辽宁省朝阳市建平县2017-2018学年八年级下学期期末考试数学试题(图片版)

合集下载

2017—2018学年八年级数学下期末试题

2017—2018学年八年级数学下期末试题

2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。

2023-2024学年辽宁省朝阳市建平县八年级(下)期末数学试卷(含详解)

2023-2024学年辽宁省朝阳市建平县八年级(下)期末数学试卷(含详解)

2023-2024学年辽宁省朝阳市建平县八年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列环保标志中,是中心对称图形的是( )A. B. C. D.2.下列从左边到右边的变形中,是因式分解的是( )A. x2+3x+1=x(x+3+1x) B. (x−y)2=x2−y2C. x2−4x+4k=(x+2)(x−2)+4kD. a2−9=(a−3)(a+3)3.由下列条件不能判定△ABC为直角三角形的是( )A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:3:2C. (b+c)(b−c)=a2D. a=3+k,b=4+k,c=5+k(k>0)4.若a>b,那么下列各式中正确的是( )A. a−3<b−3B. 4a>4bC. −2a>−2bD. a5<b55.如图,五边形ABCDE是正五边形,若l1//l2,则∠1−∠2的度数为( )A. 72°B. 144°C. 72°或144°D. 无法计算6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A. DE=BFB. OE=OFC. ∠ADE=∠CBFD. ∠ABE=∠CDF7.关于x的方程3x−2x+1=2+mx+1无解,则m的值为( )A. −5B. −8C. −2D. 58.如图,在△ABC中,∠APC=116°,P为△ABC内一点,过点P的直线MN分别交AB、BC于点M、N.若M在PA的垂直平分线上,N在PC的垂直平分线上,则∠ABC的度数为( )A. 64°B. 52°C. 54°D. 62°9.如图,直线y1=x+b与y2=kx−1相交于点P,点P的横坐标为−1,则关于x的不等式x+b>kx−1的解集在数轴上表示正确的是( )A.B.C.D.10.如图,在△OAB中,顶点O(0,0),A(−3,4),B(3,4).将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为( )A. (10,3)B. (−3,10)C. (10,−3)D. (3,−10)二、填空题:本题共5小题,每小题3分,共15分。

辽宁省朝阳市八年级下学期数学期末考试试卷

辽宁省朝阳市八年级下学期数学期末考试试卷

辽宁省朝阳市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分)(2019·南平模拟) 下列图案中既是轴对称又是中心对称图形的是()A .B .C .D .2. (3分)(2018·井研模拟) 一组数据4,5,6,4,4,7,,5的平均数是5.5,则该组数据的中位数和众数分别是()A . 4,4B . 5,4C . 5,6D . 6,73. (3分)下列四边形中,对角线相等且互相垂直平分的是()A . 平行四边形B . 正方形C . 等腰梯形D . 矩形4. (3分) (2018九上·沙洋期中) 用配方法解一元二次方程x2﹣6x+8=0时,则方程变形正确的是()A . (x﹣3)2=17B . (x+3)2=17C . (x﹣3)2=1D . (x+3)2=15. (3分)(2017·海南) 如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= 在第一象限内的图象与△ABC有交点,则k的取值范围是()A . 1≤k≤4B . 2≤k≤8C . 2≤k≤16D . 8≤k≤166. (3分) (2020九下·汉中月考) 如图,在三边互不相等的△ABC中, D,E,F分别是AB,AC,BC边的中点.连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有()A . 3对B . 4对C . 5对D . 6对7. (3分)已知关于x的一元二次方程2x2﹣x+m2﹣9=0有一个根是0,则m的值为()A . 3B . 3或﹣3C . ﹣3D . 不等于3的任意实数8. (3分)一个多边形的内角和是外角和的2倍,这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形9. (3分) (2016九下·黑龙江开学考) 如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A .B .C .D .10. (3分) (2017八下·东营期末) 一顶点重合的两个大小完全相同的边长为3的正方形ABCD和正方形AB′C′D′,如图所示,∠DA′D′=45°,边BC与D′C′交于点O,则四边形ABOD′的周长是()A . 6B . 6C . 4D . 3+3二、填空题(每小题4分。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

2017~2018第二学期八年级数学期末试卷

2017~2018第二学期八年级数学期末试卷

2017~2018学年第二学期期末考试卷八年级数学试题 2018.6一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置..........) 1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………( ▲ )A.BC .D .2.下列各式: a -b 2 ,x -3x ,5+y π ,a +b a -b ,1n(x -y )中,是分式的共有…………………………( ▲ ) A .1个B .2个C .3个D .4个3.下列式子从左到右变形一定正确的是 ………………………………………………………………( ▲ ) A . a b =a 2b 2B . a b =a +1b +1C . a b =a -1b -1D . a 2 ab =a b4.若2x -1 在实数范围内有意义,则x 的取值范围是………………………………………………( ▲ ) A .x ≥12B . x ≥-12C .x >12D .x ≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)( 2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………( ▲ ) A .1B .2C .3D .46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………( ▲ )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球7.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =6x 的图像上三点,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是 …………………………………………………………………………………………( ▲ ) A . x 1<x 2<x 3B . x 3<x 2<x 1C . x 2<x 1<x 3D . x 2<x 3<x 18.关于x 的分式方程7xx -1 +5=2m -1x -1 有增根,则m 的值为 ……………( ▲ )A .5B .4C .3D .19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 等于 …………………………………………( ▲ )CF E DBA (第9题)A .15°B .25°C .45°D .55°10.如图,在平面直角坐标系中,直线y =33x +2与x 轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =kx (k ≠0)上,则k 的值为……( ▲ ) A .-4B .-2C . -2 3D . -3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位......置.上.) 11.若分式x -3x值为0,则x 的值为 ▲ . 12.若最简二次根式2a -3 与5是同类二次根式,则a 的值为 ▲ .13.若反比例函数y =k -2x 的图像经过第二、四象限,则k 的取值范围是 ▲ .14.关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是 ▲ . 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为 ▲ .16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG = ▲ .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为 ▲ .18.如图,已知点A 是一次函数y =23x (x ≥0)图像上一点,过点A 作x 轴的垂线,B 是上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx (x >0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是 ▲ .三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(本题满分16分)计算:(1)6×33-(12)-2+|1-2|;(2)(312-213+48)÷3;MDABOCADG BFC(第15题)(第16题)(第18题)(3)1m -2-4m 2-4;(4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(x - 1x ),其中x =3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE .23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度. Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出的图形△A 1B 1C .(2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2.(3)请用无刻度的直尺在第一、四象限内画出一个以A 1B 2为FEABCD边,面积是7的矩形A1B1EF.(保留作图痕迹,不写作法)(4)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (k >0,x >0)的图像上,点D 的坐标为(2,32),设AB 所在直线解析式为y =kx +b (a ≠0),(1)求k 的值,并根据图像直接写出不等式ax +b >kx的解集;(2)若将菱形ABCD 沿x 轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分) 在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原. (1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF = ▲ °,当点E 与点A 重合时,∠DEF = ▲ °.② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE 时,请求出线段AE 的长度.(3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.A PBC FDE A E P DF CB DC E MAPBDF CEP AB(图1) (图2) (图3) (图4)。

辽宁省朝阳市八年级下学期数学期末考试试卷

辽宁省朝阳市八年级下学期数学期末考试试卷

辽宁省朝阳市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各组二次根式中,x的取值范围相同的是()A . 与B . ()2与C . 与D . 与2. (2分) (2016八下·新城竞赛) 一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是()A . 2B . 2或﹣1C . 1或﹣1D . ﹣13. (2分)(2019·上城模拟) 如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点P在边AB上,∠CPB的平分线交边BC于点D,DE⊥CP于点E,DF⊥AB于点F.当△PED与△BFD的面积相等时,BP的值为()A .B .C .D .4. (2分)(2018·龙东) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A . 平均分是91B . 中位数是90C . 众数是94D . 极差是205. (2分)如图,在△ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C 恰好落在点D处,则∠BAD等于()A . 25°B . 30°C . 45°D . 60°6. (2分) (2019九下·瑞安月考) 某市5月份连续7天的最高气温如下(单位:℃):32,30,34,36,36,33,37.这组数据的中位数、众数分别为()A . 34℃,36℃B . 34℃,34℃C . 36℃,36℃D . 32℃,37℃7. (2分)(2020·宿州模拟) 如图,AB=12,C是线段AB上一点,分别以AC、CB为边在A的同侧作等边△ACP 和等边△CBQ ,连接PQ ,则PQ的最小值是()A . 3B . 4C . 5D . 68. (2分) (2016七下·白银期中) 在同一平面内,两直线的位置关系必是()A . 相交B . 平行C . 相交或平行D . 垂直9. (2分)如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1 , S2 ,则S1 ,S2的关系是()A . S1>S2B . S1<S2C . S1=S2D . 3S1=2S210. (2分) (2017八下·石景山期末) 一列快车以100千米/小时的速度从甲地驶往乙地,一列特快车以150千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为1000千米.两车同时出发,则大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()A .B .C .D .二、填空题 (共4题;共6分)11. (1分)(2017·宜宾) 如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是________.12. (1分)化简:=________13. (2分)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解________.14. (2分)如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF的度数为________.三、解答题 (共11题;共81分)15. (5分) (2017八上·新化期末) 计算:(1+ )(﹣1)﹣|2﹣ |+(﹣2016)0 .16. (5分)某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表所示:候选人测试成绩(百分制)面试笔试甲8595乙9583根据需要,面试的成绩与笔试按6:4的比例确定个人成绩(成绩高者被录用),那么谁将被录用?17. (10分) (2016八上·东港期中) 已知:点A(﹣1,0),B(0,﹣3).(1)求:直线AB的表达式;(2)直接写出直线AB向下平移2个单位后得到的直线表达式;(3)求:在(2)的平移中直线AB在第三象限内扫过的图形面积.18. (5分) (2019八下·施秉月考) 小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面后还余1m (如图),当他拉着绳子的下端,使其离旗杆5m时,发现下端刚好接触地面,求旗杆的高.19. (5分) (2019七下·侯马期中) 如图,把一个长26cm、宽14m的长方形分成五块,其中两个大正方形相同两个长方形相同,求中间小正方形的面积.20. (10分) (2019九上·温州开学考) 如图,直线与x轴、y轴分别交于点B,C,抛物线过B,C两点,且与x轴的另一个交点为点A,连接AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点与点A不重合,使得,若存在,求出点D的坐标;若不存在,请说明理由;(3)有宽度为2,长度足够长的矩形阴影部分沿x轴方向平移,与y轴平行的一组对边交抛物线于点P 和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M 的坐标.21. (5分)判断由下列各组线段a、b、c的长,能组成什么三角形,试说明理由.a=3K,b=3K,c=3 K.22. (10分) (2019九下·未央月考) 如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在轴下方的动点,过M作MN∥y轴交直线BC于点N.求线段MN的最大值;(3) E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.23. (6分)(2013·南宁) 2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.24. (5分)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.25. (15分)(2016·竞秀模拟) 如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.(1)求证:△ABP≌△ADP;(2)若BP=EF,求证:四边形EPFD是矩形.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共6分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共81分)15-1、16-1、17-1、17-2、17-3、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、23-3、23-4、24-1、25-1、25-2、。

辽宁省朝阳市八年级下学期数学期末考试试卷

辽宁省朝阳市八年级下学期数学期末考试试卷

八年级下学期数学期末考试试卷一、选择题(共10题;共20分)1.不等式的解集是()A. B. C. D.2.若分式中的、的值都变为原来的3倍,则此分式的值()A. 不变B. 是原来的3倍C. 是原来的D. 是原来的3.下列图案中,不是中心对称图形的是()A. B. C. D.4.多项式各项的公因式是()A. B. C. D.5.如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为()A. 10°B. 15°C. 25°D. 40°6.如果一个多边形的每一个内角都是,那么这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形7.如图,中,的垂直平分线交于,如果,,那么的周长是()A. B. C. D.8.若解分式方程= 产生增根,则m=()A. 1B. 0C. ﹣4D. ﹣59.下列命题中是真命题的是()A. 若,则B. 有两个角为的三角形是等边三角形C. 一组对边相等,另一组对边平行的四边形是平行四边形D. 如果,那么,10.如图,在中,,,将绕点逆时针旋转,得到,连接,则的长是()A. B. C. D.二、填空题(共6题;共9分)11.分解因式:________.12.关于x的不等式组的解集为-3<x<3,则a,b的值分别为________.13.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为________。

14.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书的数量________本.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=________度.16.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为________.三、解答题(共9题;共63分)17.先化简,再求值:.其中,.18.解不等式组:,并把它的解集在数轴上表示出来19.解分式方程:.20.如图是一种儿童的游乐设施—儿童荡板.小明想验证这个荡板上方的四边形是否是平行四边形,现在手头只有一根足够长的绳子,请你帮助他设计一个验证方案,并说明理由.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的格点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC从开始变换到A1 C2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在中,平分,,交的延长线于点,点在上,且,求证:点是的中点.24.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=________ cm;DP=________ cm;BQ=________ cm;CQ=________ cm. (2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(/个)使用农户数(户1520已知可供建造沼气池的占地面积不超过,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.答案解析部分一、选择题1.【解析】【解答】解:−3x<−2,不等式两边同除以−3,得,故答案为:A.【分析】根据不等式的性质,在不等式的两边都除以-3,不等号方向改变即可得出答案.2.【解析】【解答】解:∵分式中的、的值都变为原来的3倍∴∴此分式的值不变.故答案为:A【分析】用3x,3y替换原题中的x、y,再分子、分母分别分解因式后约分即可得出答案.3.【解析】【解答】解:A、是中心对称图形,故A选项错误;B、是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项正确;D、是中心对称图形,故D选项错误.故答案为:C.【分析】中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合,再对各选项逐一判断即可。

2018-2019学年辽宁省朝阳市建平县八年级(下)期末数学试卷

2018-2019学年辽宁省朝阳市建平县八年级(下)期末数学试卷

2018-2019学年辽宁省朝阳市建平县八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的,请将正确的选项代号按图例要求涂在相应题的位置上,不涂、涂错或多涂,一律得0分)1.(3分)下列图形中是中心对称图形的是()A.B.C.D.2.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n23.(3分)如图,Rt△ABC沿直线边BC所在的直线向右平移得到△DEF,下列结论中不一定正确的是()A.∠DEF=90°B.BE=CFC.CE=CFD.S四边形ABEH=S四边形DHCF4.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°5.(3分)下列分式中,最简分式是()A.B.C.D.6.(3分)不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC7.(3分)若关于x的分式方程+=1有增根,则m的值是()A.m=0B.m=﹣1C.m=0或m=3D.m=38.(3分)如图,△ABC中,AB=AC=16,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为26,则BC的长为()A.20B.16C.10D.89.(3分)如图,直线y=x+与y=kx﹣1相交于点P,点P的纵坐标为,则关于x的不等式x+>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.(3分)定义:如果一个关于x的分式方程=b的解等于,我们就说这个方程叫差解方程.比如:=就是个差解方程.如果关于x的分式方程=m﹣2是一个差解方程,那么m的值是()A.2B.C.﹣D.﹣2二、填空题(本大题共6小题,每小题3分,共18分只需要将结果直接填写在答题纸对应题号处的横线上,不必写出解答过程.不填、填错,一律得0分)11.(3分)分解因式:x2y﹣4y=.12.(3分)如果分式有意义,那么x的取值范围是.13.(3分)若正多边形的一个内角等于150°,则这个正多边形的边数是.14.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.15.(3分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为.16.(3分)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A逆时针反向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为.三、解答题(本大题共9小题,满分72分,解答题应写出证明过程)17.(6分)(1)分解因式:﹣x2(2)利用分解因式简便计算:20192﹣2019×4040+2020218.(5分)解不等式组,并将它的解集在数轴上表示出来.19.(8分)线段AB=8cm,沿着与AA1夹角为30°向右移动12cm,使A的对应点为A1.(1)把图形补画完整;(2)判断图形的形状;(3)求线段AB所扫过的区域的面积.20.(8分)(1)化简:•(2)先化简,再求值:(﹣x+2)÷选一个你喜欢的数求值.21.(7分)如图,在△ABC中,AB=BC,∠ABC=84°,点D是AC的中点,DE∥BC.求∠EDB的度数.22.(8分)如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF是平行四边形.23.(8分)如图是学习分式方程应用时,老师板书的问题和两名同学对该题的解答(老师找聪聪和明明分别用不同的方法解答此题)(1)聪聪同学所列方程中的x表示;(2)明明一时紧张没能做出来,请你帮明明完整的解答出来.24.(10分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A、B、D三点在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8.(1)试求点F到AD的距离.(2)试求BD的长.25.(12分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒A销量锐减,进入四月份后,经销商为扩大销量,每瓶酒A比三月份降价500元,如果卖出相同数量的高档酒A,三月份销售额为4.5万元,四月份销售额只有3万元.(1)求三月份每瓶高档酒A售价为多少元?(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒B销售.已知高档酒A每瓶进价为800元,中低档酒B每瓶进价为400元.现用不超过5.5万元的预算资金购进A,B两种酒共100瓶,且高档酒A至少购进35瓶,请计算说明有几种进货方案?(3)该商场计划五月对高档酒A进行特别促销活动,决定在四月售价基础上每售出一瓶高档酒A再送顾客价值m元的代金券,而中低档酒B销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定m的值,并说明此时哪种方案对经销商更有利?2018-2019学年辽宁省朝阳市建平县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的,请将正确的选项代号按图例要求涂在相应题的位置上,不涂、涂错或多涂,一律得0分)1.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.2.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.3.【解答】解:∵Rt△ABC沿直线边BC所在的直线向右平移得到△DEF,∴∠DEF=∠ABC=90°,BC=EF,S△ABC=S△DEF,∴BC﹣EC=EF﹣EC,S△ABC﹣S△HEC=S△DEF﹣S△HEC,∴BE=CF,S四边形ABEH=S四边形DHCF,但不能得出CE=CF,故选:C.4.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.5.【解答】解:A、=,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.6.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.7.【解答】解:方程两边都乘x﹣4,得3﹣(x+m)=x﹣4,∵原方程有增根,∴最简公分母x﹣4=0,解得x=4,当x=4时,3﹣(4+m)=4﹣4,m=﹣1,故选:B.8.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=8.∵△CDE的周长为26,∴CD=10,∴BC=2CD=20.故选:A.9.【解答】解:把y=代入y=x+,得=x+,解得x=﹣1.当x>﹣1时,x+>kx﹣1,所以关于x的不等式x+>kx﹣1的解集为x>﹣1,用数轴表示为:.故选:A.10.【解答】解:由关于x的分式方程=m﹣2是一个差解方程,得到x=,把x=代入方程得:2m=m﹣2,解得:m=﹣2,故选:D.二、填空题(本大题共6小题,每小题3分,共18分只需要将结果直接填写在答题纸对应题号处的横线上,不必写出解答过程.不填、填错,一律得0分)11.【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).12.【解答】解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.13.【解答】解:∵正多边形的一个内角等于150°,∴它的外角是:180°﹣150°=30°,∴它的边数是:360°÷30°=12.故答案为:12.14.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.15.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵顶角与一个底角度数的比值等于,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36°.16.【解答】解:连接BB′,BC′交AB′于D,如图,△ABC中,∵∠C=90°,AC=BC=,∴AB=AC=×=2,∵△ABC绕点A逆时针反向旋转60°到△AB′C′的位置,∴∠AC′B′=∠ACB=90°,AC′=AC=B′C′=BC,AB=AB′=2,∠BAB′=60°,∴BC′垂直平分AB′,△ABB′为等边三角形,∴C′D=AB′=1,BD=AB′=,∴C′B=C′D+BD=1+.故答案为1+.三、解答题(本大题共9小题,满分72分,解答题应写出证明过程)17.【解答】解:(1)原式=﹣(x2﹣4)=﹣(x+2)(x﹣2);(2)原式=20192﹣2×2019×2020+20202=(2019﹣2020)2=(﹣1)2=1.18.【解答】解:解不等式<1,得:x<,解不等式5x+2≥3x,得:x≥﹣1,将不等式的解集表示在数轴上如下:所以不等式组的解集为﹣1≤x<.19.【解答】解:如图所示,四边形A1AB1B即为所求.(2)∵AB∥A1B1,且AB=A1B1,∴四边形A1AB1B是平行四边形,故答案为:平行四边形.(3)作BC⊥AA1于C由题意知∠A=30°,在Rt△ABC中,AB=8 cm BC=AB=×8=4面积=AA1×BC=12×4=48(cm2)因此线段AB所扫过的区域的面积是48 cm2.20.【解答】解:(1)•==;(2)(﹣x+2)÷====x﹣2,当x=1时,原式=1﹣2=﹣1.21.【解答】解:∵AB=BC,点D是AC的中点,∴∠DBC=∠ABC=42°.又∵DE∥BC,∴∠EDB=∠DBC=42°.22.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.23.【解答】解:(1)由题意可得,聪聪同学所列方程中的x表示行驶600km普通火车客车所用的时间,故答案为:行驶600km普通火车客车所用的时间;(2)解:设普通火车客车的速度为ykm/h,则高速列车的速度为3ykm/h,,解得,y=100,经检验,y=100是原方程的根,则3y=300,答:高速列车的速度为300km/h.24.【解答】解:(1)如图,过点F作FM⊥AD于点M,在△EDF中,∠EDF=90°,∠E=60°,DE=8,则∠DFE=30°,故EF=2DE=16,DF===8,∵AB∥EF,∴∠FDM=∠DFE=30°,在Rt△FMD中,MF=DF=8×=4,即点F与AD之间的距离为:4;(2)在Rt△FMD中,DM===12,∵∠C=45°,∠CAB=90°,∴∠CBA=45°,又∵∠FMB=90°,△FMB是等腰直角三角形,∴MB=FM=4,∴BD=MD﹣FM=12﹣4.25.【解答】解:(1)设三月份每瓶高档酒A售价为x元,由题意得=,解得x=1500,经检验,x=1500是原方程的解,且符合题意,答:三月份每瓶高档酒A售价为1500元;(2)设购进A种酒y瓶,则购进B种酒为(100﹣y)瓶,由题意得,解得35≤y≤37.5,∵y为正整数,∴y=35、36、37,∴有三种进货方案,分别为:①购进A种酒35瓶,B种酒65瓶,②购进A种酒36瓶,B种酒64瓶,③购进A种酒37瓶,B种酒63瓶;(3)设购进A种酒y瓶时利润为w元,则四月份每瓶高档酒A售价为1500﹣500=1000元,w=(1000﹣800﹣m)y+(550﹣400)(100﹣y),=(50﹣m)y+15000,∵(2)中所有方案获利恰好相同,∴50﹣m=0,解得m=50.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档