2020年精品解析七年级上学期期末考试数学试题(解析版) (6)

合集下载

精品解析:山东省日照市岚山区2020-2021学年七年级上学期期末数学试题(解析版)

精品解析:山东省日照市岚山区2020-2021学年七年级上学期期末数学试题(解析版)

2020~2021学年度上学期期末质量检测七年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试时间为100分钟.2.答第Ⅰ卷前务必将自己的姓名、考号等信息填写在答题卡规定位置上.考试结束,本试卷和答题卡一并收回.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题号的答案标号涂黑.如需改动,必须先用橡皮擦干净,再改涂其他答案.不涂在答题卡上,答在试卷上无效.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案须写在答题卡各题目指定的区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第Ⅰ卷(选择题 36分)一、选择题(本大题共12小题,每小题3分,满分36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 在()1--,0,−π,|-2.5|,0.333,227,225⎛⎫- ⎪⎝⎭这7个数中,正有理数的个数是( ) A. 3个B. 4个C. 5个D. 6个 【答案】C【解析】【分析】根据有理数式整数、有限小数或无限循环小数,再根据正负数的判断即可得出答案. 【详解】解:()11--=, 2.5 2.5-=,0.333,227,224525⎛⎫-= ⎪⎝⎭为正有理数; 0为整数,−π为无理数,故选C .【点睛】本题考查了实数,关键是熟悉有理数的概念.2. 如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】根据距离原点越近其绝对值越小即可求解;【详解】解:数轴上点A ,B ,C ,D 在数轴上表示的数距离原点越近,其绝对值越小,∴绝对值最小的数对应的点是B .故答案选B .【点睛】本题主要考查了数轴、绝对值、有理数比大小,准确判断是解题的关键.3. 在算式612--⊗中的⊗所在位置,填入下列运算符号,能使最后计算出来的值最小的符号是()A. +B. −C. ×D. ÷【答案】B【解析】【分析】根据题意,可以计算出各种情况下式子的值,然后比较大小,即可解答本题.【详解】解:A.当算式612--⊗中的⊗所在位置,填入+时,6125--+=;B.当算式612--⊗中的⊗所在位置,填入−时,6123---=;C.当算式612--⊗中的⊗所在位置,填入×时,6124--⨯=;D.当算式612--⊗中的⊗所在位置,填入÷时,116122--÷=;113452<<<∴最后计算出来的值最小的符号是“−”;故选B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4. 在式子2abc ,π,3x y +,243x y-,2a ,22a a +中,单项式的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用单项式的定义分析得出答案.【详解】解:在式子2abc ,π,3x y +,243x y -,2a,22a a +中, 3x y +,22a a +为多项式;2a不是单项式;2abc ,π,243x y -,为单项式; 故选B .【点睛】本题考查了单项式:数或字母的积组成的式子叫单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5. 下列运算正确的是( )A. 22223x x x -=-B. 220x y xy -=C. 2235a a a +=D. 532m m -= 【答案】A【解析】【分析】根据合并同类项法则一一判断即可.【详解】解:A. 22223x x x -=-,此选项正确;B.22x y xy -不是同类项不能合并,此选项错误;C.235a a a +=,此选项错误;D.532m m m -=,此选项错误;故选A .【点睛】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键. 6. 下列说法错误的是( )A. 5.80万是精确到百位的近似数B. 近似数58.3与58.30表示的意义不相同C. 2.7×104精确到十分位 D. 近似数2.20是由数a 四舍五入得到的,那么数a 的取值范围是2.195 2.205a ≤<【答案】C【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】解:A. 5.80万是精确到百位的近似数,说法正确,不符合题意;B. 近似数58.3与58.30表示的意义不相同,说法正确,不符合题意;C. 2.7×104=27000精确到千位,说法错误,符合题意;D. 近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195 2.205≤<,说法正确,不符合题意;a故选C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7. 如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是( )A. 两点之间,直线最短B. 经过一点,有无数条直线C. 两点确定一条直线D. 两点之间,线段最短【答案】D【解析】【分析】根据两点之间,线段最短解答.【详解】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选D.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.8. 下列图形都是由六个相同正方形组成的,经过折叠不能围成正方体的是()A. B.C. D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:选项A 、B 、C 经过折叠均能围成正方体,选项D 折叠后有两个面重叠,不能折成正方体. 故选:D .【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1−4−1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2−2−2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3−3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1−3−2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.9. 一个角的补角比这个角的余角的2倍还多40°,则这个角的度数是( ) A. 40°B. 50°C. 60°D. 70°【答案】A【解析】【分析】设这个角为x 度.根据一个角的补角比这个角的余角的2倍还多40°,构建方程即可解决问题.【详解】解:设这个角为x 度.则根据题意:180-x=2(90-x )+40,解得:x=40.所以这个角的度数是40°.故选:A .【点睛】本题考查余角和补角的有关计算,一元一次方程的应用,掌握方程思想,能根据题意找出等量关系并列出方程是解决此题的关键.10. 已知−2是关于x 的一元一次方程ax+b=1的解,则代数式3(41)b a b -+-的值是( )A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】将2x =-代入ax+b=1可得到12b a =+,再将3(41)b a b -+-化简为241b a -+,将12b a =+代入化简后的式子即可得出答案. 【详解】解:−2是关于x 的一元一次方程ax+b=1的解,21a b ∴-+=12b a ∴=+()341b a b ∴-+-341b a b =--+241b a =-+()21241a a =+-+2441a a =+-+3=故选D .【点睛】本题考查了一元一次方程的解及整式的化简求值,熟练掌握运算法则是解题的关键.11. 如图,已知∠AOB=120°,从∠AOB 的内部引两条射线OM 、ON ,使得夹角∠MON=60°,则∠AON 与∠BOM 一定满足的关系是( )A. ∠AON+∠BOM=120°B. ∠AON+∠BOM=180° C . ∠AON=∠BOMD. ∠AON=2∠BOM【答案】B【解析】【分析】根据角的和差,可得∠AON+∠MOB=∠AOM+∠MON+∠MON+∠NOB=∠AOB+∠MON ,再代入计算即可求解.【详解】解:对于A 、B 选项:∵∠AON =∠AOM +∠MON ,∠MOB =∠MON +∠NOB ,∴∠AON+∠MOB=∠AOM+∠MON+∠MON+∠NOB=∠AOB+∠MON∵∠AOB=120°,∠MON=60°,∴∠AON+∠BOM=120°+60°=180°,故A 选项不符合题意;故B 选项符合题意;对于C 选项:条件不足,不能说明∠AON=∠BOM ,故不符合题意;对于D 选项:条件不足,不能说明∠AON=2∠BOM ,故不符合题意;故选:B .【点睛】本题考查了角的计算,解题的关键是利用了角的和差关系求解.12. 一套仪器由1个A 部件和3个B 部件构成,1立方米钢材可做40个A 部件或240个B 部件,现要用6立方米钢材制作这种仪器,设应用x 立方米钢材做B 部件,其他钢材做A 部件,恰好配套,则可列方程为( )A. 340240(6)x x ⨯=-B. 324040(6)x x ⨯=-C. 403240(6)x x =⨯-D. 240340(6)x x =⨯-【答案】D【解析】【分析】根据A 部件使用的钢材数=6-B 部件的钢材数表示出A 部件使用的钢材数,再根据A 部件的个数×3=B 部件的个数列出方程.【详解】∵应用x 立方米钢材做B 部件,∴可做240x 个B 部件,且应用6-x 立方米钢材做A 部件.∴可做40(6-x )个A 部件∵一套仪器由1个A 部件和3个B 部件构成,且恰好配套.∴240340(6)x x =⨯-故选D.【点睛】本题考查一元一次方程的应用,解题关键是理解题意找出等量关系式,根据等量关系式列出方程. 第Ⅱ卷(非选择题 84分)二、填空题(本大题共4小题,每小题4分,共16分.请将答案直接写在答题卡相应位置上) 13. 国家统计局2020年12月10日公布的全国粮食生产数据显示,我国粮食生产实现“十七连丰”:2020年全国粮食总产量为13390亿斤,产量连续6年保持在1.3万亿斤以上.将“13390亿”用科学记数法表示为______________.【答案】1.339×1012【解析】【分析】科学记数法的表示形式为:10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动位数相同,当原数绝对值>1时,n 是正数,当原数的绝对值<1时,n 是负数.【详解】13390亿121339000000000 1.33910==⨯,故选:A .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 和n 的值.14. 计算1103752.8'︒-︒=____________.【答案】5749︒'【解析】【分析】先根据1度等于60分,1分等于60秒的换算关系统一单位,再算减法即可.【详解】解:1103752.8=110375248=109975248=5749'''''︒-︒︒-︒'︒-︒︒,故答案为:5749︒'.【点睛】本题考查了度、分、秒之间的换算的应用,能正确进行度、分、秒之间的换算是解此题的关键,注意:1=60,1=60'''. 15. 如图,B 、C 为线段AD 上的两点,若线段AD 的长度为a ,线段BC 的长度为b ,则图中所有线段的长度之和为__________.【答案】3a+b【解析】【分析】先写出所有的线段,再利用线段的和与差即可得出答案.【详解】解:图中所有线段为AB 、AC 、AD 、BC 、BD 、CD,AD a BC b ==∴AB+AC+AD+BC+BD+CD()AB BC CD AD AC BD =+++++2a AD BC =++=3a b +,故答案为:3a+b .【点睛】本题考查了线段的和与差,熟练掌握线段之间的关系是解题的关键.16. 如图,小悦和小萱同学一起玩“数字盒子”的游戏:先任意想一个数输入“数字盒子”中,按顺序进行四次运算后,得到一个输出的数.若小悦想了一个数,并告诉小萱这个数经过 “数字盒子”后输出的数是−2,则小悦所想的数是________.【答案】1【解析】【分析】由结果逆着运算,即由输出的数加4,再乘以2,接着减去1,最后除以3即可解题.【详解】解:242-+= 224⨯=413-=331÷=故答案为:1.【点睛】本题考查有理数的混合运算,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(本大题共6小题,满分68分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. (1)计算:()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭(2)先化简,再求值:33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭,其中1 2.x y =-=-, 【答案】(1)-4;(2)34x y -;4【解析】【分析】(1)直接利用有理数混合运算法则计算得出答案,(2)先去括号,根据合并同类项法则化简出最简结果,再将1,2x y =-=-代入其中即可求解.【详解】(1)()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭ ()13684112⎛⎫=⨯-+-÷+ ⎪⎝⎭3214=--+=- (2)33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ 33131222233x x y x y =+-+- 34x y =-当12x y ,时,原式()()()3412484=⨯---=---=. 【点睛】本题考查了有理数混合运算,整式的加减——化简求值,熟练掌握合并同类项的法则,和有理数混合运算法则是解题关键.18. 如图,已知正方形网格中的三点A ,B ,C ,按下列要求完成画图和解答:(1)画线段AB ,画射线AC ,画直线BC ;(2)取AB 的中点D ,并连接CD ;(3)根据图形可以看出:∠________与∠________互为补角.【答案】(1)见解析;(2)见解析;(3)∠ADC与∠BDC互为补角【解析】【分析】(1)根据直线,射线,线段的定义画出图形即可;(2)根据中点的定义找到点D再连接CD即可;(3)根据补角的性质即可得出答案.【详解】解:(1)如下图所示;(2)如下图所示;(3)根据图形可以看出:∠ADC与∠BDC互为补角.【点睛】本题考查了作图-应用与设计,解题的关键时熟练掌握基本知识,灵活运用所学知识解决问题.19. 数学课上老师布置大家解方程3142125x x-+=-,小星同学板演的解题过程如下:【解析】解:去分母,得5(31)2(42)1x x-=+-.①去括号,得155841x x-=+-.②移项,得158541x x-=+-.③合并同类项,得78x=.④系数化为1,得87x =. ⑤ (1)老师批阅后说小星同学的解题过程有误,你认为出现错误的步骤是_______(只填写序号),错误原因是:_________,这个方程正确的解应该是x=________.然后,请你自己细心解下面的方程:(2)121236x x +--=+. 【答案】(1)①,方程两边没有同时乘10 ,17x =-;(2)6x = 【解析】【分析】 依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可.【详解】解:(1) ① 方程两边没有同时乘10 17x =- 3142125x x -+=- 解:去分母,得()()53124210x x -=+-去括号,得1558410x x -=+-移项,得1584105x x -=-+合并同类项,得71x =-系数化为1,得17x =-(2)解方程121236x x +--=+过程如下: 解:去分母,得2(1)612(2)x x +-=+-.去括号,得226122x x +-=+-.移项,得212226x x +=+-+.合并同类项,得318x =.系数化为1,得6x .【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.20. 如图1,点A、O、B在同一条直线上,∠BOC=40°,OD平分∠AOC.从点O出发画一条射线OE,使得∠COE=90°.请画出满足条件的射线OE,并求出∠DOE的度数.(1)如图2,已画出射线OE的第一种位置,请将解题过程补充完整:【解析】解:因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠________−∠________=________°.因为OD平分∠AOC,所以∠COD=12∠________=________°.因为∠COE=90°,所以∠DOE=∠________−∠________=________°.(2)请在图3中画出射线OE的第二种位置,并直接写出此种情况下∠DOE的度数.【答案】(1)AOB ,BOC ,140°;AOC,70°;COE ,COD ,20°;(2)见解析,∠DOE=160°【解析】【分析】(1)根据邻补角的定义求出∠AOC,再由角平分线的性质得出∠COD,最后根据∠DOE=∠ COE−∠ COD 即可得出答案;(2)根据邻补角的定义求出∠AOC,再由角平分线的性质得出∠COD,最后根据∠DOE=∠ COE+∠ COD 即可得出答案.【详解】解:(1)因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠ AOB −∠ BOC = 140 °.因为OD平分∠AOC,所以∠COD=12∠ AOC = 70 °.因为∠COE=90°,所以∠DOE=∠ COE −∠ COD = 20 °.(2)射线OE的位置如下图所示,此时∠DOE=160°.因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠AOB −∠ BOC =140°.因为OD平分∠AOC,所以∠COD=12∠ AOC=70°.因为∠COE=90°,所以∠DOE=∠ COE +∠ COD =90°+70°=160°.【点睛】本题考查了邻补角定义,角平分线的定义以及角的计算,准确识图是解题的关键.21. 阅读下面的材料,解决有关问题:在如图1的“数表”中,数字按一定规律排列,我们分别在“数表”中涂抹出两个“H”,在每个“H”所覆盖的7个数字中,将最上端两数的和与最下端两数的和相减,计算结果称为“H值”.【计算与发现】分别计算图1中的两个不同位置的“H”所对应的“H值”:(2+4)−(20+22)=;(24+26)−(42+44)=,我们可以初步发现:__________________________;【探究与证明】图2是从图1中截出的一部分,在“H”所覆盖的7个数字中,若设中心数为x,则A、B、C、D所对应的数可分别表示为,,,(用含x的代数式表示),并请你利用整式的运算,对【计算与发现】中发现的规律进行验证.【答案】【计算与发现】−36;−36;不同位置的“H”所对应的“H值”都是−36;【探究与证明】x﹣10,x+8,x+10,x﹣8;见解析【解析】【分析】【计算与发现】直接根据有理数的加减运算法则计算即可;根据结果即可得出规律;【探究与证明】先分别表示出A、B、C、D所对应的数,再代入(A+D)−(B+C)即可验证规律.【详解】解:【计算与发现】(2+4)−(20+22)=6-42=-36;(24+26)−(42+44)=50-86=-36;我们可以初步发现:不同位置的“H”所对应的“H值”都是−36.【探究与证明】A、B、C、D所对应的数分别为:x﹣10,x+8,x+10,x﹣8;(A+D)−(B+C)=(x﹣10+ x﹣8)﹣(x+8+ x+10)=2x﹣18﹣2x﹣18=−36.【点睛】本题考查了有理数的加减运算及整式的加减的应用,熟练掌握运算法则是解题的关键.22. 疫情期间,某蛋糕店采用“线上”销售模式,即提前一天线上下单,第二天无接触送货上门.为了吸引客户,在A、B两种蛋糕送达时,采用赠代金券的返利方式给顾客意外惊喜.已知返利方式有两种,每种方式返利后A、B两种蛋糕的实际利润如下表:蛋糕店每日限量销售A 、B 两种蛋糕共计30盒,且都能售完,每天只推出一种返利方式.(1)若采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,则A 、B 两种蛋糕各售出多少盒? (2)下完订单的当晚,店员M 说:“明天无论采用哪种返利方式,销售A 、B 两种蛋糕的实际总利润都一样”,你觉得她的判断会成立吗?请说明理由.【答案】(1)A 种蛋糕售出17盒,B 种蛋糕售出13盒;(2)店员的判断不成立,见解析【解析】【分析】(1)设A 种蛋糕售出x 盒,则B 种蛋糕售出(30−x )盒,根据“采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,”列出方程求解即可;(2)设A 种蛋糕订了y 盒,则B 种蛋糕订出(30−y )盒,若店员的判断成立,根据“明天无论采用哪种返利方式,销售A 、B 两种蛋糕的实际总利润都一样”列方程求解,再根据y 只能取整数,即可得出答案.【详解】解:(1)设A 种蛋糕售出x 盒,则B 种蛋糕售出(30−x )盒,根据题意得方程()10830274x x +-=.解得17x =.因此,3013x -=.答:A 种蛋糕售出17盒,B 种蛋糕售出13盒.(2)设A 种蛋糕订了y 盒,则B 种蛋糕订出(30−y )盒,若店员的判断成立,则可列方程:()()1083091130y y y y +-=+-解得22.5y =因为y 只能取整数,所以22.5y =不符合题意,因此店员的判断不成立. 【点睛】本题考查了一元一次方程的应用,读懂题意找到等量关系式式解题的关键.。

2020年七年级上册期末数学试卷 含解析

2020年七年级上册期末数学试卷  含解析

七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下面是我省四个地市2017年12月份的日均最低温度:﹣10℃(太原),﹣14℃(大同),﹣5℃(运城),﹣8℃(吕梁).其中日均最低温度最高的是()A.吕梁B.运城C.太原D.大同2.由几个相同的小立方块组成一个立体图形,如图是从不同方向看到它的图形,小立方块的个数是()A.3个B.4个C.5个D.6个3.单项式﹣的系数和次数分别是()A.﹣,1 B.﹣,2 C.,1 D.,24.要了解某校1000名初中生的课外负担情况,若采用抽样调查的方法进行调查,则在下面哪种调查方式具有代表性?()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八年级各100名学生5.式子﹣2﹣(﹣1)+3﹣(+2)省略括号后的形式是()A.2+1﹣3+2 B.﹣2+1+3﹣2 C.2﹣1+3﹣2 D.2﹣1﹣3﹣2 6.如图,从A到B有三条路径,最短的路径是②,理由是()A.两点确定一条直线B.两点之间线段最短C.过一点有无数条直线D.直线比曲线和折线短7.若x=0是方程的解,则k值为()A.0 B.2 C.3 D.48.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.1089.如图所示,线段AB=10,M为线段AB的中点,C为线段MB的中点,N为线段AM的一点,且MN=1,线段NC的长()A.2 B.2.5 C.3 D.3.510.A、B两地相距600km,甲车以60km/h的速度从A地驶向B地,2h后,乙车以100km/h 的速度沿着相同的道路从A地驶向B地.设乙车出发x小时后追上甲车,根据题意可列方程为()A.60(x+2)=100x B.60x=100(x﹣2)C.60x+100(x﹣2)=600 D.60(x+2)+100x=600二、填空题(每题3分,共15分)11.计算:48°37'+53°35'=.12.下面的框图表示解方程3x+20=4x﹣25的流程.第1步的依据是.13.已知|a﹣2|+(b+3)2=0,则b a的值等于.14.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费元.(用含a,b的代数式表示)15.如图,a、b、c、d、e、f均为有理数,图中各行、各列及两条对角线上三个数的和都相等,则a+b+c+d+e+f的值是.三、解答题(共75分)16.(1)计算:①×(﹣12);②﹣12016﹣1÷6×[3﹣(﹣3)2]﹣|﹣2|;(3)化简求值:2(a2b+ab2)﹣(4a2b+2ab2)﹣3(ab2﹣a2b),其中a=1,b=﹣1.17.老师在黑板上出了一道解方程的题﹣1,小虎马上举手,要求到黑板上去做,他是这样做的:5(3x﹣1)=2(4x+2)﹣1①15x﹣5=8x+4﹣1②15x﹣8x=4﹣1+5③7x=8④x=⑤老师说:小虎解一元一次方程的一般步骤都知道,但没有掌握好,因此解题出了错误,请指出他所有的错步及错误原因:.方程的正确的解是x=.然后,你自己细心的解下面的方程:18.已知如图,根据下列要求画图:(1)作线段AB;(2)作射线OA、射线OB;(3)分别在线段AB、OA上取一点C、D(点C、D都不与线段的端点重合),作直线CD,使直线CD与射线OB交于点E.参考答案与试题解析一.选择题(共10小题)1.下面是我省四个地市2017年12月份的日均最低温度:﹣10℃(太原),﹣14℃(大同),﹣5℃(运城),﹣8℃(吕梁).其中日均最低温度最高的是()A.吕梁B.运城C.太原D.大同【分析】根据负数大小比较原则:绝对值大的反而小得出结论.【解答】解:最低温度从小到大排列为:﹣14<﹣10<﹣8<﹣5,所以最高为:﹣5℃(运城),故选:B.2.由几个相同的小立方块组成一个立体图形,如图是从不同方向看到它的图形,小立方块的个数是()A.3个B.4个C.5个D.6个【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图上看,此几何体的下面有3个小正方体,从左视图和主视图上看,最上面有1个小正方体,故组成这个几何体的小立方块的个数是:3+1=4.故选:B.3.单项式﹣的系数和次数分别是()A.﹣,1 B.﹣,2 C.,1 D.,2【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式﹣的系数和次数分别是:﹣,2.故选:B.4.要了解某校1000名初中生的课外负担情况,若采用抽样调查的方法进行调查,则在下面哪种调查方式具有代表性?()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八年级各100名学生【分析】利用调查的特点:①代表性,②全面性,即可作出判断.【解答】解:A、要了解某校1000名初中生的课外负担情况,调查全体女生,这种方式太片面,不合理;B、要了解某校1000名初中生的课外负担情况,调查全体男生,这种方式太片面,不合理;C、要了解某校1000名初中生的课外负担情况,调查九年级全体学生,这种方式太片面,不合理;D、要了解某校1000名初中生的课外负担情况,调查七、八年级各100名学生,具代表性,比较合理;故选:D.5.式子﹣2﹣(﹣1)+3﹣(+2)省略括号后的形式是()A.2+1﹣3+2 B.﹣2+1+3﹣2 C.2﹣1+3﹣2 D.2﹣1﹣3﹣2 【分析】①括号前面有“+”号,把括号和它前面的“+”号去掉,括号里各项的符号不改变;②括号前面是“﹣”号,把括号和它前面的“﹣”号去掉,括号里各项的符号都要改变为相反的符号.【解答】解:原式=﹣2+1+3﹣2.故选:B.6.如图,从A到B有三条路径,最短的路径是②,理由是()A.两点确定一条直线B.两点之间线段最短C.过一点有无数条直线D.直线比曲线和折线短【分析】根据线段的性质,可得答案.【解答】解:如图,最短路径是②的理由是两点之间线段最短,故B正确,故选:B.7.若x=0是方程的解,则k值为()A.0 B.2 C.3 D.4【分析】将x=0代入方程即可求得k的值.【解答】解:把x=0代入方程,得1﹣=解得k=3.故选:C.8.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.108【分析】先求出抽取的总人数,再求出体育类所占的百分比,再用整体1减去其它四类所占的百分比,求出娱乐所占的百分比,再乘以全校同学总数,即可得出答案.【解答】解:根据题意得:抽取的总人数是:45÷30%=150(人),体育所占的百分比是:×100%=20%,则娱乐所占的百分比是:1﹣6%﹣8%﹣20%﹣30%=36%,全校喜欢娱乐类节目的学生大约有3000×36%=1080(人).故选:A.9.如图所示,线段AB=10,M为线段AB的中点,C为线段MB的中点,N为线段AM的一点,且MN=1,线段NC的长()A.2 B.2.5 C.3 D.3.5【分析】根据线段中点的定义分别求出MB、MC的长,结合图形计算即可.【解答】解:∵线段AB=10,M为线段AB的中点,∴MB=AB=5,∵C为线段MB的中点,∴MC=BM=2.5,∴NC=NM+MC=3.5.故选:D.10.A、B两地相距600km,甲车以60km/h的速度从A地驶向B地,2h后,乙车以100km/h 的速度沿着相同的道路从A地驶向B地.设乙车出发x小时后追上甲车,根据题意可列方程为()A.60(x+2)=100x B.60x=100(x﹣2)C.60x+100(x﹣2)=600 D.60(x+2)+100x=600【分析】设乙车出发x小时后追上甲车,等量关系为:甲车(x+2)小时走的路程=乙车x小时走的路程,据此列方程.【解答】解:设乙车出发x小时后追上甲车,由题意得:60(x+2)=100x.故选:A.二.填空题(共5小题)11.计算:48°37'+53°35'=102°12' .【分析】1度=60分,即1°=60′,1分=60秒,即1′=60″,依据度分秒的换算即可得到结果.【解答】解:48°37'+53°35'=101°72'=102°12',故答案为:102°12'.12.下面的框图表示解方程3x+20=4x﹣25的流程.第1步的依据是等式两边加(或减)同一个数(或式子),结果仍是等式.【分析】根据等式的性质判断即可.【解答】解:解方程3x+20=4x﹣25的流程.第1步的依据是等式两边加(或减)同一个数(或式子),结果仍是等式,故答案为:等式两边加(或减)同一个数(或式子),结果仍是等式13.已知|a﹣2|+(b+3)2=0,则b a的值等于9 .【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式中即可.【解答】解:依题意得:a﹣2=0,b+3=0,∴a=2,b=﹣3.∴b a=(﹣3)2=9.14.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).15.如图,a、b、c、d、e、f均为有理数,图中各行、各列及两条对角线上三个数的和都相等,则a+b+c+d+e+f的值是21 .【分析】先根据其每一行、每一列以及两条对角线上的三个数之和都相等,寻找具有已知量最多且含有公共未知量的行或列,只能是4﹣1+a=d+3+a,此时可解得d=0;再以4+b+0=b+3+c为等式,可知c=1,依此类推求出各字母代表的值即可解答.【解答】解:依题意知4﹣1+a=d+3+a,解得d=0;又∵4+b+0=b+3+c为等式,∴c=1.又4﹣1+a=a+1+f,∴f=2,∴a=6,b=5,e=7,∴a+b+c+d+e+f=6+5+1+0+7+2=21.故答案为21.三.解答题(共3小题)16.(1)计算:①×(﹣12);②﹣12016﹣1÷6×[3﹣(﹣3)2]﹣|﹣2|;(3)化简求值:2(a2b+ab2)﹣(4a2b+2ab2)﹣3(ab2﹣a2b),其中a=1,b=﹣1.【分析】(1)①原式利用乘法分配律计算即可求出值;②原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)①原式=2﹣9+5=﹣2;②原式=﹣1﹣×(﹣6)﹣2=﹣1+1﹣2=﹣2;(2)原式=2a2b+ab2﹣4a2b﹣2ab2﹣3ab2+3a2b=﹣2a2b﹣ab2,当a=1,b=﹣1时,原式=2﹣1=1.17.老师在黑板上出了一道解方程的题﹣1,小虎马上举手,要求到黑板上去做,他是这样做的:5(3x﹣1)=2(4x+2)﹣1①15x﹣5=8x+4﹣1②15x﹣8x=4﹣1+5③7x=8④x=⑤老师说:小虎解一元一次方程的一般步骤都知道,但没有掌握好,因此解题出了错误,请指出他所有的错步及错误原因:①去分母右边﹣1没有乘以10;⑤两边不是除以7 .方程的正确的解是x=﹣.然后,你自己细心的解下面的方程:【分析】依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1求解可得.【解答】解:他的错步及错误原因:①去分母右边﹣1没有乘以10;⑤两边不是除以7,方程的正确的解是x=﹣,2(x+1)﹣4=8+2﹣x,2x+2﹣4=8+2﹣x,2x+x=8+2﹣2+4,3x=12,x=4.故答案为:①去分母右边﹣1没有乘以10;⑤两边不是除以7;﹣.18.已知如图,根据下列要求画图:(1)作线段AB;(2)作射线OA、射线OB;(3)分别在线段AB、OA上取一点C、D(点C、D都不与线段的端点重合),作直线CD,使直线CD与射线OB交于点E.【分析】根据题目的要求作线段、射线,直线即可.【解答】解:。

江苏省2020学年七年级数学上学期期末试卷(含解析)

江苏省2020学年七年级数学上学期期末试卷(含解析)

七年级数学上学期期末试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线 D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x 的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线 D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x 的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a <3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是 4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.。

2020学年七年级数学上册期末试卷 含解析

2020学年七年级数学上册期末试卷 含解析

七年级(上)期末数学试卷一.选择题(共10小题)1.下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与2.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x33.据介绍,2019年央视春晚直播期间,全球观众参与百度APP红包互动活动次数达208亿次.“208亿”用科学记数法表示为()A.2.08×1010B.0.208×1011C.208×108D.2.08×1011 4.若,则x2+y3的值是()A.B.C.D.5.若方程2x﹣kx+1=5x﹣2的解为﹣1,则k的值为()A.10 B.﹣4 C.﹣6 D.﹣86.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字相对面上的字是()A.我B.中C.国D.梦7.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.8.施大叔在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中施大叔()A.赔了10元B.赚了10元C.不赔不赚D.赔了8元9.小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多10分钟,问小明家离学校有多远?设小明家离学校有x千米,那么所列方程是()A.=﹣10 B.+=C.5x=4x+10 D.﹣=10.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2 D.4n+2二.填空题(共5小题)11.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反:则分别叫作正数与负数.若收入60元记作+60元,则支出30元记作元.12.如果4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,则m﹣n的值为.13.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是.14.若5x+2与﹣2x+9互为相反数,则x的值为.15.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB=°.三.解答题(共8小题)16.完成下列各题:(1)计算:;(2)解方程:﹣=1.17.已知A=a﹣2(a﹣b2),B=﹣a+.(1)化简:2A﹣6B;(2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值.18.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?19.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 1 ﹣2 ﹣3 …答案12 …(2)请将题中计算程序用含n的代数式表示出来,并将该式化简.20.如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD 的长.21.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.22.某市居民生活用电基本价格为每度0.40元,若每月用电量超过a度,超过部分按基本电价的70%收费.(1)某户5月份用电84度,共交电费30.72元,求a的值.(2)若该户6月份的电费平均每度为0.36元,求6月份共用电多少度应该交电费多少元?23.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).参考答案与试题解析一.选择题(共10小题)1.下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A错误;B、都是﹣3,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、互为倒数,故D错误;故选:C.2.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x3【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选:D.3.据介绍,2019年央视春晚直播期间,全球观众参与百度APP红包互动活动次数达208亿次.“208亿”用科学记数法表示为()A.2.08×1010B.0.208×1011C.208×108D.2.08×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:208亿=20800000000=2.08×1010.故选:A.4.若,则x2+y3的值是()A.B.C.D.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣=0,y+1=0,解得x=,y=﹣1,所以,x2+y3=()2+(﹣1)3=﹣1=﹣.故选:D.5.若方程2x﹣kx+1=5x﹣2的解为﹣1,则k的值为()A.10 B.﹣4 C.﹣6 D.﹣8【分析】把x=﹣1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【解答】解:依题意,得2×(﹣1)﹣(﹣1)k+1=5×(﹣1)﹣2,即﹣1+k=﹣7,解得,k=﹣6.故选:C.6.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字相对面上的字是()A.我B.中C.国D.梦【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.7.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.8.施大叔在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中施大叔()A.赔了10元B.赚了10元C.不赔不赚D.赔了8元【分析】根据售价=(1+利润率)×进价算出赚了20%的衣服的进价,再算出赔了20%的衣服的进价,然后即可算出是陪还是赚.【解答】解:设赚了20%的衣服的进价是x元,则(1+20%)x=120解得x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1﹣20%)y=120,解得y=150,则赔了150﹣120=30元.∵30>20,∴赔大于赚,在这次交易中,该商人是赔了30﹣20=10(元).故选:A.9.小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多10分钟,问小明家离学校有多远?设小明家离学校有x千米,那么所列方程是()A.=﹣10 B.+=C.5x=4x+10 D.﹣=【分析】设小明家离学校x千米,那么小明早晨上学所用的时间为小时,回家所用的时间为小时,根据“回家所用的时间比上学所用的时间多10分钟”得出等量关系:回家所用的时间=上学所用的时间+小时,由此列出方程即可.【解答】解:设小明家离学校x千米,根据题意得,=+.故选:B.10.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2 D.4n+2【分析】观察图形可知,第一个黑色地面砖由六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.【解答】解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.二.填空题(共5小题)11.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反:则分别叫作正数与负数.若收入60元记作+60元,则支出30元记作﹣30 元.【分析】由于收入与支出是互为相反意义的量,由已知即可求解.【解答】解:由题意可知,收入与支出是互为相反意义的量,∴支出30元记为﹣30元,故答案为﹣30.12.如果4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,则m﹣n的值为﹣1 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此解答可得.【解答】解:单项式4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,∴2m+2=3m+1,n﹣1=3n﹣5,解得:m=1,n=2.∴m﹣n=1﹣2=﹣1.故答案为:﹣1.13.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是125°15′52″.【分析】根据补角的定义列式计算即可.【解答】解:180°﹣54°44′8″=179°59'60''﹣54°44'8''=125°15'52'',故答案为:125°15'52''.14.若5x+2与﹣2x+9互为相反数,则x的值为﹣.【分析】互为相反数的两个数之和为0,根据题意列出方程(5x+2)+(﹣2x+9)=0,然后直接解出答案.【解答】解:根据题意得:(5x+2)+(﹣2x+9)=0,去括号得:5x+2﹣2x+9=0,合并同类项得:3x=﹣11,系数化1得:x=.15.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB 重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB=120 °.【分析】根据题意得∠BOE=∠EOC,∠AOE′=∠COE′,∠EOE′=80°,然后根据角的和差即可得到结论.【解答】解:由题意得∠BOE=∠EOC,∠AOE′=∠COE′,∠EOE′=80°∴∠COE′=∠COE=40°,∴∠BOE=∠AOE′=20°,∴∠AOB=120°,故答案为:120.三.解答题(共8小题)16.完成下列各题:(1)计算:;(2)解方程:﹣=1.【分析】(1)根据有理数的混合计算解答即可;(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:(1)原式==3﹣2+9=10(2)﹣=1.3(3x+1)﹣2(x﹣1)=69x+3﹣2x+2=69x﹣2x=6﹣2﹣37x=1x=17.已知A=a﹣2(a﹣b2),B=﹣a+.(1)化简:2A﹣6B;(2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值.【分析】(1)把A与B代入2A﹣6B中,去括号合并即可得到结果;(2)利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:(1)∵A=a﹣2(a﹣b2),B=﹣a+b2,∴2A﹣6B=2(a﹣2a+b2)﹣6(﹣a+b2)=a﹣4a+b2+4a﹣b2=a+b2;(2)∵|a+2|+(b﹣3)2=0,∴a=﹣2,b=3,则原式=﹣2+3=1.18.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?【分析】根据题意,可以求得题目中数据的和和它们的绝对值的和,从而可以解答本题.【解答】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.19.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 1 ﹣2 ﹣3 …答案12 4 ﹣8 ﹣12 …(2)请将题中计算程序用含n的代数式表示出来,并将该式化简.【分析】(1)将n=1,﹣2,﹣3分别代入程序,求出结果即可.(2)按程序列出代数式(n2+3n)﹣(n2﹣n)=4n.【解答】解:(1)当n=1时,答案=4;当n=﹣2时,答案=﹣8;当n=﹣3时,答案=﹣12;故答案为4,﹣8,﹣12;(2)按程序列出代数式(n2+3n)﹣(n2﹣n)=4n.20.如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD 的长.【分析】根据题意可设AB=2x,然后根据图形列出方程即可求出AD的长度.【解答】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x=,∴AD=AB+BC+CD=2x+3x+4x=9x=cm21.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是: 4 .(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在原点,求时间t.【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【解答】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.22.某市居民生活用电基本价格为每度0.40元,若每月用电量超过a度,超过部分按基本电价的70%收费.(1)某户5月份用电84度,共交电费30.72元,求a的值.(2)若该户6月份的电费平均每度为0.36元,求6月份共用电多少度应该交电费多少元?【分析】根据题意可知每月用电量超过a度为m度时,电费的计算方法为:0.40a+(m ﹣a)×0.40×70%.利用这个关系式可把电费作为等量关系求未知的量.【解答】解:(1)当m=84时,则有:0.40a+(84﹣a)×0.40×70%=30.72,解得:a=60故a的值是60.(2)设该户六月份共用电x度.则0.40×60+(x﹣60)×0.40×70%=0.36x,解得:x=90(度).0.36x=0.36×90=32.40(元).故6月份共用电90度,应该交电费32.40元.23.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOP度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【解答】解(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°.∵OP平分∠BOC,∴∠COP=∠BOC=75°.∴∠COQ=90°﹣75°=15°.∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°.所以t=15°÷3°=5秒;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=∠POQ=45°.根据旋转的速度,设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30°+6t﹣3t=45°,解得t=5秒;当30°+6t﹣3t=225°,也符合条件,解得t=65所以5秒或65秒时OC平分∠POQ;(3)设经过t秒后OC平分∠POB.∵OC平分∠POB,∴∠BOC=∠BOP.∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t.又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180°﹣30°﹣6t=(90°﹣3t),解得t=秒.。

安徽省2020学年七年级数学上学期期末试卷(含解析)

安徽省2020学年七年级数学上学期期末试卷(含解析)

七年级数学上学期期末试卷一、选择题(本大题共 10 个小题,每题 3 分,共 30 分)1.( 3 分)﹣的相反数是()A.﹣ 2 B. 2 C.﹣ D .2.( 3 分)以下运算正确的选项是()A. 2a+3b=5a+b B. 2a﹣ 3b=﹣( a﹣ b)C. 2a2b﹣ 2ab2=0 D.3ab﹣ 3ba=03.( 3 分)已知2x 3y2与﹣ x3m y2的和是单项式,则式子4m﹣ 24 的值是()A. 20 B.﹣ 20 C. 28 D.﹣ 24.( 3 分)若 2( a+3)的值与 4 互为相反数,则 a 的值为()A.﹣ 1 B.﹣C.﹣ 5 D.5.( 3 分)解方程 4( x﹣1)﹣ x=2( x+ )步骤以下:①去括号,得4x﹣ 4﹣ x=2x+1;②移项,得 4x+x﹣ 2x=4+1;③归并同类项,得3x=5;④化系数为1, x= .从哪一步开始出现错误()A.①B.②C.③D.④6.( 3 分)由若干个同样的小正方体组合而成的一个几何体的三视图以下图,则构成这个几何体的小正方形个数是()A.3B. 4C.5D.67.( 3 分)以下绘图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到 C,使 BA=BCD.过直线AB外一点画一条直线和直线AB订交8.( 3 分)有理数, a、b 在数轴上的地点以下图,则a、b、﹣b、﹣a的大小关系是()9.( 3 分)儿子今年 12 岁,父亲今年 39 岁,()父亲的年纪是儿子的年纪的 2 倍.()A.5 年后B.9 年后C. 12 年后D. 15 年后10.( 3 分)已知:点 A,B,C 在同一条直线上,点M、N分别是AB、AC的中点,假如AB=10cm,AC=8cm,那么线段MN的长度为()A. 6cm B. 9cm C. 3cm 或 6cm D. 1cm 或 9cm二、填空题(本大题共10 个小题,每题 3 分,共 30 分)11.( 3 分)若一个角的余角是它的 2 倍,这个角的补角为.12.( 3 分)若对于 x 的方程 3x+2b+1=x﹣( 3b+2)的解是1,则 b= .13.( 3 分)假如( a﹣ 2) x a﹣2+6=0 是对于 x 的一元一次方程,那么a= .14.(3 分)如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为.(用含 n 的代数式表示)15.( 3 分)单项式﹣的系数是,次数是.16.(3 分)有理数 a、b、c 在数轴上的对应点以下图,化简:|b|﹣|c+b|+|b﹣a|=.17.( 3 分)如图,圈中有 6 个数按必定的规律填入,后因不慎,一滴墨水涂掉了一个数,你以为这个数可能是.18.( 3 分)如图, C, D, E 是线段 AB上的三个点,下边对于线段CE的表示:①CE=CD+DE;② CE=BC﹣EB;③CE=CD+BD﹣ AC;④ CE=AE+BC﹣AB.此中正确的选项是(填序号).三、解答题(共40 分)19.( 8 分)计算(1)(﹣)×(﹣30);(2) 1÷(﹣ 1) +0÷ 4﹣ 5×0.1 ×(﹣ 2)3.20.( 8 分)解方程(1) 3( x+2)﹣ 1=x﹣ 3;(2)﹣1=.21.( 8 分)先化简,再求值:(4x 2﹣ 4y2)﹣ 3( x2y2+x2) +3(x2y2+y2),此中 x=﹣ 1, y=2.22.( 8 分)用大小两台拖沓机耕地,每小时共耕地30 亩.已知大拖沓机的效率是小拖沓机的 1.5 倍,问小拖沓机每小时耕地多少亩?23.( 14 分)如图, P 是线段 AB 上一点, AB=12cm,C、D两点分别从 P、B 出发以 1cm/s 、2cm/s的速度沿直线 AB 向左运动( C在线段 AP 上, D在线段 BP上),运动的时间为 ts .(1)当 t=1 时, PD=2AC,恳求出 AP 的长;(2)当 t=2 时, PD=2AC,恳求出 AP 的长;(3)若 C、 D 运动就任一时辰时,总有 PD=2AC,恳求出 AP的长;(4)在( 3)的条件下, Q是直线 AB上一点,且 AQ﹣ BQ=PQ,求 PQ的长.参照答案与试题分析一、选择题(本大题共10 个小题,每题 3 分,共 30 分)1.( 3 分)﹣的相反数是()A.﹣2 B.2 C.﹣ D .【解答】解:依据相反数的含义,可得﹣的相反数是:﹣(﹣)=.应选: D.2.( 3 分)以下运算正确的选项是()A. 2a+3b=5a+b B. 2a﹣ 3b=﹣( a﹣ b)C. 2a2b﹣ 2ab2=0D.3ab﹣ 3ba=0 【解答】解: A、 2a、 3b 不是同类项,不可以归并,此选项错误;B、 2a﹣ 3b=﹣( a﹣ b),此选项错误;C、 2a2b、﹣ 2ab2不是同类项,不可以归并,此选项错误;D、 3ab﹣ 3ba=0,此选项正确;应选: D3.( 3 分)已知2x 3y2与﹣ x3m y2的和是单项式,则式子4m﹣ 24 的值是()A. 20B.﹣ 20 C. 28D.﹣ 2【解答】解:由题意可知:2x3y2与﹣ x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣ 24=4﹣ 24= ﹣ 20,应选( B)4.( 3 分)若 2( a+3)的值与 4 互为相反数,则 a 的值为()A.﹣ 1 B.﹣C.﹣ 5D.【解答】解:∵ 2( a+3)的值与 4 互为相反数,∴2( a+3)+4=0,∴a=﹣ 5,应选 C5.( 3 分)解方程4( x﹣1)﹣ x=2( x+)步骤以下:①去括号,得4x﹣ 4﹣ x=2x+1;②移项,得4x+x﹣ 2x=4+1;③归并同类项,得3x=5;④化系数为1, x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程 4( x﹣ 1)﹣ x=2(x+)步骤以下:①去括号,得4x﹣ 4﹣ x=2x+1;②移项,得 4x﹣ x﹣ 2x=4+1;③归并同类项,得x=5;④化系数为1, x=5.此中错误的一步是②.应选 B.6.( 3 分)由若干个同样的小正方体组合而成的一个几何体的三视图以下图,则构成这个几何体的小正方形个数是()A.3B. 4C.5D.6【解答】解:综合三视图,我们能够得出,这个几何模型的基层有3+1=4 个小正方体,第二有 1 个小正方体,所以搭成这个几何体模型所用的小正方体的个数是4+1=5 个.应选: C.7.( 3 分)以下绘图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到 C,使 BA=BCD.过直线AB外一点画一条直线和直线AB订交【解答】解: A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无穷延长性,不需要延长;D、正确.应选 D.8.( 3 分)有理数, a、b 在数轴上的地点以下图,则a、b、﹣b、﹣a的大小关系是()A. b<﹣ a< a<﹣ b B. b<a<﹣ b<﹣ a C. b<﹣ b<﹣ a< a D. b<a<﹣ a<﹣ b 【解答】解:依据图示,可得b<﹣ a< a<﹣ b.应选: A.9.( 3 分)儿子今年 12 岁,父亲今年 39 岁,()父亲的年纪是儿子的年纪的 2 倍.()A.5 年后B.9 年后C. 12 年后D. 15 年后【解答】解:设 x 年后父亲的年纪是儿子的年纪的 2 倍,依据题意得: 39+x=2( 12+x),解得: x=15.答: 15 年后父亲的年纪是儿子的年纪的 2 倍.应选 D.10.( 3 分)已知:点 A,B,C 在同一条直线上,点M、N分别是AB、AC的中点,假如AB=10cm,AC=8cm,那么线段MN的长度为()A. 6cm B. 9cm C. 3cm 或 6cm D. 1cm 或 9cm【解答】解:( 1)点 C 在线段 AB上,如:点 M是线段 AB 的中点,点N 是线段 BC的中点,MB= AB=5, BN= CB=4,MN=BM﹣ BN=5﹣ 4=1cm;(2)点 C在线段 AB的延长线上,如:点 M是线段 AB 的中点,点N 是线段 BC的中点,MB= AB=5, BN= CB=4,MN=MB+BN=5+4=9cm,应选: D.二、填空题(本大题共10 个小题,每题 3 分,共 30 分)11.( 3 分)若一个角的余角是它的 2 倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣ x)°,90﹣ x=2x解得: x=30,180°﹣ 30°=150°,答:这个角的补角为150°,故答案为: 150°.12.( 3 分)若对于 x 的方程 3x+2b+1=x﹣( 3b+2)的解是1,则 b=﹣1.【解答】解:把 x=1 代入方程3x+2b+1=x﹣( 3b+2)得: 3+2b+1=1﹣( 3b+2),解得: b=﹣1,故答案为:﹣ 1.13.( 3 分)假如( a﹣ 2) x a﹣2+6=0 是对于 x 的一元一次方程,那么a= 3.【解答】解:∵( a﹣ 2) x a﹣2+6=0 是对于 x 的一元一次方程,∴a﹣ 2=1,解得: a=3,故答案为: 3.14.( 3 分)如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为2+3n .(用含 n 的代数式表示)【解答】解:察看图形发现:第 1 个图案中有白色瓷砖 5 块,第 2 个图案中白色瓷砖多了 3 块,依此类推,第 n 个图案中,白色瓷砖是5+3( n﹣ 1)=3n+2.15.( 3 分)单项式﹣的系数是﹣,次数是 3 .【解答】解:∵单项式﹣的数字因数是﹣,全部字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是 3.故答案为:﹣,3.16.( 3 分)有理数a、b、 c 在数轴上的对应点以下图,化简:|b| ﹣ |c+b|+|b﹣a|=﹣b+c+a.【解答】解:由数轴可知:c< b< 0< a,∴b< 0, c+ b< 0, b﹣ a<0,∴原式 =﹣ b+( c+b)﹣( b﹣a) =﹣ b+c+b﹣ b+a=﹣b+c+a,故答案为:﹣ b+c+a17.( 3 分)如图,圈中有 6 个数按必定的规律填入,后因不慎,一滴墨水涂掉了一个数,你以为这个数可能是26或5 .【解答】解:∵按逆时针方向有8﹣ 6=2; 11﹣ 8=3; 15﹣ 11=4;∴这个数可能是20+6=26 或 6﹣1=5.18.( 3 分)如图, C, D, E 是线段 AB上的三个点,下边对于线段CE的表示:①CE=CD+DE;② CE=BC﹣EB;③CE=CD+BD﹣ AC;④ CE=AE+BC﹣AB.此中正确的选项是①②④(填序号).【解答】解:如图,① CE=CD+DE,故①正确;②CE=BC﹣ EB,故②正确;③CE=CD+BD﹣ BE,故③错误;④∵ AE+BC=AB+CE,∴C E=AE+BC﹣ AB=AB+CE﹣ AB=CE,故④正确;故答案是:①②④.三、解答题(共40 分)19.( 8 分)计算(1)(﹣)×(﹣30);(2) 1÷(﹣ 1) +0÷ 4﹣ 5×0.1 ×(﹣ 2)3.【解答】解:( 1)原式 =﹣ 10+2=﹣ 8;(2)原式 =﹣ 1+0﹣ 0.5 ×(﹣ 8)=﹣ 1+4=3.(1) 3( x+2)﹣ 1=x﹣ 3;(2)﹣1=.【解答】解:( 1)去括号,得:3x+6 ﹣ 1 =x﹣3,移项,得: 3x﹣ x= ﹣3﹣ 6+1,归并同类项,得:2x=﹣ 8,系数化为1,得: x=﹣ 4;(2)去分母,得: 3( x+1)﹣ 6=2( 2﹣x),去括号,得: 3x+3 ﹣6=4﹣ 2x,移项,得: 3x+2x=4+6﹣ 3,归并同类项,得: 5x=7,系数化为 1,得: x= .21.( 8 分)先化简,再求值:(4x 2﹣ 4y2)﹣ 3( x2y2+x2) +3(x2y2+y2),此中 x=﹣ 1,y=2.【解答】解:( 4x2﹣ 4y2)﹣ 3( x2y2+x2)+3( x2y2+y2)=4x2﹣ 4y 2﹣ 3x2y2﹣ 3x2+3x2y2+3y2=x2﹣y2,当 x=﹣ 1,y=2 时,原式 =(﹣ 1)2﹣ 22=﹣ 3.22.( 8 分)用大小两台拖沓机耕地,每小时共耕地30 亩.已知大拖沓机的效率是小拖沓机的 1.5 倍,问小拖沓机每小时耕地多少亩?【解答】解:设小拖沓机每小时耕地x 亩,则大拖沓机每小时耕地(30﹣ x)亩,依据题意得: 30﹣ x=1.5x ,解得: x=12.答:小拖沓机每小时耕地12 亩.23.( 14 分)如图, P 是线段 AB 上一点, AB=12cm,C、D两点分别从 P、B 出发以 1cm/s 、2cm/s的速度沿直线 AB 向左运动( C在线段 AP 上, D在线段 BP上),运动的时间为 ts .(1)当 t=1 时, PD=2AC,恳求出 AP 的长;(2)当 t=2 时, PD=2AC,恳求出 AP 的长;(3)若 C、 D 运动就任一时辰时,总有 PD=2AC,恳求出 AP的长;(4)在( 3)的条件下, Q是直线 AB上一点,且 AQ﹣ BQ=PQ,求 PQ的长.【解答】解:( 1)依据 C、 D 的运动速度知: BD=2, PC=1,则 BD=2PC,∵P D=2AC,∴BD+PD=2( PC+AC),即PB=2AP,∵AB=12cm, AB=AP+PB,∴12=3AP,则 AP=4cm;(2)依据 C、 D 的运动速度知: BD=4, PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2( PC+AC),即 PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则 AP=4cm;(3)依据 C、 D 的运动速度知:BD=2PC∵P D=2AC,∴B D+PD=2( PC+AC),即 PB=2AP,∴点 P 在线段 AB 上的处,即AP=4cm;(4)如图:∵AQ﹣ BQ=PQ,∴AQ=PQ+BQ;又∵ AQ=AP+PQ,∴AP=BQ,∴PQ=AB=4cm;当点 Q' 在 AB的延长线上时,AQ′﹣ AP=PQ′,所以 AQ′﹣ BQ′=PQ=AB=12cm.综上所述, PQ=4cm或 12cm.。

2020-2021学年七年级上学期期末数学试卷 (解析版)

2020-2021学年七年级上学期期末数学试卷 (解析版)

2020-2021学年七年级(上)期末数学试卷一、选择题1.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°2.2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×1043.下表是11月份某一天北京四个区的平均气温:区县海淀怀柔密云昌平气温(℃)+1 ﹣3 ﹣2 0 这四个区中该天平均气温最低的是()A.海淀B.怀柔C.密云D.昌平4.下列计算正确的是()A.m2n﹣nm2=0 B.m+n=mnC.2m3+3m2=5m5D.2m3﹣3m2=﹣m5.已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1 C.D.36.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.b+c>0 D.|a|>|b|7.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=68.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为()A.20°B.70°C.110°D.160°9.已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→A B.P→B C.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是.12.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:.13.计算:48°39′+67°31′=.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.15.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是.(用含a的代数式表示)16.如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为.17.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(﹣2)的值为.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表洗衣机单价(元/台)烘干机单价(元/台)A品牌7000 11000B品牌7500 10000 表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择品种的洗衣机和品种的烘干机支付总费用最低,支付总费用最低为元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)19.计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(﹣)3.20.解方程:(1)3x﹣2=﹣6+5x;(2)=1.21.先化简,再求值:2(2xy2﹣x2y)﹣(x2y+6xy2)+3x2y,其中x=2,y=﹣1.22.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.四、解答题(本题共10分,第23题4分,第24题6分)23.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:名次球队场次胜场负场总积分1 中国11 11 02 美国11 10 1 283 俄罗斯11 8 3 234 巴西11 21(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为(用“<”连接)26.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD 的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.27.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为,M2(58)+M2(9653)的值为;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有个.参考答案一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°【分析】直接利用量角器量出其角度或估算得出答案.解:如图所示:食指和中指所夹锐角α的度数为:35°.故选:B.2.2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将“1.5万”用科学记数法表示应为1.5×104.故选:C.3.下表是11月份某一天北京四个区的平均气温:区县海淀怀柔密云昌平气温(℃)+1 ﹣3 ﹣2 0 这四个区中该天平均气温最低的是()A.海淀B.怀柔C.密云D.昌平【分析】由表格可知:﹣3<﹣2<0<1即可求解.解:∵﹣3<﹣2<0<1,∴最低的是怀柔,故选:B.4.下列计算正确的是()A.m2n﹣nm2=0 B.m+n=mnC.2m3+3m2=5m5D.2m3﹣3m2=﹣m【分析】根据合并同类项法则逐一判断即可.解:A.m2n﹣nm2=0,正确,故本选项符合题意;B.m与n不是同类项,所以不能合并,故本选项不合题意;C.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;D.2m3与﹣3m2不是同类项,所以不能合并,故本选项不合题意.故选:A.5.已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1 C.D.3【分析】把x=3代入关于x的方程mx+2=x,得到关于m的新方程,通过解新方程求得m的值即可.解:把x=3代入关于x的方程mx+2=x,得3m+2=3.解得m=.故选:A.6.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.b+c>0 D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.7.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=6【分析】根据等式的性质即可解决.解:A、若4x=2,则x=,原变形错误,故这个选项不符合题意;B、若4x﹣2=2﹣3x,则4x+3x=2+2,原变形错误,故这个选项不符合题意;C、若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=3,原变形错误,故这个选项不符合题意;D、若﹣=1,则3(3x+1)﹣2(1﹣2x)=6,原变形正确,故这个选项符合题意;故选:D.8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为()A.20°B.70°C.110°D.160°【分析】根据方向角的定义解答.解:如图,∠BOD即这条跑道所在射线OB与正北方向所成角.由于∠BOC=70°,∴∠BOD=180°﹣70°=110°所以这条跑道所在射线OB与正北方向所成角的度数为110°.故选:C.9.已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④【分析】直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.解:∵线段AB=8cm,AC=6cm,∴如图1,当A,B,C在一条直线上,∴BC=AB﹣AC=8﹣6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8﹣6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→A B.P→B C.P→C D.P→D【分析】根据线段的性质:两点之间线段最短,可直接得出.解:由题意得:蚂蚁爬行距离最短的路线是P→D;故选:D.二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是丁.【分析】根据绝对值最小的最接近标准,可得答案.解:|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.6,0.6<0.7<1.5<3.5,故最接近标准质量的足球是丁.故答案为:丁.12.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:﹣2x3(答案不唯一).【分析】利用单项式次数与系数的定义即可得出答案.解:一个单项式满足下列两个条件:①系数是﹣2;②次数是3.则满足上述条件的单项式:﹣2x3(答案不唯一).故答案为:﹣2x3(答案不唯一).13.计算:48°39′+67°31′=116°10' .【分析】根据度、分、秒的进制为60直接计算即可.解:39′+31′=70′=1°10′,故48°39′+67°31′=116°10'.故答案为:116°10'.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小(填:大或小),理由为三角形的两边之和大于第三边.【分析】任意两边上的点和两点间的顶点恰好构成一个三角形,利用三角形的三边关系可以得出结论.解:将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是三角形的两边之和大于第三边.故答案为:小;三角形的两边之和大于第三边15.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是2a.(用含a的代数式表示)【分析】根据题意和题目中的图形,可以得到图2中小长方形的长和宽,从而可以得到阴影部分正方形的边长.解:由图可得,图2中每个小长方形的长为3a,宽为a,则阴影部分正方形的边长是:3a﹣a=2a,故答案为:2a.16.如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为10 .【分析】先根据线段的和差关系求得CD,再根据中点的定义求得BD,再根据线段的和差关系求得AB.解:∵AC=4,AD=7,∴CD=7﹣4=3,∵D是线段CB的中点,∴BD=3,∴AB=AD+BD=7+3=10.故答案为:10.17.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(﹣2)的值为 4 .【分析】根据f(2)=6,可得:8m+2n+5=6,所以8m+2n=1,据此求出f(﹣2)的值为多少即可.解:∵f(2)=6,∴8m+2n+5=6,∴8m+2n=1,∴f(﹣2)=﹣8m﹣2n+5=﹣(8m+2n)+5=﹣1+5=4故答案为:4.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表洗衣机单价(元/台)烘干机单价(元/台)A品牌7000 11000B品牌7500 10000 表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择B品种的洗衣机和B品种的烘干机支付总费用最低,支付总费用最低为12820 元.【分析】根据题意分四种方案:A品牌洗衣机和A品牌烘干机;A品牌洗衣机和B品牌烘干机;B品牌洗衣机和A品牌烘干机;B品牌洗衣机和B品牌烘干机.分别计算出支付总费用即可得出答案.解:购买A品牌洗衣机和A品牌烘干机费用=(7000+11000)×0.8﹣7000×0.8×13%﹣400=13272(元);购买A品牌洗衣机和B品牌烘干机费用=(7000+10000)×0.8﹣7000×0.8×13%=12872(元);购买B品牌洗衣机和A品牌烘干机费用=(7500+11000)×0.8﹣7500×0.8×13%=14020(元);购买B品牌洗衣机和B品牌烘干机费用=(7500+10000)×0.8﹣7500×0.8×13%﹣400=12820(元);综上所述,选择购买B品牌洗衣机和B品牌烘干机支付总费用最低,支付总费用最低为12820元.故答案为:B;B;12820.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)19.计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(﹣)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(﹣)3=﹣3×4﹣1+(﹣)=﹣12﹣1+(﹣)=﹣13.20.解方程:(1)3x﹣2=﹣6+5x;(2)=1.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.解:(1)移项,合并同类项,可得:﹣2x=﹣4,系数化为1,可得:x=2.(2)去分母,可得:3(3x+2)﹣2(x﹣5)=6,去括号,可得:9x+6﹣2x+10=6,移项,合并同类项,可得:7x=﹣10,系数化为1,可得:x=﹣.21.先化简,再求值:2(2xy2﹣x2y)﹣(x2y+6xy2)+3x2y,其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=4xy2﹣2x2y﹣x2y﹣6xy2+3x2y=﹣2xy2,当x=2,y=﹣1时,原式=﹣4.22.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.【分析】(1)画射线AC,线段BC即可;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD即可;(3)利用刻度尺取线段CD的中点E,连接BE即可.解:如图所示:(1)射线AC,线段BC即为所求作的图形;(2)线段AB及延长线,点D以及线段CD即为所求作的图形;(3)点E以及线段BE即为所求作的图形.四、解答题(本题共10分,第23题4分,第24题6分)23.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.【分析】(1)若x=﹣2,y=3,根据﹣2<3,把x、y的值代入|x|﹣3y即可.(2)若x=4,输出结果m的值与输入y的值相同,则y=m,分两种情况:4>m;4≤m,求出y的值是多少即可.解:(1)∵x=﹣2,y=3,﹣2<3,∴x<y,∴m=|﹣2|﹣3×3=﹣7.(2)∵x=4,输出结果m的值与输入y的值相同,∴y=m,①4>m时,∵|4|+3m=m,解得m=﹣2,符合题意.②4≤m时,∵|4|﹣3m=m,∴4﹣3m=m,解得m=1,不符合题意,∴y=﹣2.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:名次球队场次胜场负场总积分1 中国11 11 0 322 美国11 10 1 283 俄罗斯11 8 3 234 巴西11 21(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.【分析】(1)依据中国队11场胜场中只有一场以3﹣2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.解:(1)中国队的总积分=3×10+2=32;故答案为:32;(2)设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x﹣5)场,依题意可列方程3x+2(x﹣5)+1=21,3x+2x﹣10+1=21,5x=30,x=6,则积2分取胜的场数为x﹣5=1,所以取胜的场数为6+1=7,答:巴西队取胜的场数为7场.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为a+b=0 ;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为a<c<d<b(用“<”连接)【分析】(1)①根据M为线段AB的中点,点M与原点O重合,可知a与b互为相反数,则a+b=0;②根据M为线段AB的中点,可知m为a和b的平均数,从而可以用a、b的代数式表示出来;(2)①根据a+b=c+d,可以在图2中标出点D的位置;②根据①中画出的数轴可以得到a,b,c,d的大小关系.解:(1)①∵M为线段AB的中点,点M与原点O重合,∴a与b的关系为:a+b=0,故答案为:a+b=0;②∵M为线段AB的中点,∴点M表示的有理数m的值:;(2)①∵a+b=c+d,a<b,c<d,∴点D的位置的如下图2所示,;②由图2可得,a<c<d<b,故答案为:a<c<d<b.26.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD 的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是45°或|β﹣45°|.【分析】(1)根据画法写出了已知和求证,即可完成证明;(2)根据小聪的画法,画出一个∠AOH,使∠AOH与∠BOH互余即可;(3)根据∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),画出图形即可写出锐角∠MPN的度数.解:(1)证明:点O在直线AD上,∴∠AOB+BOD=180°.即∠AOB+∠BOC+∠COD=180°.∴∠AOC+∠COD=180°.OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180°∴∠AOC与∠BOC互补.(2)如图所示即为所求作的图形.(3)如图,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.锐角∠MPN的度数是45°∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β﹣45°|.故答案为:45°或|β﹣45°|.27.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为1011 ,M2(58)+M2(9653)的值为1101 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有38 个.【分析】(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,所以M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,求出M2(23)+M2(12)=11,M2(23+12)=11,可得M2(23)+M2(12)=M2(23+23);M2(23)=01,M2(65)=01,求出M2(23)+M2(65)=10,M2(23+65)=00,可得M2(23)+M2(65)≠M2(23+65);M2(23)=01,M2(97)=11,求出M2(23)+M2(97)=100,M2(23+297)=100,可得M2(23)+M2(97)=M2(23+97);②模二结果是10有:12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:77,97,79,99满足题意;模二结果是01有:27,29,47,49,67,69,87,89满足题意;模二结果是00有:20,22,24,26,40,42,44,46,60,62,64,66满足题意;38个.解:(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,∴M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,∴M2(23)+M2(12)=11,M2(23+12)=11,∴M2(23)+M2(12)=M2(12+23),∴12与23满足“模二相加不变”,∵M2(23)=01,M2(65)=01,∴M2(23)+M2(65)=10,M2(23+65)=00,∴M2(23)+M2(65)≠M2(23+65),∴65与23不满足“模二相加不变”,∵M2(23)=01,M2(97)=11,∴M2(23)+M2(97)=100,M2(23+97)=100,∴M2(23)+M2(97)=M2(23+97),∴97与23满足“模二相加不变”;②模二结果是10有:12,32,52,72,92,14,34,54,74,94,16,36,56,76,96,18,38,58,78,98,10,30,50,70,90共25个,它们与模二数23的和是11,∴12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:11,31,51,71,91,13,33,53,73,93,15,35,55,75,95,17,37,57,77,97,19,39,59,79,99共30个,它们与模二数23的和是100,∴77,97,79,99满足题意;模二结果是01有:21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89共20个,它们与模二数23的和是10,∴27,29,47,49,67,69,87,89满足题意;模二结果是00有20,22,24,26,28,40,42,44,46,48,60,62,64,66,68,80,82,84,86,88共20个,它们与模二数23的和是01,∴20,22,24,26,40,42,44,46,60,62,64,66满足题意;∴共有38个.。

湖北省2020年七年级数学上册期末试卷 含解析

湖北省2020年七年级数学上册期末试卷  含解析

七年级(上)期末数学试卷一.选择题(共8小题)1.下列各数与﹣6相等的()A.|﹣6| B.﹣|﹣6| C.﹣32D.﹣(﹣6)2.对于单项式,下列说法正确的是()A.它与3πa2b不是同类项B.它的系数是3C.它是二次单项式D.它与﹣的和是﹣2a2b3.若如图所示的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则ab=()A.3 B.﹣3 C.﹣2 D.24.下列方程中变形正确的是()A.方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.方程去分母,得5(x﹣1)﹣2x=1C.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1D.方程系数化为1,得x=﹣15.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段6.∠α与∠β的度数分别是 2m﹣67和 68﹣m,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等7.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.﹣=10C.12(x+10)=13x+60 D.﹣=108.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5 B.2a+8 C.2a+3 D.2a+2二.填空题(共8小题)9.计算:﹣2﹣(﹣1)=.10.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.11.将21.54°用度、分、秒表示为.12.已知7x m y3与﹣x2y n的和为单项式,则﹣n m=.13.在灯塔O处观测到轮船A位于北偏西40°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为.14.如图所示,用火柴棍拼成一排由三角形组成的图形,如果用了2019根火柴棍,则图中含有个三角形.15.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m﹣4)x+16=0的解,则m的值为.16.规定:用{m}表示大于m的最小整数,例如{}=3,{5}=6,{﹣1.3}=﹣1等;用[m]表示不大于m的最大整数,例如[]=3,[4]=4,[﹣1.5]=﹣2,如果整数x满足关系式:2{x}+3[x]=12,则x =.三.解答题(共8小题)17.计算:(1)(﹣1)100×5+(﹣2)4÷4;(2)﹣0.52+﹣|﹣22﹣4|﹣(﹣1)3×.18.求多项式2(xy﹣3x2)﹣3(xy﹣2x2)﹣xy的值,其中x,y满足|x+2|+(y﹣3)2=0 19.解方程:x+=3+.20.如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=a;②延长线段BA到D,使AD=b;(2)在(1)的条件下,若AB=4cm,a=3cm,b=5cm,且点E为CD的中点,求线段AE 的长度.21.如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.22.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?23.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,)都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(a,3)是“共生有理数对”,求a的值;(3)请再写出一对“共生有理数对”,如:;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”).24.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?参考答案与试题解析一.选择题(共8小题)1.下列各数与﹣6相等的()A.|﹣6| B.﹣|﹣6| C.﹣32D.﹣(﹣6)【分析】利用绝对值以及乘方的性质即可求解.【解答】解:A、|﹣6|=6,故选项错误;B、﹣|﹣6|、﹣6,故选项正确;C、﹣32=﹣9,故选项错误;D、﹣(﹣6)=6,故选项错误.故选:B.2.对于单项式,下列说法正确的是()A.它与3πa2b不是同类项B.它的系数是3C.它是二次单项式D.它与﹣的和是﹣2a2b【分析】根据单项式的定义、单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A.单项式与3πa2b是同类项,故本选项不合题意;B.单项式,系数是,故本选项不合题意;C.单项式的次数3,是三次单项式;故本选项不合题意;D.单项式,与﹣的和是﹣2a2b,正确,故本选项符合题意.故选:D.3.若如图所示的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则ab=()A.3 B.﹣3 C.﹣2 D.2【分析】先得出每个相对面,再由相对面上的两个数互为相反数可得出a,b的值,即可求解.【解答】解:“a”与“1”相对,“b”与“﹣3”相对,∵相对面上的两个数都互为相反数,∴a=﹣1,b=3,∴ab=﹣3.故选:B.4.下列方程中变形正确的是()A.方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.方程去分母,得5(x﹣1)﹣2x=1C.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1D.方程系数化为1,得x=﹣1【分析】各项中方程变形得到结果,即可作出判断.【解答】解:由3x﹣2=2x﹣1移项,得3x﹣2x=﹣1+2,不符合题意;B、由去分母,得5(x﹣1)﹣2x=1,符合题意;C、由3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x+5,不符合题意;D、由系数化为1,得x=﹣,不符合题意.故选:B.5.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是()A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段【分析】根据直线、线段、射线的有关内容逐个判断即可.【解答】解:A、直线AB与直线BA是同一条直线,正确,故本选项不符合题意;B、射线OA与射线AB不是同一条射线,错误,故本选项符合题意;C、射线OA与射线OB是同一条射线,正确,故本选项不符合题意;D、线段AB与线段BA是同一条线段,正确,故本选项不符合题意;故选:B.6.∠α与∠β的度数分别是 2m﹣67和 68﹣m,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等【分析】根据补角的性质,可得∠α=∠β,根据解方程,可得答案.【解答】解:∠α与∠β都是∠γ的补角,得∠α=∠β,即2m﹣67=68﹣m,解得m=45,2m﹣67=68﹣m=23.故选:C.7.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.﹣=10C.12(x+10)=13x+60 D.﹣=10【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:C.8.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5 B.2a+8 C.2a+3 D.2a+2【分析】利用已知得出矩形的长分为两段,即AB+AC,即可求出.【解答】解:如图所示:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.故选:A.二.填空题(共8小题)9.计算:﹣2﹣(﹣1)=﹣1 .【分析】根据有理数减法的运算法则,求出算式的值是多少即可.【解答】解:﹣2﹣(﹣1)=﹣1故答案为:﹣1.10.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.11.将21.54°用度、分、秒表示为21°32′24″.【分析】根据不到一度的化成分,不得一分的化成秒,可得答案.【解答】解:21.54°=21°32′24″,故答案为:21°32′24″.12.已知7x m y3与﹣x2y n的和为单项式,则﹣n m=﹣9 .【分析】根据同类项的定义求出m、n的值,再代入所求式子计算即可.【解答】解:∵7x m y3与﹣x2y n的和为单项式,∴m=2,n=3,∴﹣n m=﹣32=﹣9.故答案为:﹣913.在灯塔O处观测到轮船A位于北偏西40°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为155°.【分析】首先根据题意可得∠AOD=90°﹣40°=50°,再根据题意可得∠EOB=15°,然后再根据角的和差关系可得答案.【解答】解:∵在灯塔O处观测到轮船A位于北偏西40°的方向,∴∠AOC=40°,∴∠AOD=90°﹣40°=50°,∵轮船B在南偏东15°的方向,∴∠EOB=15°,∴∠AOB=50°+90°+15°=155°,故答案为:155°.14.如图所示,用火柴棍拼成一排由三角形组成的图形,如果用了2019根火柴棍,则图中含有1009 个三角形.【分析】根据图形的变化,通过归纳总结得到规律.【解答】解:1个三角形需要火柴棍3根,2个三角形需要火柴棍5根,3个三角形需要火柴棍8根,…发现规律:n个三角形需要火柴棍(2n+1)根,∴2n+1=2019,n=1009.故答案为1009.15.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m﹣4)x+16=0的解,则m的值为﹣4 .【分析】首先根据数轴上两点间的距离的求法,求出a的值是多少,进而求出c的值是多少;然后根据c是关于x的方程(m﹣4)x+16=0的一个解,求出m的值为多少即可.【解答】解:∵AB=8,∴6﹣a=8,解得a=﹣2,∵a+c=0,∴c=2,∵c是关于x的方程(m﹣4)x+16=0的一个解,∴2(m﹣4)+16=0,解得m=﹣4.故答案是:﹣4.16.规定:用{m}表示大于m的最小整数,例如{}=3,{5}=6,{﹣1.3}=﹣1等;用[m]表示不大于m的最大整数,例如[]=3,[4]=4,[﹣1.5]=﹣2,如果整数x满足关系式:2{x}+3[x]=12,则x = 2 .【分析】根据题意可将2x+3[x]=12变形为2x+2+3x=12,解出即可.【解答】解:由题意得:[x]=x,2x=2(x+1),∴2{x}+3[x]=12可化为:2(x+1)+3x=12整理得 2x+2+3x=12,移项合并得:5x=10,系数化为1得:x=2.故答案为:2.三.解答题(共8小题)17.计算:(1)(﹣1)100×5+(﹣2)4÷4;(2)﹣0.52+﹣|﹣22﹣4|﹣(﹣1)3×.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=1×5+16÷4=5+4=9;(2)原式=﹣+﹣8+×=﹣6.18.求多项式2(xy﹣3x2)﹣3(xy﹣2x2)﹣xy的值,其中x,y满足|x+2|+(y﹣3)2=0 【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy﹣6x2﹣3xy+6x2﹣xy=﹣2xy,由|x+2|+(y﹣3)2=0,得到x=﹣2,y=3,则原式=12.19.解方程:x+=3+.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:6x+3x﹣9=18+4x﹣2,移项合并得:5x=25,解得:x=5.20.如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=a;②延长线段BA到D,使AD=b;(2)在(1)的条件下,若AB=4cm,a=3cm,b=5cm,且点E为CD的中点,求线段AE的长度.【分析】(1)直接利用圆规截取得出C点位置,在射线BA上截取线段AD,即可解答;(2)结合AB=4cm,a=3cm,b=5cm,且E为CD的中点,得出AE的长求出答案.【解答】解:(1)如图,(2)∵AB=4cm,a=3cm,b=5cm,∴DC=4+3+5=12(cm),∵E为CD的中点,∴DE=6cm,∴AE=DE﹣AD=6﹣5=1(cm).21.如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE.【分析】(1)设∠BOF=α,根据角平分线的定义得出∠DOF=∠BOF=α,得出方程38°+α+α+α=90°,求出方程的解即可;(2)求出∠COE=180°﹣∠DOE=90°﹣∠DOF,根据垂直求出∠BOE=90°﹣∠BOF,即可得出答案;(3)根据余角和补角定义求出即可.【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.22.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?【分析】(1)根据有理数的加法,可得和,再根据向东为正,和的符号,可判定方向;(2)根据行车就耗油,可得耗油量,再根据耗油量与已有的油量,可得答案;(3)根据有理数的加法,可得每次的距离,再根据有理数的大小比较,可得最远.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)23.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,)都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是(3,);(2)若(a,3)是“共生有理数对”,求a的值;(3)请再写出一对“共生有理数对”,如:(4,)或(6,);(注意:不能与题目中已有的“共生有理数对”重复)(4)若(m,n)是“共生有理数对”,则(﹣n,﹣m)是“共生有理数对”(填“是”或“不是”).【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,列出方程求解即可;(3)根据“共生有理数对”的定义即可写出答案;(4)根据“共生有理数对”的定义即可判断.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1∴﹣2﹣1≠﹣2×1+1∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)由题意得:a﹣3=3a+1,解得a=﹣2.∴a的值为﹣2;(3)(4,)或(6,)是“共生有理数对”,故答案为:(4,)或(6,);(4)是.理由:﹣m﹣(﹣m)=﹣n+m﹣n⋅(﹣m)+1=mn+1∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;故答案为:是.24.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为40 元,每件乙种商品利润率为60% .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?【分析】(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,再由总进价是2100元,列出方程求解即可;(3)分两种情况讨论,①打折前购物金额超过450元,但不超过600元,②打折前购物金额超过600元,分别列方程求解即可.【解答】解:(1)设甲的进价为x元/件,则(60﹣x)=50%x,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.。

2020年七年级数学上册期末试卷 含解析

2020年七年级数学上册期末试卷  含解析

七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错,不选或多选均得零分.1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.2.a的平方与b的和,用式子表示,正确的是()A.a+b2B.a2+b C.a2+b2D.(a+b)23.若|x﹣3|=|x|+3,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<04.若﹣x m+(n﹣3)x+4是关于x的二次三项式,则m、n的值是()A.m=2,n=3 B.m=2,n≠3C.m≠2,n=3 D.m=2,n为任意数5.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10 B.﹣10 C.8 D.﹣86.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.7.小明用x元买学习用品,若全买水笔,则可买6支;若全买笔记本,则可买4本.已知一支水笔比一本笔记本便宜1元,则下列所列方程中,正确的是()A.B.C.D.8.若将一副三角板按如图所示的不同方式摆放,则图中∠a与∠β相等的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.|x|<3,且x为整数,则x的最小值是10.若|a+4|+|b﹣2|=0,则(a+1)b的值是.11.若(k﹣2)x|k|﹣1+3=0是关于x的一元一次方程,则k的值为.12.若点O是直线AB上一点,OC是一条射线,当∠AOC=50°时,则∠BOC的度数是.13.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人.14.若A、B、P是数轴上三点,且点A表示的数为﹣1,点B表示的数为3,点P表示的数为x,当其中一点到另外两点的距离相等时,则x的值可以是三.解答题(共58分)15.(1)计算:22×(﹣)﹣16+(﹣2)3;(2)计算:(36°5'﹣20°18″)×3.16.(1)解方程:;(2)求值:2(4﹣3a2)﹣3(a﹣2a2),其中a=﹣2.17.已知线段AB=7cm,直线AB上有一点C,且BC=3cm,M是线段AC的中点,求线段AM 的长.18.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.19.若有a,b两个数,满足关系式:a+b=ab﹣1,则称a,b为“共生数对”,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对”.(1)若(x,﹣2)是“共生数对”,求x的值;(2)若(m,n)是“共生数对”,判断(n,m)是否也是“共生数对”,请通过计算说明.(3)请再写出两个不同的“共生数对”20.用火柴棒按下列方式搭建三角形:(1)当三角形个数为1时,需3根火柴棒;当三角形个数为2时,需5根火柴棒;则当三角形个数为100时,需火柴棒根;当三角形个数为n时,需火柴棒根(用含n的代数式表示);(2)当火柴棒的根数为2019时,求三角形的个数?(3)组成三角形的火柴棒能否为1000根,如果能,求三角形的个数;如果不能,请说明理由.某校七年级(1)班和(2)班共104人去东方风景区,当两班都以班为单位分别购票时,则一共需付492元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班45人也一同前去参观时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需多少元?22.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM 与∠CON的数量关系,并说明理由.参考答案与试题解析一.选择题(共8小题)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:﹣2的倒数是﹣,故选:C.2.a的平方与b的和,用式子表示,正确的是()A.a+b2B.a2+b C.a2+b2D.(a+b)2【分析】根据题意,可以列出相应的代数式,本题得以解决.【解答】解:a的平方与b的和可以表示为:a2+b,故选:B.3.若|x﹣3|=|x|+3,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<0【分析】根据绝对值的性质,要化简绝对值,可以就x>3,0≤x≤3,x<0三种情况进行分析.【解答】解:①当x>3时,原式可化为:x+3=x﹣3,无解;②当0≤x≤3时,原式可化为:x+3=3﹣x,此时x=0;③当x<0时,原式可化为:﹣x+3=3﹣x,等式恒成立.综上所述,则x≤0.故选:B.4.若﹣x m+(n﹣3)x+4是关于x的二次三项式,则m、n的值是()A.m=2,n=3 B.m=2,n≠3C.m≠2,n=3 D.m=2,n为任意数【分析】让最高次项的次数为2,保证第二项的系数不为0即可.【解答】解:由题意得:m=2;n﹣3≠0,∴m=2,n≠3.故选:B.5.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10 B.﹣10 C.8 D.﹣8【分析】把x=2代入已知方程得到关于a的新方程,通过解新方程求得a的值,再代入计算即可求解.【解答】解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.6.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【解答】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D.7.小明用x元买学习用品,若全买水笔,则可买6支;若全买笔记本,则可买4本.已知一支水笔比一本笔记本便宜1元,则下列所列方程中,正确的是()A.B.C.D.【分析】首先根据题意表示出一枝水笔的价格是元,一个笔记本的价格是元,再根据关键语句“一支水笔比一本笔记本便宜1元”列出方程即可.【解答】解:由题意得:一枝水笔的价格是元,一个笔记本的价格是元,则方程为:=﹣1.故选:A.8.若将一副三角板按如图所示的不同方式摆放,则图中∠a与∠β相等的是()A.B.C.D.【分析】A、由图形可得两角互余,不合题意;B、由图形可分别求出∠α与∠β的度数,即可做出判断;C、由图形可分别求出∠α与∠β的度数,即可做出判断;D、由图形得出两角的关系,即可做出判断.【解答】解:A、由图形得:∠α+∠β=90°,不合题意;B、由图形得:∠β=45°,∠α=90°﹣45°=45°,符合题意;C、由图形得:∠α=90°﹣45°=45°,∠β=90°﹣30°=60°,不合题意;D、由图形得:90°﹣∠β=60°﹣∠α,即∠α+30°=∠β,不合题意.故选:B.二.填空题(共6小题)9.|x|<3,且x为整数,则x的最小值是﹣2【分析】由题意|x|<3,得﹣3<x<3,再根据x为整数和x的最小值进行求解.【解答】解:因为|x|<3,所以﹣3<x<3,因为x为整数,所以x取值为﹣2,﹣1,0,1,2,所以x的最小值是﹣2,故答案为:﹣2.10.若|a+4|+|b﹣2|=0,则(a+1)b的值是9 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:因为|a+4|+|b﹣2|=0,所以a+4=0,b﹣2=0,解得a=﹣4,b=2,所以,(a+1)b=(﹣4+1)2=9.故答案为:9.11.若(k﹣2)x|k|﹣1+3=0是关于x的一元一次方程,则k的值为﹣2 .【分析】一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意,知k﹣2≠0且|k|﹣1=1,解得,k=﹣2;故答案为:﹣2.12.若点O是直线AB上一点,OC是一条射线,当∠AOC=50°时,则∠BOC的度数是130°.【分析】根据补角的定义解答即可.【解答】解:∠BOC=180°﹣∠AOC=130°.故答案为:130°;13.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有7 人.【分析】设共有x人,根据该物品的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设共有x人,根据题意得:8x﹣3=7x+4,解得:x=7.答:共有7人.故答案为:7.14.若A、B、P是数轴上三点,且点A表示的数为﹣1,点B表示的数为3,点P表示的数为x,当其中一点到另外两点的距离相等时,则x的值可以是1或7或﹣5【分析】根据题意列方程即可得到结论.【解答】解:∵其中一点到另外两点的距离相等,∴AB=AP,BA=BP,PA=PB,∴|﹣1﹣3|=|﹣1﹣x|,|3﹣(﹣1)|=|3﹣x|,|x﹣(﹣1)|=|x﹣3|,解得:x=1,x=7,x=﹣5,故答案为:1或7或﹣5.三.解答题(共8小题)15.(1)计算:22×(﹣)﹣16+(﹣2)3;(2)计算:(36°5'﹣20°18″)×3.【分析】(1)根据有理数混合运算的法则计算即可;(2)根据有理数混合运算的法则计算即可.【解答】解:(1)原式=4×(﹣)﹣16÷(﹣8)=﹣2+2=0;(2)原式=16°4′42″×3=48°14′6″.16.(1)解方程:;(2)求值:2(4﹣3a2)﹣3(a﹣2a2),其中a=﹣2.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)去分母,得3(1﹣x)=2(x+2)﹣6,去括号,得3﹣3x=2x+4﹣6,移项合并,得﹣5x=﹣5,系数化为1,得x=1;(2)原式=8﹣6a2﹣3a+6a2=﹣3a+8,当a=﹣2时,原式=﹣3×(﹣2)+8=14.17.已知线段AB=7cm,直线AB上有一点C,且BC=3cm,M是线段AC的中点,求线段AM 的长.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:当点C在线段AB上时,有AC=AB﹣BC=4cm,∵点M是AC的中点,∴AM=AC=2cm;当点C在线段AB延长线上时,有AC=AB+BC=10cm,∵点M是AC的中点,∴AM=AC=5cm.18.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.【分析】(1)根据补角的性质,可得∠α、∠β,根据解方程,可得答案;(2)根据余角的定义,可得答案.【解答】解:(1)由∠α、∠β都是∠γ的补角,得∠α=∠β,即(2n+5)°=(65﹣n)°.解得n=20;(2)∠α与∠β互余,理由如下:∠α=(2n+5)°=45°,∠β=(65﹣n)°=45°,∵∠α+∠β=90°,∴∠α与∠β互为余角.19.若有a,b两个数,满足关系式:a+b=ab﹣1,则称a,b为“共生数对”,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对”.(1)若(x,﹣2)是“共生数对”,求x的值;(2)若(m,n)是“共生数对”,判断(n,m)是否也是“共生数对”,请通过计算说明.(3)请再写出两个不同的“共生数对”【分析】(1)根据题意,可以得到关于x的方程,从而可以求得x的值;(2)根据“共生数对”的定义,可以解答本题;(3)本题答案不唯一,只要写出两组符合题意的数对即可【解答】解:(1)∵(x,﹣2)是“共生数对”,∴x﹣2=﹣2x﹣1,解得x=;(2)(n,m)也是“共生数对”,理由:∵(m,n)是“共生数对”,∴m+n=mn﹣1,∴n+m=m+n=mn﹣1=nm﹣1,∴(n,m)也是“共生数对”;(3)由a+b=ab﹣1,得b=,∴当a=3时,b=2;当a=﹣1时,b=0.∴两个“共生数对”可以是(3,2)和(﹣1,0).20.用火柴棒按下列方式搭建三角形:(1)当三角形个数为1时,需3根火柴棒;当三角形个数为2时,需5根火柴棒;则当三角形个数为100时,需火柴棒201 根;当三角形个数为n时,需火柴棒(2n+1)根(用含n的代数式表示);(2)当火柴棒的根数为2019时,求三角形的个数?(3)组成三角形的火柴棒能否为1000根,如果能,求三角形的个数;如果不能,请说明理由.【分析】(1)根据题目中的图形,可以发现火柴棒根数的变化规律,从而可以得到当三角形个数为100时,需火柴棒的根数和当三角形个数为n时,需火柴棒的根数;(2)根据(1)中的结果,可以求得当火柴棒的根数为2019时,三角形的个数;(3)根据(1)中的结果,可以说明组成三角形的火柴棒能否为1000根.【解答】解:(1)由图可得,当n=1时,火柴棒的根数为:1+2×1=3,当n=2时,火柴棒的根数为:1+2×2=5,当n=3时,火柴棒的根数为:1+2×3=7,当n=4时,火柴棒的根数为:1+2×4=9,…,当n=100时,火柴棒的根数为:1+2×100=201,当三角形个数为n时,需火柴棒的根数为:1+2×n=2n+1,故答案为:201,(2n+1);(2)令2n+1=2019,得n=1009,即当火柴棒的根数为2019时,三角形的个数是1009;(3)令1+2n=1000,得n=499.5不是整数,故组成三角形的火柴棒不能为1000根.则一共需付492元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班45人也一同前去参观时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需多少元?【分析】(1)最节约的办法就是团体购票,节省的钱=492﹣团体票价;(2)主要考虑有两种情况,分别计算,不符合的情况舍去就可以了;(3)还是采用团体购票,总人数是149,在102﹣150之间,总票价=总人数×单位票价.【解答】解:(1)当两班合起来购票时,需104×4=416元,可节省492﹣416=76元.(2)由104×5=520>492,104×4.5=468<492,知(1)班人数大于52,(2)班人数小于52,设(1)班有x人,(2)班有(104﹣x)人,当104﹣x=51时,x=53,这104×4.5≠492,显然x≠53,当104﹣x<51时,则由题意,得4.5x+5(104﹣x)=492,解得x=56,∴104﹣x=48,∴(1)班有56人,(2)班有48人.(3)3个班共有149人,按149人购票,需付购票费149×4=596元,但按151人购票,需付151×3.5=528.5元,∵528.5<596,∴3个班按151人购票更省钱,共需528.5元.22.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM 与∠CON的数量关系,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,②当∠AOM=∠COM =30°时,③当∠AOC=∠AOM=60°时,根据角的和差即可得到结论;(3)当ON在∠AOC内部时,根据角的和差即可得到结论.【解答】解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°;(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM=60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15;③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24.综上所述,得知t的值为6或15或24;(3)当ON在∠AOC内部时,∠AOM﹣∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON﹣∠AON=(90﹣x)°,∠CON=∠AOC﹣∠AON=(60﹣x)°,∴∠AOM﹣∠CON=(90﹣x)°﹣(60﹣x)°=30°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期七年级期末评价数学试卷一、选择题:(本大题10个小题,每小题3分,共30分)1. (-2)×3的结果是()A. - 6B. – 5C. - 1D. l【答案】A【解析】分析:原式利用异号两数相乘的方法计算即可得到结果.详解:原式=-6,故选:A.点睛:此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2. 下列说法中①小于90°的角是锐角;②等于90°的角是直角;③大于90°的角是钝角;④平角等于180°;⑤周角等于360°,正确的有()A. 5个B. 4个C. 3个D. 2个【答案】C②等于90°的角是直角,故正确;③钝角是大于90°小于180°的角,故错误;④平角等于180°,正确;⑤周角等于360°,正确,故选C.3. 用代数式表示“m的3倍与n的差的平方”,正确的是()A. (3m-n)2B. 3(m-n)2C. 3m-n2D. (m-3n)2【答案】A学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...解:m的3倍与n的平方差为(3m)2−n2.故选C.4. 如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A. ∠DOE的度数不能确定B. ∠AOD=∠EOCC. ∠AOD+∠BOE=60°D. ∠BOE=2∠COD【答案】C【解析】A.∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=(∠BOC+∠AOC)=∠AOB=60°故本选项叙述错误;B.∵OD是∠AOC的角平分线,∴∠AOD=∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立。

故本选项叙述错误;C.∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=(∠BOC+∠AOC)=∠AOB=60°故本选项叙述正确;D.∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立。

故本选项叙述错误;故选:C.5. 有理数a,b在数轴的位置如图,则下面关系中正确的个数为()①a-b>0;②ab<0;③;④a2>b2.A. 1B. 2C. 3D. 4【答案】C【解析】由图可知:b<0<a,|b|>|a|,∴a﹣b>0,ab<0,>,∵|b|>|a|,∴a2<b2,所以①、②、③成立.故选:C.6. 一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A. x·30%×80%=312B. x·30%=312×80%C. 312×30%×80%=xD. x(1+30%)×80%=312【答案】D【解析】试题解析:设这件商品的成本价为x元,成本价提高30%后的标价为x(1+30%),再打8折的售价表示为x(1+30%)×80%,又因售价为312元,列方程为:x(1+30%)×80%=312.故选D.7. 下列等式变形正确的是()A. 如果s= 2ab,那么b=B. 如果x=6,那么x=3C. 如果x-3 =y-3,那么x-y =0D. 如果mx= my,那么x=y【答案】A【解析】试题解析:A、如果s=ab,那么b=,当a=0时不成立,故A错误,B、如果x=6,那么x=12,故B错误,C、如果x-3=y-3,那么x-y=0,故正确,D、如果mx=my,那么x=y,如果m=0,式子不成立,故D错误.故选C.8. 下列方程中,以x=-1为解的方程是()A. B. 7(x-1)=0 C. 4x-7=5x+7 D.【答案】A【解析】A. 把x=−1代入方程的左边=右边=−2,是方程的解;B. 把x=−1代入方程的左边=−14≠右边,所以不是方程的解;C. 把x=−1代入方程的左边=−12≠右边,不是方程的解;D. 把x=−1代入方程的左边=−≠右边,不是方程的解;故选A.9. 如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为()A. 2m+6B. 3m+6C. 2m2+9m+6D. 2m2+9m+9【答案】B【解析】另一边的长为2m+3+m+3=3m+6.故选B.10. 下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n个图案需几根火柴棒A. 2+7nB. 8+7nC. 7n+1D. 4+7n【答案】C【解析】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n−1)=7n+1根;故选C.点睛:此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.二、填空题:(本大题8个小题,每小题4分,共32分)11. 有理数5.614精确到百分位的近似数为______________________.【答案】5.61【解析】试题分析:精确到百分位,则需要看千分位的数字,如果千分位上的数字大于等于5,则向前面进一,然后把千分位后的都舍去;如果千分位上的数字小于5,则把千分位后的都舍去.考点:近似数12. 如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__________________________.(填编号)【答案】①②③【解析】根据三视图的定义,主视图,左视图分别是从物体的正面,左面观察, ①是圆锥体,从正面看和从左面看都是等腰三角形,②是圆柱体,从正面看和从左面看都是矩形,③是球体,从正面看和从左面看都是圆,④是长方体,从正面看是矩形,从左面看是正方形,故答案为:①②③.点睛:本题主要考查三视图的定义,解决本题的关键是要熟练掌握三视图的定义.13. 若单项式ax2y n+1与-ax m y4的差仍是单项式,则m-2n=__________.【答案】-4【解析】解:∵单项式ax2y n+1与﹣ax m y4的差仍是单项式,∴两个单项式是同类项,即m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.14. 已知点c在直线AB上,若AC= 4cm,BC= 6cm,E、F分别为线段AC、BC的中点,则EF=________________cm.【答案】5cm 1cm【解析】分析:分类讨论:点C在线段AB上,点C在线段AB的反向延长线上,根据中点分线段相等,可得AE与CE的关系,BF与CF的关系,可根据线段的和差,可得答案.详解:点C在线段AB上,E、F分别为线段AC、BC的中点,CE=AE=AC=2cm,CF=BF=BC=3cm,EF=CE+CF=2+3=5cm;点C在线段AB的反向延长线上,E、F分别为线段AC、BC的中点,CE=AE=AC=2cm,CF=BF=BC=3cm,EF=CF-CE=3-2=1cm,故答案为:5cm或1cm.点睛:本题考查了两点间的距离,分类讨论是解题关键.15. 王强参加3000米长跑,他以6米/秒的速度跑了一段路程后,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,求他以6米/秒的速度跑了多少米?设他以6米/秒的速度跑了x米,则列出的方程是_____________________________.【答案】【解析】设他以6米/秒的速度跑了x米,则他以4米/秒的速度跑了(3000-x)米,根据跑完全程共用10分钟可得方程.16. 已知如图,1∶2∶3∶4=1∶2∶3∶4,则2+3=__________,1与4互为_______________角.【答案】(1). 180(2). 补【解析】试题解析:设,因为,所以,解得,则.故,,与互补.点睛:由图可以看出,与互为补角,与互为补角.17. 装标价200元,以6折销售,可获利20%,这件服装的进价是_________________元.【答案】100【解析】试题分析:根据题意,找出相等关系为:进价×(1+20%)=200×60%,设未知数列方程求解.解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故答案为100.考点:一元一次方程的应用.18. 下面图形的面积为______________________.(x的值取3)【答案】33【解析】分析:把图形分割成两个长方形,分别计算面积即可求解.详解:如图,长方形1的面积为:x(2x+1-x)=x(x+1)=x2+x;长方形2的面积为:x(2x+1)=2x2+x故阴影部分的面积为:x2+x+2x2+x=3x2+2x当x=3时,原式=33.点睛:此题主要考查了组合图形的面积,解答此题的关键是把不规则图形转化为规则图形再解答.三、解答题:(本大题6个小题,共38分,解答时每小题必须给出必要的演算程或推理步骤)19. 解方程与计算:(1)2(x+3)=-3(x-1)+2;(2);(3);(4).【答案】(1)x=;(2)x=-2;(3)16;(4)-43.【解析】分析:(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)先把除法转化为乘法,再按乘法分配律进行计算即可.详解:(1)去括号得,2x+6=-3x+3+2移项得,2x+3x=3+2-6,合并同类项得,5x=-1,把x的系数化为1得,x=-;(2)去分母得,4(1-x)-12x=36-3(x+2),去括号得,4-4x-12x=36-3x-6,移项得,-4x-12x+3x=36-6-4,合并同类项得,-13x=26,把x的系数化为1得,x=-2.(3) 原式=16+(-4)×+1=16(4)原式=12-30-25=-43点睛:(1)(2)小题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键;(3)(4)考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20. 先化简,再求值:3x2y-[2xy-2(xy-x2y)+x2y2],其中x=3,y=.【答案】化简为:,原式=-1【解析】分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.详解:原式=3x2y-2xy+2xy-3x2y-x2y2=-x2y2,当x=3,y=-时,原式=-1.点睛:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21. 如图,已知A,O,B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=α,求∠DOE的度数;(3)图中是否有互余的角?若有,请写出所有互余的角。

相关文档
最新文档