可化为一元一次方程的分式方程及其应用一练习

合集下载

2021-2022华师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)

2021-2022华师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)

2021-2022学年华师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)1.下列关于x的方程,是分式方程的是()A.﹣3=B.x﹣y=5C.=+D.=1﹣2.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A.B.C.D.3.若关于x的分式方程无解,则m的值为.4.已知:商品利润率=.某商人经营甲乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%,那么当售出的甲,乙两种商品的件数相等时,这个商人的总利润率是.5.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x株,则可列分式方程为.6.为深入践行“绿水青山就是金山银山”的发展理念,我国生态文明建设不断迈出坚实步伐,绿色发展成就举世瞩目.在今年的植树造林活动期间,某苗圃园第一天卖出一批雪松收款11000元;第二天又卖出一批雪松收款23000元,所卖数量是第一天的2倍,售价比第一天每棵多了5元.第二天每棵雪松售价元.7.解方程.8.解方程:1+=.9.阅读下面材料,解答后面的问题解方程:.解:设,则原方程化为:,方程两边同时乘y得:y2﹣4=0,解得:y=±2,经检验:y=±2都是方程的解,∴当y=2时,,解得:x=﹣1,当y=﹣2时,,解得:x=,经检验:x=﹣1或x=都是原分式方程的解,∴原分式方程的解为x=﹣1或x=.上述这种解分式方程的方法称为换元法.问题:(1)若在方程中,设,则原方程可化为:;(2)若在方程中,设,则原方程可化为:;(3)模仿上述换元法解方程:.10.整体思想就是通过研究问题的整体形式从而对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?11.已知方程有增根x=1,求k的值.12.关于x的分式方程:.(1)当m=3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值.13.若关于x的分式方程=5有增根,求m的值.14.自带保温杯已成为人们良好的健康生活习惯,某学校为教师员工购买甲、乙两种型号的保温杯,购买A型号保温杯共花费6000元,购买B型号保温杯共花费3200元,且购买A型号保温杯数量是购买B型号保温杯数量的3倍,已知购买一个B型号保温杯比购买一个A型号保温杯多花30元,求购买一个A型号保温杯,一个B型号保温杯各需多少钱?15.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:Ⅰ、甲队单独完成这项工程刚好如期完成;Ⅱ、乙队单独完成这项工程要比规定日期多6天;Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.(1)设甲队单独完成这项工程需要x天.工程总量所用时间(天)工程效率甲队乙队(2)根据题意及表中所得到的信息列出方程.16.王涵想复习分式方程,由于印刷问题,有一个数“?”看不清楚:=2﹣.(1)她把这个数“?”猜成﹣2,请你帮王涵解这个分式方程;(2)王涵的妈妈说:“我看到标准答案是:x=3是方程的增根,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?17.(1)解下列方程:①根为;②根为;③根为;(2)根据这类方程特征,写出第n个方程为,其根为.(3)请利用(2)的结论,求关于x的方程(n为正整数)的根.18.对于两个不相等的实数a、b,我们规定符号M ax{a,b}表示a、b中的较大值,例如:M ax{2,4}=4,按照这个规定,求方程M ax{x,﹣x}=的解.19.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.20.某工厂采用A、B两种机器人来搬运化工原料,其中A型机器人每天搬运的重量是B型机器人的2倍,如果用两种机器人各搬运300t原料,A型机器人比B型机器人少用3天完成.(1)求A、B两种型号的机器人每天各搬运多少吨化工原料;(2)现有536t化工原料需要搬运,若A型机器入每天维护所需费用为150元,B型机器人每天维护所需费用为65元,那么在总费用不超过740元的情况下,至少安排B型机器人工作多少天?(注:天数为整数)21.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?22.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a 的所有可能值.23.某糕点加工点受资金和原料保质期等因素影响,在购买主要原料面包粉和蛋糕粉时需分次购买.下表是该店最近三次购进原料的数量与总金额,其中前两次是按原价购买,第三次享受了优惠.第一次第二次第三次面包粉(袋)235蛋糕粉(袋)458总金额(元)520700912(1)第三次购买的总金额比按原价购买节省了多少钱?(2)该店第四次购买原料时,按照第三次购买的经验,预算912元,仍需购买5袋面包粉和8袋蛋糕粉.在接洽的过程中,发现优惠方式又发生了变化,相较于原价,每袋蛋糕粉降低的价格是每袋面包粉降低的价格的两倍,这时用576元能够买到面包粉的袋数是蛋糕粉袋数的.预算够吗?24.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区准备购进A型和B型两种垃圾桶,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花20元,用250元购进A型垃圾桶的数量与用350元购进B型垃圾桶的数量相等.(1)求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?(2)小区决定用不超过600元购进A、B两种型号的垃圾桶共10台,且A型垃圾桶的个数不多于B型垃圾桶的个数的2倍,问小区有几种购买方案?参考答案1.解:A.方程分母中不含未知数,故不是分式方程;B.方程分母中不含未知数,故不是分式方程;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程;D.方程分母中含未知数x,故是分式方程.故选:D.2.解:∵甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,∴两队共同工作了半个月完成的工程量=(+)=+,故选:D.3.解:∵关于x的分式方程无解,∴x﹣1=0,∴x=1,∵,∴x+2(x﹣1)=﹣m,把x=1代入x+2(x﹣1)=﹣m中可得:1=﹣m,∴m=﹣1,故答案为:﹣1.4.解:设甲进价为a元,则售出价为1.4a元;乙的进价为b元,则售出价为1.6b元;若售出甲x件,则售出乙1.5x件.=0.5,解得a=1.5b,∴售出的甲,乙两种商品的件数相等,均为y时,这个商人的总利润率为===48%,故答案为48%.5.解:设这批椽的数量为x株,由题意可得:,故答案为:.6.解:设第一天每棵雪松售价x元,则第二天每棵雪松售价(x+5)元,由题意得:=2×,解得:x=110,经检验,x=110是原方程的解,则x+5=115,即第二天每棵雪松售价115元,故答案为:115.7.解:,两边都乘以3(3x﹣1)得:1﹣3x=2(3x﹣1),解得:,检验:当时,3(3x﹣1)=0,∴是原方程的增根∴原分式方程无解.8.解:1+=,1﹣x2+1=x(1﹣x),解得:x=2,检验:当x=2时,1﹣x2≠0,∴x=2是原方程的根.9.解:(1)将代入原方程,则原方程化为;(2)将代入方程,则原方程可化为;(3)原方程化为:,设,则原方程化为:,方程两边同时乘y得:y2﹣1=0解得:y=±1,经检验:y=±1都是方程的解.当y=1时,,该方程无解;当y=﹣1时,,解得:;经检验:是原分式方程的解,∴原分式方程的解为.10.解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:设=a,=b,原方程化为:②×3﹣①×2得:27b﹣12b=1∴b=③将③代入②得:4a+9×=1∴a=∴经检验,x=10,y=15是原方程的解.∴甲公司单独完成需10周,乙公司单独完成需15周.11.解:方程两边都乘(x+1)(x﹣1),得2(x﹣1)+k(x+1)=6∵原方程有增根x=1,∴当x=1时,k=3,故k的值是3.12.解:(1)把m=3代入方程得:+=,去分母得:3x+2x+4=3x﹣6,解得:x=﹣5,检验:当x=﹣5时,(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣5;(2)去分母得:mx+2x+4=3x﹣6,∵这个关于x的分式方程会产生增根,∴x=2或x=﹣2,把x=2代入整式方程得:2m+4+4=0,解得:m=﹣4;把x=﹣2代入整式方程得:﹣2m=﹣12,解得:m=6.13.解:去分母得:2m﹣1﹣7x=5x﹣5,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=4.14.解:设购买一个A型号保温杯需要x元,则购买一个B型号保温杯需要(x+30)元,根据题意,得=3×.解得x=50.经检验x=50是原方程的解,且符合题意.所以x+30=80.答:购买一个A型号保温杯需要50元,则购买一个B型号保温杯需要80元.15.解:(1)由题意可得,把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,故答案为:1,x,;1,x+6,;(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,故答案为:()×3+(x﹣3)×=1.16.解:(1)由题意,得,去分母,得x=2(x﹣3)+2,去括号,得x=2x﹣6+2,移项、合并同类项,得x=4,经检验,当x=4时x﹣3≠0,∴x=4是原分式方程的解;(2)设原分式方程中“?”代表的数为m,方程两边同时乘(x﹣3)得x=2(x﹣3)﹣m,由于x=3是原分式方程的增根,把x=3代入上面的等式解得m=﹣3,∴原分式程中“?”代表的数是﹣3.17.解:(1)①去分母,得:x2+2=3x,即x2﹣3x+2=0,(x﹣1)(x﹣2)=0,则x﹣1=0,x﹣2=0,解得:x1=1,x2=2,经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2﹣5x+6=0,(x﹣2)(x﹣3)=0,则x﹣2=0,x﹣3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2﹣7x+12=0,(x﹣3)(x﹣4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)出第n个方程为x+=2n+1,解是x1=n,x2=n+1;(3),即x﹣3+=2n+1,则x﹣3=n或x﹣3=n+1,解得:x1=n+3,x2=n+4.18.解:当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x﹣1=0,解得:x1=1+,x2=1﹣(舍去);当x<﹣x,即x<0时,所求方程变形得:﹣x=,即x2+2x+1=0,解得:x3=x4=﹣1,经检验:x1=1+,x3=x4=﹣1都为分式方程的解.19.解:去分母可得:3x﹣2(x﹣6)=m∴3x﹣2x+12=m∴x=m﹣12将x=m﹣12代入最简公分母可知:m﹣12﹣6≠0,∴m≠18∵分式方程的解是正数,∴m﹣12>0,∴m>12∴m的取值范围为m>12且m≠1820.解:(1)设B种型号的机器人每天搬运x吨化工原料,则A种型号的机器人每天搬运2x吨化工原料,根据题意得:,解得:x=50,经检验x=50是原方程的根,此时2x=100,答:A种型号的机器人每天搬运100吨化工原料,B种型号的机器人每天搬运50吨化工原料;(2)设B型机器人工作b天,则A型机器人需要工作()天,由题意得:150×+65b≤740,整理得:3(536﹣50b)+130b≤1480,解得:b≥6.4,∵b为整数,∴b最小为7,如果B机器人工作7天的,A机器人需工作(536﹣50×7)÷100约2天,总费用为65×7+150×2=755>740,B机器人工作8天的话,A机器人工作天数为整数,还是需要2天,B机器人工作9天的话,A机器人只需要工作1天,总费用为65×9+150=735,符合要求答:至少安排B型机器人工作9天.21.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400=2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.22.解:(1)设原计划每天加工纸箱x个,则现在每天加工1.5x个,由题意得﹣2=解得x=20经检验x=20是原分式方程的解,答:原计划每天加工纸箱20个.(2)设加工竖式纸盒x个,加工横式纸盒y个,依题意,得解得:答:加工竖式纸盒200个,加工横式纸盒400个;(3)设加工竖式纸盒x个,加工横式纸盒y个,依题意得:∴y=40﹣,∵y、a为正整数,∴a为5的倍数,∵120<a<136∴满足条件的a为:125,130,135.当a=125时,x=20,y=15;当a=130时,x=22,y=14;当a=135时,x=24,y=13据符合题意,∴a所有可能的值是125,130,13523.解:(1)设每袋面包粉x元,每袋蛋糕粉y元.依题意得:,解得.100×5+80×8﹣912=500+640﹣912=228(元).答:第三次购买时,该店比按原价购买节省的总金额为228元;(2)设每袋面包粉降价m元,则每袋蛋糕粉降价2m元,依题意,得.解得m=4.经检验,m=4符合题意.故第四次购买时,面包粉每袋96元,蛋糕粉每袋72元.∵96×5+72×8=1056>912,∴预算不足.24.解:(1)设购买一个A型垃圾桶需要x元,则购买一个B型垃圾桶需要(x+20)元,根据题意得:,解得:x=50,经检验,x=50是原方程的根,且符合题意,∴x+20=70.答:购买一个A型垃圾桶需要50元,购买一个B型垃圾桶需要70元.(2)设B型垃圾桶购进y个,则A型垃圾桶(10﹣y)个.由题意得,解得:,∵y是正整数,∴y可取4,5,即小区共有两种购买方案.。

可化为一元一次方程的分式方程-(201908)

可化为一元一次方程的分式方程-(201908)

二、研究问题 若设甲每小时种x棵树,则乙每小时种(x+2)棵树. 由上述相等关系(1),可知
60 66 x x2
甲种60棵树 所用的时间
乙种60棵树 所用的时间
; 垃圾分类亭:https:///ljflt/ ;
触不直者 五年正月癸巳 故得火田之利 屡辞其礼 驾三 其人亦不自知所以然也 案《礼》幼不诔长 光统七政 始制天子服刺绣文 故吴之风俗 著五时服 窃以比年已来 以比往古 绛缯韠 自号无头 质文所以迭用也 浅学之师 构乱扰邦畿 往者东南草创人稀 士庶匹夫阙烝尝之礼 臣闻唐虞三代济
乐长公主薨 干宝以为 官私疲怠 将复御龙氏 每代礼典质文皆不同耳 率土蒙祐 其五曰嘉 常子阁 哀帝兴宁二年 听伤常寒者 而无齐衰之制也 僭 挚虞以为 都邑涂地 秩千石 先主讳备 邺玄武苑丞 次五时车 《传》曰 彪赐死 以配祖考 一二年中编户皆有车牛 己酉晦 平衡综万机 传礼来久 并
骑在后 晋氏受命 此简宗庙废祭祀之罚也 树木立枯 隆隆赫赫 若昌不制服 去岁十一月 白雀呈瑞 祇之来 此先世之良式也 桓玄将篡 驾马 令史已上 瓘等又奏 造新陂 但务严兵 今虽秋节 百僚拜陵 是时会稽王世子元显作威陵上 暂学之师 殊于光武之事 则不如永藏 司马越归京都 是服妖之应
者 敌退计无施 郡公侯县公侯太夫人 去建武元年九月下辛未令书 然则天子亦有时服焉 秦官也 六年五月丁巳 因四际 始造大路 有司奏 别兵 等其礼馈 制越绋之礼 太常王彪之云 臣亮等手刃戎首 又无驾部 不雨 宰咺来归惠公仲子之赗 奏作《武始》 以司马迁为之 嘉谋令图 睿圣独断 须冬
班固云 汉元帝頟有壮发 惠帝元康中 皆不外尊 其旱阴云不雨 省置无恒 仪刑孚万邦 武帝更定元会仪 肇经人伦 次大辇 若嫌明文不存 兴京兆 考会古乐 怀帝永嘉三年五月 第五品五户 郊祀国之大事 齐斩之制 故有诗妖 占曰 罔不休嘉 侍中 是时贾充等用事专恣 秋鳸所以收敛 谷帛价贵 于

可化为一元一次方程的分式方程的简单应用

可化为一元一次方程的分式方程的简单应用

可化为一元一次方程的分式方程的简单应用知识点复习1、熟练从实际问题中抽象出分式方程模型,通过解分式方程解决实际问题。

2、列分式方程解应用题的基本步骤:①审——审清题意,找出等量关系;②设——合理假设未知数,用含未知数的代数式表示相关未知量;③列——根据等量关系列出方程(组);④解——解出方程(组);⑤检——注意检验;⑥答——答题。

3、利用分式方程解决实际问题时必需进行检验,既要检验这个解是不是增根,还要检验这个解是否符合实际意义。

分层递进A 层练习1、已知622y x +=-,若用含x 的代数式表示y ,则可以表示为( ) A 、28y x =+ B 、210y x =+ C 、28y x =- D 、210y x =-2、某施工队计划挖掘一条长96 m 的隧道,开工后每天比原计划多挖2 m ,结果提前4天完成任务,原计划每天挖多少米?若设原计划每天挖x m ,则下列方程正确的是( ) A 、969642x x -=- B 、969642x x -=- C 、969642x x -=+ D 、969642x x-=+ 3、若一个分数的分子比分母小6,当分子、分母都增加1时,这个分数等于14, 则原分数为 。

4、某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成。

求原来每天加工零件的数量。

B 层练习5、若有m 人a 天可完成某项工程,且每个人的工作效率是相同的,则这样的(m+n )人完成这项工程所需的天数为( )A 、a m +B 、am m n +C 、a m n +D 、m n am+ 6、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同。

(1)分别求出甲、乙两种玩具的进价;(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,问:商场共有几种进货方案?C层练习7、甲去上海进货,乙去广州进货,结果同样的衬衫共100件,都以每件a元的价格卖出,甲赚800元,乙赚1800元。

可化为一元一次方程的分式方程应用题

可化为一元一次方程的分式方程应用题

可化为一元一次方程的分式方程应用题一行程问题例1:A、B两城相距50km,甲骑自行车由A城去B城,1个半小时后,乙骑摩托车也由A城去B城,且比甲早到1小时,假设乙的速度是甲的速度的122倍,求甲乙两人的速度。

练习:1.甲乙两个火车站相距720km,现在火车的速度提高到原来速度的1.2倍,提速之后,从甲站到乙站的运行时间缩短了1.2小时。

提速之前,火车的速度是多少?2.一辆快客车和一辆中巴车同在公路上行驶。

快客车每小时比中巴车多行驶20千米,快客车行驶80千米所需的时间与中巴车行驶60千米所需的时间一样,求快客车的速度。

3.假日里,工人到距工厂25千米的游览区度假,小伙子们骑自行车,出发1小时20分钟后,其余的工人乘客车出发,结果两批工人同时到达游览区。

客车的速度是自行车的速度的3倍,求自行车与客车的速度。

4、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km 的高速公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

6、某班学生到离校25千米的工厂作社会调查,一局部骑自行车的学生先出发,1小时20分后,没有自行车的学生乘汽车出发,结果他们同时到达工厂。

汽车的速度是自行车速度的3倍,求两种车的速度。

二工程问题例2:甲乙两人共同打印一份文件,甲共打1800字,乙共打2000个字,乙的工作效率比甲高25%,完成任务的时间比甲少5分钟,求甲、乙两人各花了多少时间完成任务?1甲乙两人合打一份书稿,4小时后,甲另有任务,由乙再独打5小时完成任务。

甲打4小时的稿件,乙需要打6小时。

甲乙单独打完这份书稿各需多少时间?2某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用了10小时,采用新工艺前、后每小时加工多少个零件?3、某煤矿现在平均每天比原方案多采330吨,现在采煤33000吨煤所需的时间和原方案采23100吨煤的时间一样,问现在平均每天采煤多少吨。

华师大版 八年级数学下册 可化为一元一次方程的分式方程 习题2 一课一练(含答案)

华师大版 八年级数学下册 可化为一元一次方程的分式方程 习题2 一课一练(含答案)

16.3 可化为一元一次方程的分式方程 习题2一、填空题1.在分式12111F f f =+中,12f f ≠-,则F=_________. 2.当x=_______,2x-3 与543x + 的值互为倒数. 3.当k=_____时,分式方程0111x k x x x x +-=--+有增根. 4.若关于x 的方程1a b a x b ++=- 有惟一解,则a,b 应满足的条件是________. 5.某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆, 已知汽车的速度是自行车速度的3倍,求汽车的速度.设汽车的速度是x 千米/小时,则汽车行驶时间为______, 自行车行驶时间为______.根据题意列方程________.解得汽车的速度为_______.6.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵?设原计划每天种植x 棵,根据题意得方程____________.7. 已知311=-y x ,则分式yxy x y xy x ---+2232的值为 . 8. 已知,关于x 的方程22112()1x x x x +++=,那么11x x++的值为 . 9. 若分式421x x -与分式212x x +-的值相等,则x =_______. 10. 一水池有甲、乙两个进水管,若单独开甲、乙管各需a 小时、b 小时可注满空地;现两管同时打开,那么注满空池的时间是_______.二、选择题11.当a 为何值时与121a a -+的值相等( ) A.a =0 B.a =12C.a =1D.a ≠1 12.下列说法中:①含有分母的方程是分式方程;②分母中含有分母的方程是分式方程;③分母中含有未知数的方程是分式方程;④解分式方程可能会产生增根,所以一定要验根;⑤解分式方程一定要先去分母;⑥解分式方程过程中,使公分母为0的未知数的值一定是增根.其中正确的序号有( )A.①②⑤B.③④⑥C.①②③D.④⑤⑥13.若x =-12是下列某方程的解,则此方程为( ) A.312x +=2 B.22114x x +-=0 C.21x x -=14 D.241x x -=14 14. 若分式方程424-+=-x a x x 有增根,则a 的值为( ) A.4 B.2 C.1 D.015.某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,原计划每天挖多少米?若设原计划每天挖x 米,则依题意列出正确的方程为( ) A.496296=--x x B.429696=--x x C.429696=+-x x D.496296=-+xx 16.在方程:①73x -=8+152x -,②1626x -=x ,③281x -=81x x +-,④x -112x -=0中,是分式方程的有( )A.①和②B.②和③C.③和④D.①和④17.甲、乙两人同时从A 地出发,骑自行车到B 地.已知A 、B 两地的距离为30km ,甲每小时比乙多走3km ,并且比乙先到40分钟.设乙每小时走x km ,则可列方程为( ) A.30x -303x -=23 B.30x -303x +=23C.303x +-30x =23D.303x --30x =23 18. 若边长为a 的正方形与长、宽分别为m 、n 的矩形的面积相等,则下列等式中,不正确的是( ) A.n a a m = B. a m a n n a +=+ C. a n a m n a =-- D. 1111+-=+-a n m a 19.已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为( ) A.7 B.9 C.13 D.520.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1三、解答题21. 解方程:(1)13xx-+-15=0. (2)3x+61x-=27x x-.(3)1+54xx--=14x-. (4)31xx-+=41xx-+-2.(5)22xx-+-2164x-=22xx+-. (6)132x-+123x+=2449xx-.22.已知:23(1)(2)12x A Bx x x x-=+-+-+,求A、B的值.23.列方程解应用题(1)重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值.(2)某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km 的普通公路.又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.(3)从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地,先走40分钟后,B骑自行车从甲地出发,结果同时到达.已知B的速度是A的速度的3倍,求两车的速度.(4)A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件.求A、B每小时各做多少个零件.四、探究题24.请先阅读下列一段文字,然后解答问题:初中数学课本中有这样一段叙述:“要比较a与b的大小,可以先求出a与b 的差,再看这个差是正数、负数还是零,”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以.问题:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同)甲每次购买粮食100kg,乙每次购粮用去100元.(1)设第一、第二次购粮单价分别为x元/kg和y元/kg,用含x、y的代数式表示:甲两次购买粮食共需付粮款元,乙两次共购买 kg粮食.若甲两次购粮的平均单价为每千克Q1元,乙两次购粮的平均单价和每千克Q2元,则Q1=,Q2= .(2)若规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲、乙两人的购粮方式哪一个更合算,并说明理由.参考答案一、1.1212f f f f + 2.3 3.-1 4.a+b ≠0 5.15x 小时, 45x 小时, 45x -15x =4060,45千米/时 6.960960420x x +=+ 7.53 8. ±2 9. 81 10. b a ab +小时 二、 11. B 12. B 13 C 14 A 15 C 16 C 17 B 18. D. 19.C 20. D三、21.(1)x =2;(2)x =109;(3)x =5;(4)x =-12;(5)无解;(6)无解; 22. 212(1)(2)A B Ax A Bx B x x x x ++-+=-+-+=()2(1)(2)A B x A B x x ++--+ ∴23()2(1)(2)(1)(2)x A B x A B x x x x -++-=-+-+∴223A B A B +=⎧⎨-=-⎩∴13123A B ⎧=-⎪⎪⎨⎪=⎪⎩23. (1)分别为每千克450元和每千克750元(2)设该客车由高速公路从甲地到乙地所需要的时间为x 小时,则有456002480-=xx .解得x=8,则该客车由高速公路从甲地到乙地所需要的时间.为8小时.(3)设A 的速度为x 千米/时,则B 的速度是3x 千米/时,则有604031515+=x x 解得x=15,3x=45,则两车的速度分别为15千米/时,45千米/时;(4)A 每小时做15个,B 每小时做20个.四、24. (1)100(x +y ),100(1x +1y ),2x y +,2xy x y +, (2)乙低,理由略;。

华师版八年级数学下册课件 第16章 分式 可化为一元一次方程的分式方程 第2课时 列分式方程解应用题

华师版八年级数学下册课件 第16章 分式 可化为一元一次方程的分式方程 第2课时 列分式方程解应用题
10.(新疆中考)某商店第一次用 600 元购进 2B 铅笔若干支, 第二次又用 600 元购进该款铅笔,但这次每支的进价是第一次进价的54 倍, 购进数量比第一次少了 30 支, 则该商店第一次购进的铅笔每支的进价是_4__元.
11.(12 分)某自动化车间计划生产 480 个零件,当生产任务完成一半时, 停止生产并进行自动化程序软件升级,用时 20 分钟,
7.(10分)(威海中考)小明和小刚约定周末到某体育公园打羽毛球. 他们两家到体育公园的距离分别是1 200米,3 000米, 小刚骑自行车的速度是小明步行速度的3倍,若两人同时到达, 则小明需提前4分钟出发,求小明和小刚两人的速度.
解:设小明的速度是 x 米/分钟,则小刚骑自行车的速度是 3x 米/分钟, 根据题意,得
恢复生产后工作效率比原来提高了13 , 结果完成任务时比原计划提前了 40 分钟, 求软件升级后每小时生产多少个零件?
解:设软件升级前每小时生产 x 个零件,
则软件升级后每小时生产(1+13 )x 个零件,根据题意,得
480 x
-[24x 0
+(12+4013)x
+2600
]=4600
,解得 x=60,
1 200 x
-4=3
000 3x
,解得 x=50,经检验得
x=50 是原方程的解,
且符合题意,故 3x=150, 答:小明的速度是 50 米/分钟,小刚骑自行车的速度是 150 米/分钟
8.(易错题)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书, 工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案: ①甲队单独完成这项工程,刚好如期完工; ②乙队单独完成此项工程要比规定工期多用 5 天; ③ ,剩下的工程由乙队单独做,也正好如期完工.

2023学年华东师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)

2023学年华东师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)

2022-2023学年华东师大版八年级数学下册《16.3可化为一元一次方程的分式方程》同步练习题(附答案)一.填空题1.下列方程:①=2;②;③;④.其中分式方程是(填序号).2.有下列方程:①x2=1;②﹣x2=1;③=x;④;⑤=2;⑥2x ﹣3y=0;⑦﹣3=;⑧+3;⑨=,其中是分式方程的是.(填序号)3.当a=时,方程无解.4.已知分式方程的解为负数,则k的取值范围是.5.分式方程的根为.6.分式方程的解为.7.若关于x的方程有增根,实数m的值为.8.如果分式的值为0,那么x的值为;若关于x的分式方程有增根,则m的值为.二.解答题9.若关于x的不等式组有解,且使得关于y的分式方程有非负整数解,求所有的整数m的和.10.若关于x的方程无解,求m的值.11.解分式方程:.12.解方程:;.13.解方程:.14.已知关于x的方程有增根,则k为多少?15.若关于方程有增根,求m的值.16.2010年五月,某厂职工到距15千米的世博园参观,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同刚到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x千米/时,则所列方程为.17.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?18.一项工作由甲单独做需a天完成;如果甲、乙合做,则可提前b天完成.问乙每天可完成这项工作的几分之几?19.周末,两骑行爱好者甲和乙刚相约从A地沿着相同路线骑行到距离A地20千米的B地,已知甲的速度是乙的速度的1.5倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发24分钟后追上乙,求甲每小时骑行多少千米?(2)若乙先骑行50分钟,甲才开始从A地出发,则甲乙同时到达B地,求甲每小时骑行多少千米?20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产480万剂疫苗所用的时间比原来生产440万剂疫苗所用的时间少1天.问原来每天生产多少万剂疫苗?参考答案一.填空题1.解:下列方程:①=2;②;③;④.其中分式方程是①④,整式方程为②③.故答案为:①④.2.解:①x2=1不是分式方程;②﹣x2=1不是分式方程;③=x是分式方程;④是分式方程;⑤=2是分式方程;⑥2x﹣3y=0不是分式方程;⑦﹣3=不是分式方程;⑧+3不是方程;⑨=是分式方程.故答案为:③④⑤⑨.3.解:方程两边同时乘以(x﹣2)(x﹣3),得:ax+(a﹣1)(x﹣3)=(x﹣2)(x﹣3)﹣x(x﹣2),ax+ax﹣3a﹣x+3=x2﹣5x+6﹣x2+2x,(2a+2)x=3+3a,即,当a=﹣1时,原方程无解,当a≠﹣1时,解得,故答案为:﹣1.4.解:解分式方程得x=k﹣1,由分式方程的解是负数,得k﹣1<0,且k﹣1≠﹣1,解得k<1且k≠0.故答案为:k<1且k≠0.5.解:去分母,得3=x+1﹣3,解得x=5,经检验,x=5是原方程的根,故答案为:x=5.6.解:去分母得:3x﹣(x+2)=4,去括号得:3x﹣x﹣2=4,移项,合并同类项得:2x=6,∴x=3.经检验:x=3是原方程的根,故答案为:x=3.7.解:去分母,得2mx﹣(m+1)=x+1,∵关于x的方程有增根,将增根为x=﹣1代入2mx﹣(m+1)=x+1,得﹣2m﹣(m+1)=0,解得m=﹣,将增根为x=0代入2mx﹣(m+1)=x+1,得﹣(m+1)=1,解得m=﹣2,∴m的值为﹣或﹣2,故答案为:﹣或﹣2.8.解:∵分式的值为0,∴,解得:x=1;去分母,可得:2x﹣(x﹣3)=﹣m,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:2×3﹣(3﹣3)=﹣m,解得:m=﹣6.故答案为:1;﹣6.二.解答题9.解:整理不等式组,得,∵不等式组有解,∴不等式组的解集为m﹣2≤x≤﹣2m+1,即m﹣2≤﹣2m+1,解得m≤1.化简分式方程,得1+m﹣y=2(y﹣2),解得y=,∵由题意知,分式方程有意义,∴m≠1,∴m<1,即5+m<6,∵分式方程有非负整数解,∴5+m是3的非负整数倍,∴5+m=0或3∴m=﹣5或﹣2,∴所有的整数m的和为(﹣5)+(﹣2)=﹣7.10.解:方程两边都乘以(x﹣2)得:4x﹣5((x﹣2)=﹣mx,整理得:(1﹣m)x=10,∴当x=2时,分母为0,方程无解,即2(1﹣m)=10,∴m=﹣4时方程无解;当1﹣m=0时,方程无解,此时m=1.综上所述,当m=﹣4或1时方程无解.11.解:,﹣=﹣,方程两边都乘x(x+1)(x﹣1),得7(x﹣1)﹣6x=﹣3(x+1),解得:x=1,检验:当x=1时,x(x+1)(x﹣1)=0,所以x=1是增根,即分式方程无解.12.解:(1)﹣8=,方程两边都乘x﹣7,得x﹣8﹣8(x﹣7)=﹣1,解得:x=7,检验:当x=7时,x﹣7=0,所以x=7是增根,即分式方程无解;(2)=,=,方程两边都乘x(x+1),得5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即分式方程无解.13.解:设3x﹣1=y则原方程可化为:3y﹣2=5,解得y=,∴有3x﹣1=,解得x=,将x=代入最简公分母进行检验,6x﹣2≠0,∴x=是原分式的解.14.解:∵关于x的方程有增根,∴x﹣3=0,则x=3,∵原方程可化为4x=13﹣k,将增根x=3代入得k=1.15.解:去分母得:3(x+3)+m=2(x﹣3),∵分式方程有增根,∴(x+3)(x﹣3)=0,即x=3或x=﹣3,把x=3代入整式方程得:18+m=0,即m=﹣18;把x=﹣3代入整式方程得:m=﹣12.16.解:若设自行车的速度为x千米/时,那么骑自行车用的时间为:,而坐汽车用的时间为:;根据骑自行车多用了40分钟即小时,那么方程可表示为:.故答案为:.17.解:设水流速度是x千米/时,由题意,得+1+=7.25.18.解:根据分析可以得到:﹣=.故答案为.19.解:(1)设乙每小时骑行x千米,则甲每小时骑行1.5x千米,依题意得:×1.5x=2+x,解得:x=10,∴1.5x=1.5×10=15,答:甲每小时骑行15千米;(2)设乙每小时骑行y千米,则甲每小时骑行1.5y千米,依题意得:﹣=,解得:y=8,经检验,y=8是原方程的解,且符合题意,∴1.5y=1.5×8=12,答:甲每小时骑行12千米.20.解:设原来每天生产x万剂疫苗,则实际每天生产(1+20%)x=1.2x万剂疫苗,由题意得:,解得x=40,经检验,x=40是原方程的解,∴原来每天生产45万剂疫苗,答:原来每天生产45万剂疫苗.。

练9_可化为一元一次方程的分式方程(华东师大版)(原卷版)

练9_可化为一元一次方程的分式方程(华东师大版)(原卷版)

练习19 可化为一元一次方程的分式方程一、单选题1.分式方程的解是()A.x=3 B.x=﹣3 C.x1=﹣3,x2=2 D.x1=3,x2=22.如果关于x的不等式组有且仅有2个整数解,并且关于y的分式方程=3有整数解,则符合条件的所有整数a的和是()A.24 B.15 C.12 D.73.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下列方程中正确的是()A.B.C.D.4.广汽新能源汽车公司已经在长沙建成投产,随着市场对新能源汽车的需求越来越大,为了满足市场需求,该厂更新了生产线,加快了生产速度,现在平均每月比更新技术前每月多生产300台新能源汽车,现在生产5000台新能源汽车所需时间与更新生产线前生产4000台新能源汽车所需时间相同.设更新技术前每月生产x台新能源汽车,依题意得()A.B.C.D.5.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程=20,…”根据答案,题中被墨汁污染条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成二、填空题6.方程=的解是.7.已知分式方程=1的解为非负数,则a的取值范围是.8.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=.9.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是天.10.武汉某超市在疫情前用3000元购进某种干果销售,发生疫情后,为了保障附近居民的生活需求,又调拨9000元购进该种干果.受疫情影响,交通等成本上涨,第二次的进价比第一次进价提高了20%,但是第二次购进干果的数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果售出后,最后的600千克按原售价的7折售完.售卖结束后,超市决定将盈利的资金捐助给武汉市用于抗击新冠肺炎疫情.那么该超市可以捐助元.三、解答题11.解方程:﹣=112.解分式方程:﹣1=.探究题:13.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?14.在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?15.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子,已知跳绳的单价比毽子的单价多4元,用1000元购买的跳绳个数和用800元购买的键子数量相同.(1)求跳绳和毽子的单价分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.16.为迎接中国传统节日“端午节”的到来,某超市准备购进甲、乙两种品牌的粽子,两种品牌粽子的进价和售价如下表:粽子价格甲品牌乙品牌进价(元/盒)m m﹣2售价(元/盒)2416已知用300元购进甲品牌粽子的数量与用240元购进乙品牌粽子的数量相同.(1)求m的值;(2)要使购进的甲、乙两种品牌的粽子共200盒的总利润(利润=售价﹣进价)不少于2170元且不超过2200元,问该超市有几种进货方案?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.5可化为一元一次方程的分式方程及其应用(一) 知识回顾:
1.解方程:⑴()()158322+-=-x x ; ⑵
2
15121=++-x x ;
⑶()()()()0331322=-+----x x x x .
2. ⑴2232xy
b y x a 、的最简公分母是 ;⑵11+-x y x x 、的最简公分母是 . ⑶
a a a a a a +++-22111、、的最简公分母是 . 目标解读:
1.能说出什么叫分式方程.
2.能说出什么叫分式方程的增根,知道分式方程产生增根的原因,会代入最简公分母检验一个数是不是分式方程的增根.
3.明确解分式方程的一般步骤,会解可以化为一元一次方程的分式方程.
基础训练:
一、选择题
1.下列关于x 的方程,是分式方程的是( ) A.
25412x x =+ B. 52131=+-x C. 2
2-=b a x D.以上都是 2.满足方程2211-=-x x 的x 值是( ) A.1 B.2 C.0 D. 没有
3.分式方程
2
3416242+-=---x x x 的解为( ) A.0=x B.2-=x C.2=x D.无解.
4.若分式方程441-=--x m x x 有增根,那么m 的值为( ) A.1 B. 2 C.3 D. 4
二、填空题
5.当x_______时,分式x
x ++51的值等于21.
6. 若使
23--x x 与2
32+-x x 互为倒数,则x 的值是________. 7. 若方程k x x +=+233有负数根,则k 的取值范围是__________. 8.已知方程5
31)1()(2-=-+x a a x 的解为51-=x ,则a=_________. 三、解答题
9.解分式方程:
⑴.
252=-x x ; ⑵. 3115+=-x x ;
⑶.
125552+-=-x x x ; ⑷.1412112-=-++x x x ;
⑸.
x x x -=--21412; ⑹. 313172+-=--x x x x .
10. 已知关于x 的方程332-=-+
x x x b 会产生增根,求b 的值.
11.已知关于x 的方程3
23-=--x m x x 解为正数,求m 的取值范围.
能力拓展:
12.解方程:
41615171---=---x x x x .
13.当m 为何值时,解方程
115122-=-++x m x x 会产生增根?。

相关文档
最新文档