF∥AB,若∠AEC=100°,则∠D=°.
9.若 =a-3,则a=.(请写一个符合条件a的值)
10.某班派6名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是千克.
将x=1代入,得原式=2×1=2.………7分
19.(8分)
(1)从中抽取的某区即将参加中考200名初中毕业生的视力情况;200 ……2分
(2)60;0.05 ……4分
补对图形………5分
(3)解:5000×0.7=3500(人)………7分
答:估计全区初中毕业生中视力正常的学生有3500人. ………8分
解:∵a=1,b=-2,c=-1
∴b2-4ac=(-2)2-4×1×(-1)=8>0……Biblioteka 分x= = =1± ……4分