高中数学必修4(人教B版)第二章平面向量2.1知识点总结含同步练习题及答案
高中英语(新人教版)选择性必修四同步习题:UNIT 2 Part 1(同步习题)【含答案及解析】

UNIT 2ICONIC ATTRACTIONSPart 1Reading and Thinking基础过关练Ⅰ.单词拼写1.New Zealand is a South Pacific country located between the (赤道) and the South Pole.2.Mr. Jones and his two sons are the (共同的) owners of the business.3.This tree looks high and strong but actually its trunk is (中空的).4.The issue is not quite as (简单的) as it seems. In fact, it is very tough.5.He finished his speech with the same (口号), which was expected by all the participants.6.His work on the cause of the disease is of (首要的) importance to the whole world.7.The (屠夫) and the tailor had a fight in the market, and went home with black eyes.8.On New Year's Eve we had a (烧烤)on the beach.9.We can see there are many beautiful (香草)in the garden, such as basil and coriander.Ⅱ.选词填空1.Farm workers only a small section of the population.2.I much of what he said at the conference, but not all.3.All the patients in the community were all this elevator. Ⅲ.单句语法填空1.(locate) at the mouth of the Mississippi River, this city is famous for its jazz.2.He laid the (found) of his success by studying and working hard.3.The government is facing another (politics) crisis, so it has to turn to other countries for help.4.It was a small shop sandwiched(把……夹在……中间) between a coffee shop and a (bake).Ⅳ.完成句子1.出名所付出的代价是不管你走到哪里,都会被人认出来。
人教A版高中数学二同步学习讲义:第二章 点、直线、平面之间的位置关系2.1.3~2.1.4 含答案

2。
1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系学习目标 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3。
掌握空间中平面与平面的位置关系.知识点一直线和平面的位置关系思考如图所示,在长方体ABCD—A1B1C1D1中线段BC1所在的直线与长方体的六个面所在的平面有几种位置关系?答案三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行.梳理直线l与平面α的位置关系(1)直线l在平面α内(l⊂α).(2)直线l在平面α外l⊄α错误!知识点二两个平面的位置关系思考观察前面问题中的长方体,平面A1C1与长方体的其余各个面,两两之间有几种位置关系?答案两种位置关系:两个平面相交或两个平面平行.梳理平面α与平面β的位置关系位置关系图示表示法公共点个数两平面平行α∥β0个两平面相交α∩β=l无数个点(共线)类型一直线与平面的位置关系例1下列四个命题中正确命题的个数是()①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α;④如果a与平面α上的无数条直线平行,那么直线a必平行于平面α.A.0 B.1 C.2 D.3答案B解析如图,在正方体ABCD-A′B′C′D′中,AA′∥BB′,AA′在过BB′的平面ABB′A′内,故命题①不正确;AA′∥平面BCC′B′,BC⊂平面BCC′B′,但AA′不平行于BC,故命题②不正确;③中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即③正确;④显然不正确,故答案为B。
反思与感悟空间中直线与平面只有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.本题借助几何模型判断,通过特例排除错误命题.对于正确命题,根据线、面位置关系的定义或反证法进行判断,要注意多种可能情形.跟踪训练1下列命题(其中a,b表示直线,α表示平面):①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A解析如图所示,在长方体ABCD—A′B′C′D′中,AB∥CD,AB⊂平面ABCD,但CD⊂平面ABCD,故①错误;A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故③错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故④错误.类型二平面与平面之间的位置关系错误!例2α、β是两个不重合的平面,下面说法中,正确的是() A.平面α内有两条直线a、b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β答案D解析A、B都不能保证α、β无公共点,如图1所示;C中当a∥α,a∥β时,α与β可能相交,如图2所示;只有D说明α、β一定无公共点.反思与感悟判断线线、线面、面面的位置关系,要牢牢地抓住其特征与定义、要有画图的意识,结合空间想象能力全方位、多角度地去考虑问题,作出判断.跟踪训练2已知两平面α、β平行,且a⊂α,下列四个命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③直线a与β内任何一条直线都不垂直;④a与β无公共点.其中正确命题的个数是()A.1 B.2 C.3 D.4答案B解析①中a不能与β内的所有直线平行而是与无数条直线平行,有一些是异面;②正确;③中直线a与β内的无数条直线垂直;④根据定义a与β无公共点,正确.命题角度2两平面位置关系的作图例3(1)画出两平行平面;(2)画出两相交平面.解两个平行平面的画法:画两个平行平面时,要注意把表示平面的平行四边形画成对应边平行,如图a所示.两个相交平面的画法:第一步,先画表示平面的平行四边形的相交两边,如图b所示;第二步,再画出表示两个平面交线的线段,如图c所示;第三步,过b中线段的端点分别引线段,使它们平行且等于图c中表示交线的线段,如图d所示;第四步,画出表示平面的平行四边形的第四边(被遮住部分线段可画成虚线,也可不画),如图e 所示.引申探究在图中画出一个平面与两个平行平面相交.解跟踪训练3试画出相交于一点的三个平面.解如图所示(不唯一).1.下列图形所表示的直线与平面的位置关系,分别用符号表示正确的一组是()A.a⊄α,a∩α=A,a∥αB.a∉α,a∩α=A,a∥αC.a⊂α,a∩α=A,a∥αD.a∈α,a∩α=A,a∥α答案C解析直线在平面内用“⊂”,故选C.2.如图所示,用符号语言可表示为()A.α∩β=l B.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α答案D3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.4.经过平面外两点可作该平面的平行平面的个数是________.答案0或1解析若平面外两点所在直线与平面相交时,经过这两点与已知平面平行的平面不存在.若平面外两点所在直线与已知平面平行时,此时,经过这两点有且只有一个平面与已知平面平行.5.如图,在正方体ABCD-A1B1C1D1中,分别指出直线B1C,D1B 与正方体六个面所在平面的关系.解根据图形,直线B1C⊂平面B1C,直线B1C∥平面A1D,与其余四个面相交,直线D1B与正方体六个面均相交.1.弄清直线与平面各种位置关系的特征,利用其定义作出判断,要有画图意识,并借助于空间想象能力进行细致的分析.2.长方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找长方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱"之称.课时作业一、选择题1.已知直线a在平面α外,则()A.a∥αB.直线a与平面α至少有一个公共点C.a∩α=AD.直线a与平面α至多有一个公共点答案D解析因已知直线a在平面α外,所以a与平面α的位置关系为平行或相交,因此断定a∥α或断定a与α相交都是错误的,但无论是平行还是相交,直线a与平面α至多有一个公共点是正确的,故选D。
高中数学第二章不等式及其性质同步课时作业含解析新人教B版必修第一册

高中数学课时分层作业:2.2.1不等式及其性质1.(多选)设,a b 为正实数,则下列命题为真命题的是()A.若221a b -=,1a b -<B.若111b a -=,则1a b -<C.1=,则1a b -<D.若1,1a b ≤≤,则1a b ab -≤-2.已知,0x y z x y z >>++=,则下列不等式中一定成立的是()A.xy yz >B. xz yz >C.xy xz >D. x y z y > 3.若,a b 均为不等于零的实数,条件甲:对任意的10,0x ax b -<<+>恒成立;条件乙:20b a -<,则甲是乙 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知()12,0,1a a ∈,记12M a a =, 121N a a =+-,则M 与N 的大小关系是( )A. M N <B. M N >C. M N =D.不确定5.已知R a ∈,2(1)(3),(2)p a a q a =--=-,则 p 与q 的大小关系为( )A.p q >B.p q ≥C.p q < D . p q ≤6.若110a b<<,则下列结论中不正确的是( ) A. 22a b < B.2ab b < C. 0a b +< D. a b a b +>+7.已知2,3b a d c <<,则下列不等式一定成立的是( )A. 23a c b d ->-B.23ac bd >C. 23a c b d +>+D. 6ad bc >8.下列结论中正确的是( )A.若a b >,则ac bc >B.若a b >,则11a b< C.若22ac bc >,则 a b >D.若a b >,则22ac bc >9.若不等式组2123x a x b -<⎧⎨->⎩的解集是{|32}x x -<<,则a b += . 10.用”>”“<”或“=”填空:①已知0a b c <<<,则ac ________bc ;c a ________c b ②已知x R ∈,则22x +________2x11.给出四个条件:①0b a >>;②0a b >>;③0a b >>;④0a b >>. 其中能推出11a b<成立的是________. 12.已知三个不等式:①0ab >;②c d a b >;③bc ad >,以其中两个作条件余下一个作结论,则可组成________个真命题.13.已知a b >,则下列不等式:①22a b >; ②11a b <; ③11a b a<-; ④22a b >;⑤()0lg a b ->中,你认为正确的是________.(填序号)14.如果a b >,那么2c a -与2c b -中较大的是________15.已知()2f x ax bx c =++(1)当1,2,4a b c =-==时,求()1f x ≤的解集(2)当()()130f f ==,且当()1,3x ∈时,()1f x ≤恒成立,求实数a 的最小值答案以及解析1.答案:AD解析:对于A,由,a b 为正实数,221100a b a b a b a b a b-=⇒-=⇒->⇒>>+,故0a b a b +>->.若1a b -≥,则111a b a b≥⇒+≤+,这与0a b a b +>->矛盾,故1a b -<成立,所以A 为真命题;对于B ,取55,6a b ==,则111b a -=,但5516a b -=->,所以B 为假命题;对于C ,取4,1a b ==1=,但31a b -=<不成立,所以C 为假命题;对于 D ,22222222()(1)1(1)(1)0a b ab a b a b a b ---=+--=--≤,即1a b ab -≤-,所以D 为真命题.综上可知,真命题为A ,D.2.答案:C解析:因为x y z >>,0x y z ++=,所以30,30x x y z z x y z >++=<++=,所以0,0,x z ><又y z >,所以可得xy xz >.3.答案:A解析:当10x -<<时,恒有0ax b +>成立,∴当0a >时,0ax b b a +>->,当0a <时,0ax b b +>>,0,0,20,b a b b a ∴->>∴->∴甲⇒乙.当 3,02a b b =>时,1202b a b -=>,但当56x =-时,551()0644a b b b b ⋅-+=-+=-<,此时,乙⇒/甲,∴甲是乙的充分不必要条件. 4.答案:B解析:由题意得()()1212121110M N a a a a a a -=--+=-->,故M N >.5.答案:C解析:因为222(1)(3)(2)43(44)10p q a a a a a a a -=----=-+--+=-<,所以p q <,故选 C.6.答案:D 解析:222110,0,,,0,,,b a b a ab b a b A B C a b<<∴<<∴><+<∴中结论均正确,0,,b a a b a b D <<∴+=+∴中结论错误.故选D.7.答案:C解析:由2,3b a d c <<以及不等式的性质,得32b d a c +<+,故选C.8.答案:C解析:当0c ≤时,ac bc ≤,故选项A 不正确;取2,1a b ==-,11a b>,故选项B 不正确;由22ac bc >,知0c ≠,所以20c >,所以a b >,故选项C 正确;当0c =时,22ac bc =,故选项D 不正确.9.答案:0解析:解不等式组2123x a x b -<⎧⎨->⎩,得1223a x x b +⎧<⎪⎨⎪>+⎩,由已知条件,可知122233a b +⎧=⎪⎨⎪+=-⎩,解得33a b =⎧⎨=-⎩,所以0a b +=.10.答案:>;<;>;>解析:00a b c <<<,ac bc ∴> 又1100,0a b c a b<<⇒>>< c c a b ∴<再由00a b a b <<⇒->->⇒22(22110)x x x -=-++>222x x ∴+>11.答案:①②④解析:由①0a b <<,有110,0a b <>,所以11a b <;由②0a b >>,有10ab >,故有11a b <;由③0a b >>,有110a b >>;由④0a b >>,得11a b< 12.答案:3解析:由不等式性质,得0ab bc ad c d a b >⎫⎪⇒>⎬>⎪⎭;0ab c d bc ad a b >⎫⇒>⎬>⎭;0c d ab a b bc ad ⎫>⎪⇒>⎬⎪>⎭ 13.答案:④解析:当0,1a b ==-时,经验证①,②,③,⑤均不正确.结合指数函数2x y =是增函数可知当a b >时,有22a b >,因此④正确14.答案:2c b -解析:,(2)(2)2()0,22a b c a c b b a c a c b >∴---=-<∴-<-15.答案:(1)当1,2,4a b c =-==时,()2241f x x x ≤=-++,即2230x x ≥--()(310)x x ∴≥-+1x ∴≤-或3x ≥(2)方法一 因为()()130f f ==所以()()()()(131(1)3)f x a x x f x a x x ≤=--,=--在()1,3x ∈上恒成立 即1(1)(3)a x x -≤--在()1,3x ∈上恒成立而2(1)(3)0(1)(3)12x x x x -+-⎡⎤<--≤=⎢⎥⎣⎦ 当且仅当13x x -=-,即2x =时取到等号 所以1a ≤-,即1a ≥-,所以a 的最小值是1-方法二 ()()(13)1f x a x x ≤=--在()1,3x ∈上恒成立即()130()1a x x ≤---在()1,3x ∈上恒成立 令()22()13143(2)1)1(g x a x x ax ax a a x a -=-=+-=-----当0a =时,()10g x <=-在()1,3x ∈上恒成立,符合 当0a >时,易知()0g x <在()1,3x ∈上恒成立,符合当0a <时,则10a ≤--,所以10a ≤<- 综上所述,1a ≥-所以a 的最小值是1-。
高中数学必修4(人教B版)第二章平面向量2.3知识点总结含同步练习题及答案

已知平面向量 a = (2, x), b = (2, y), c = (3, −4),且 a ∥ c , b ⊥ c ,求 a 与 b 的 夹角.
→
→
→
→
→ →
→
→
→
→ → 8 .因为 b ⊥ c ,所以 6 − 4y = 0,解 3 → → 3 → 8 3 → 得 y = .因为 a = (2, − ) , b = (2, ) .设 a 与 b 的夹角为 θ ,则 2 3 2 8 3 → → 2×2− × → a ⋅ b 3 2 = 0 ,所以 θ = 90∘ ,即向量 → cos θ = = a 与 b 的夹角为 90∘ . → → → → |a |⋅| b | |a |⋅| b |
方向上的投影,可正,可负,可为零. 零向量与任一向量的数量积为 0 . 向量数量积的运算律
→ → →→ a ⋅ b = b ⋅ a (交换律); → → → → → → → ( a + b ) ⋅ c = a ⋅ c + b ⋅ c (分配律); → → → → → → (λ a ) ⋅ b = a (λ b ) = λ( a ⋅ b ) (数乘结合律).
已知向量 a = (1, 2), b = (3, 4),求| a | , a ⋅ b ,( a − b ) ⋅ (2 a + 3 b ). 解:| a | = √1 2 + 2 2 = √5 ; 已知 OA = (3, 4) ,OB = (7, 12),
−→ −
−→ −
→
→
→
→
→
→ →
→
→
→
→
− − − − − −
设向量 a , b 满足 | a | = | b | = 1 及 |3 a − 2 b | = √7 . 求: ① a , b 所成的角的大小;② |3 a + b | 的值.
人教版数学七年级上册 第2章 2.1整式同步测验题(一)(含答案)

整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。
人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页
高中数学必修4(人教A版)第二章平面向量2.1知识点总结含同步练习及答案

描述:高中数学必修4(人教A版)知识点总结含同步练习题及答案第二章 平面向量 2.1 平面向量的实际背景及基本概念一、学习任务了解向量的实际背景,理解平面向量的基本概念和几何表示,理解向量相等的含义.二、知识清单平面向量的概念与表示三、知识讲解1.平面向量的概念与表示向量的基本概念我们把既有方向,又有大小的量叫做向量(vector).带有方向的线段叫做有向线段.我们在有向线段的终点处画上箭头表示它的方向.以为起点、为终点的有向线段记做,起点写在终点的前面.有向线段包含三个要素:起点、方向、长度.向量可以用有向线段来表示.向量的大小,也就是向量的长度(或称模),记做 ,长度为 的向量叫做零向量(zero vector),记做 .零向量的方向不确定.长度等于 个单位的向量,叫做单位向量(unit vector).方向相同或相反的非零向量叫做平行向量 (parallel vectors),向量 、 平行,通常记做.规定零向量与任一向量平行,即对于任意向量,都有.A B AB −→−||AB −→−00 1a b ∥a b a →∥0→a →例题:相等向量与共线向量长度相等且方向相同的向量叫做相等向量(equal vector).向量 与 相等,记做 .任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量(collinear vectors).四、课后作业 (查看更多本章节同步练习题,请到快乐学)∥a b =a b 下列四个命题:① 时间、速度、加速度都是向量;② 向量的模是一个正实数;③ 相等向量一定是平行向量;④ 共线向量一定在同一直线上;⑤ 若 , 是单位向量,则 ;⑥ 若非零向量 与 是共线向量,则四点 共线.其中真命题的个数为( )A. B. C. D.解:B只有③正确.a →b →=a →b →AB −→−CD −→−A ,B ,C ,D 0123下列说法正确的是( )A.零向量没有大小,没有方向B.零向量是唯一没有方向的向量C.零向量的长度为D.任意两个单位向量方向相同解:C零向量的长度为 ,方向是任意的,故 A,B 错误,C 正确,任意两个单位向量的长度相等,但方向不一定相同,故 D 错误.00如图所示, 是正六边形 的中心.(1)与 的模相等的向量有多少个?(2)是否存在与 长度相等、方向相反的向量?(3)与 共线的向量有哪些?解:(1)因为 的模等于正六边形的边长,而在图中,模等于边长的向量有 个,所以共有 个与 的模相等的向量.(2)存在,是 .(3)有 、、.O ABCDEF OA −→−OA −→−OA −→−OA −→−1211OA −→−F E −→−F E −→−CB −→−DO −→−高考不提分,赔付1万元,关注快乐学了解详情。
高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。