不等式
关于不等式的公式

关于不等式的公式
不等式的基本公式包括但不限于以下几种:
1. 加法公式:如果a > b,则a + c > b + c。
2. 减法公式:如果a > b,则a - c > b - c。
3. 乘法公式:如果a > b,并且c > 0,则ac > bc;如果c < 0,则ac < bc。
4. 除法公式:如果a > b,并且c > 0,则a/c > b/c;如果c < 0,则a/c < b/c。
5. 平方不等式定理:对于任意实数a,如果a > 0,则a² > 0;如果a < 0,则a² > 0。
6. 平方根不等式公式:对于任意实数a,如果a > 0,则√a > 0;如果a < 0,则√a不存在。
7. 基本不等式公式:a+b≥2√(ab)。
常用的不等式公式还有
√((a²+b²)/2)>(a+b)/2≥√ab≥2/(1/a+1/b)√ab≤(a+b)/2,a²+b²>2ab,ab≤(a+b)²/4等。
其中,a >0,b>0,当且仅当a=b时,等号成立。
此外还有绝对值不等式等,不等式具有多种类型和变种。
建议查阅数学书籍或咨询数学专业人士获取更多信息。
不等式的定义

不等式的定义不等式的定义是:一般地,用不等号表示不相等关系的式子叫做不等式,常见的不等号有“<”“>”“≤”“≥”及“≠”。
严格来说不等式的定义是:用“>"“<”连接的不等式叫做严格不等式。
非严格不等式的定义是:用“≤”和“≥”连接的不等式叫做非严格不等式。
特别提醒:a=b,a>b中,只要有一个成立,就有a≥b。
扩展资料不等式的性质:(1)如果a>b,那么b<a;如果b<a,那么a>b,即a>bb<a。
(2)如果a>b,b>c,那么a>c,即a>b,b >ca>c。
(3)如果a>b,那么a+c>b+c。
(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc。
(5)如果a>b,c>d,那么a+c>b+d。
(6)如果a>b>0,c>d>0,那么ac>bd。
(7)如果a>b>0,那么an>bn(n∈N,n≥2)。
(8)如果a>b>0,那么(n∈N,n≥2)。
不等关系与不等式的区别:不等关系强调的是量与量之间的关系,可以用符号“<…>…≤”“≥”来表示,也可以用语言表述;而不等式则是用来表示不等关系的式子,可用“a>b”‘a<b”“a≥b a≤b”等式子来表示,不等关系是通过不等式来体现的。
不等式的分类:①按成立的条件分:a.绝对不等式:不等式中的字母取任意实数值都恒成立的不等式叫做绝对不等式;b.条件不等式:不等式中的字母取某些允许值才能成立的不等式叫做条件不等式;c.矛盾不等式:不等式中的字母不论取何实数值都不能成立的不等式叫做矛盾不等式;②按不等号开口方向分:a.同向不等式:不等号方向相同的两个不等式;b.异向不等式:不等号方向相反的两个不等式。
各种常用不等式汇总

各种常用不等式汇总文章目录•一、一般不等式•o1、一元二次不等式o2、正弦余弦不等式o3、均值不等式o4、绝对值不等式o5、排序不等式o6、权方和不等式•二、人名不等式•o1、柯西不等式o2、卡尔松不等式o3、琴声不等式o4、杨氏不等式o5、赫尔德不等式o6、闵可夫斯基不等式o7、伯努利不等式一、一般不等式经常会用到的不等式一般有前面三个是下面均值不等式的特殊情况。
一般情况下a=b时,才取到等号1、一元二次不等式首先回顾一下一元二次方程的求根公式一元二次不等式的解以及图像2、正弦余弦不等式3、均值不等式均值不等式中一般包含四个公式:调和平均数公式、算数平均数公式、平方平均数公式、几何平均数公式,下面一一介绍。
•调和平均数又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。
调和平均数是平均数的一种。
但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。
由于它是根据变量的倒数计算的,所以又称倒数平均数。
调和平均数也有简单调和平均数和加权调和平均数两种。
•算术平均数又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。
它主要适用于数值型数据,不适用于品质数据。
根据表现形式的不同,算术平均数有不同的计算形式和计算公式。
•一组数据的平方的平均数的算术平方根。
英文缩写为RMS。
它是2次方的广义平均数的表达式,也可称为2次幂平均数。
英文名一般缩写成RMS。
•几何平均数是n个变量值连乘积的n次方根,分为简单几何平均数与加权几何平均数。
1)几何平均数受极端值的影响较算术平均数小;2)如果变量值有负值,计算出的几何平均数就会成为负数或虚数;3)它仅适用于具有等比或近似等比关系的数据;4)几何平均数的对数是各变量值对数的算术平均数。
它们的公式如下:调和平均数≤ 几何平均数≤ 算术平均数≤ 平方平均数(方均根)4、绝对值不等式5、排序不等式反序和≤乱序和≤顺序和6、权方和不等式权方和不等式是一个数学中重要的不等式。
常用的不等式

常用的不等式(原创实用版)目录1.不等式的基本概念2.常见不等式的分类3.如何解不等式4.实际应用案例正文一、不等式的基本概念不等式是数学中一种表达大小关系的方式,通常用符号“<”、“>”、“≤”、“≥”表示。
在代数中,不等式是两个数或表达式之间的比较,它可以帮助我们了解它们之间的关系。
二、常见不等式的分类常见的不等式可以分为以下几类:1.线性不等式:这是最简单的一类不等式,如 x < 3、2x + 1 > 5 等。
2.二次不等式:涉及二次方程的不等式,如 x^2 - 3x + 2 < 0 等。
3.绝对值不等式:涉及绝对值的不等式,如|x - 2| > 3 等。
4.复合不等式:涉及多个不等式的组合,如 (x - 2)(x - 3) > 0 等。
5.含有参数的不等式:涉及变量参数的不等式,如 x - a > 0(其中a 为参数)等。
三、如何解不等式解不等式的方法有很多,下面介绍几种常用的方法:1.移项法:将所有项移到同一侧,以便比较。
2.消元法:通过乘以或除以某个数,消去其中一个未知数。
3.图形法:通过画出函数图像,观察图像与坐标轴的交点,了解不等式的解集。
4.符号法:通过分析各个符号的变化,判断不等式的解集。
四、实际应用案例不等式在实际生活中有很多应用,如:1.经济学中的成本与收益分析:通过建立不等式模型,分析企业的生产成本与收益之间的关系。
2.物理学中的运动学:利用不等式描述物体的速度、加速度等物理量之间的关系。
3.社会学中的人口统计:通过建立不等式模型,分析人口数量、年龄结构等之间的关系。
总之,不等式作为数学中的一种基本概念,它在各个领域都有广泛的应用。
不等式

(一)不等式的概念作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.1.不等式用符号>或<联结两个解析式所成的式子,称为不等式.不等号>或<叫做严格不等号,≥或≤叫做非严格不等号(相应的不等式分别叫做严格不等式和非严格不等式).例如b a ≥表示“b a >或b a =有一个成立,”因此1≥0或1≤1都是真的.另外,日常还使用一种只肯定不等关系但不区分孰大孰小的不等号,即“≠”.下面主要讨论严格不等式的性质.常如下定义不等式: 形如),,,(),,,(z y x g z y x f ∨(2-1)的式子,称为关于变数z y x ,,, 的不等式(符号“∨”表示不等号“>”,“<”中的任一个).在(2-1)式中,),,,(),,,(z y x g z y x f 与定义域的交集,叫做不等式(2-1)的定义域.在不等式(2-1)的定义域中,能使不等式成立的数值组,叫做不等式(2-1)的解,不等式(2-1)解的全体组成的集合,叫做不等式(2-1)的解集.求出不等式解集的过程,叫做解不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)成立,那么不等式(2-1)叫做绝对不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)不成立,那么不等式(2-1)叫做矛盾不等式.如果不等式(2-1)的定义域中一些值组使不等式(2-1)成立,而另一些值组使不等式(2-1)不成立,那么不等式(2-1)叫做条件不等式.在不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是代数式,那么就叫它代数不等式;如果),,,(),,,(z y x g z y x f 和中至少有一个为超越式,那么就叫它超越不等式. 在代数不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是有理式,那么就叫它有理不等式;如果),,,(),,,(z y x g z y x f 和至少有一个为无理式,那么就叫它无理不等式.在有理不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是整式不等式,那么就叫它整式不等式;如果),,,(),,,(z y x g z y x f 和至少有一个是分式,那么就叫它分式不等式.2.不等式组含有未知数z y x ,,, 的几个不等式所组成的一组不等式⎝⎛∨∨∨),,,(),,,(),,,(),,,(),,,(),,,(2211z y x g z y x f z y x g z y x f z y x g z y x f k k(2-2)称为不等式组.不等式组(2-2)中,),,2,1)(,,,(),,,(k i z y x g z y x f i i =定义域的交集,叫做不等式组(2-2)的定义域.不等式组(2-2)中,各个不等式的解集的交,叫做不等式组(2-2)的解集.求出不等式组的解集的过程,叫做解不等式组.(二)不等式的性质实数的三条运算比较性质: ①0>-⇔>b a b a ②0<-⇔<b a b a ③0=-⇔=b a b a为不等式性质的证明提供了依据.不等式有如下10条性质.(1)对逆性如b a >,则a b <;反之如a b <,则b a >.(2)传递性 若,,c b b a >>则c a >. (3)加法单调性若b a >,则c b c a +>+.(4)乘法单调性若0,>>c b a ,则bc ac >;若0,<>c b a 则bc ac <.(5)相加法则若,,d c b a >>则d b c a +>+.(6)相减法则若d c b a >≥,,则d b c a ->-.(7)相乘法则若0,0>>>>d c b a ,则bd ac >.(8)相除法则若d c b a <<>≥0,0,则db c a >. (9)乘方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.(10)开方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.注意 性质(1),(3),(4),(9)和(10)是可逆的,因此这些性质可以用于证明不等式,也可用作解不等式.其余各条作为解不等式的依据,可以用于证明不等式(当不需可逆推理时).(三)不等式的证明方法 1.比较法比较法是直接求出所证不等式两边的差或商,然后推演结论的方法.欲证B A >(或B A <),可以直接将差式B A -与0比较大小;或者+∈R B A ,时,直接将商式BA与1比较大小.在什么情况下用比较法较好呢?一般地,当移项后容易分解成因式或配成完全平方时,可考虑用比较法;或当不等式两边都是乘积结构(或可化成乘积结构,成虽为商式结构,但分子、分母都可化为乘积结构)时,可考虑比较法;另外,能化成便于放大或缩小的商式,也可考虑用比较法.例1 设b a ,为不等的实数,求证)(46224224b a ab b b a a +>++证明 因为=++-+=+-++222222224224)2()(4)()(46ab b a ab b a b a ab b b a a=-+222)2(ab b a )(0)(4b a b a ≠>-所以)(46224224b a ab b b a a +>++例2 若0>>>c b a ,求证b a ac c b c b a c b a c b a +++>222证明 考虑用商式.因为=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛>+++c a a c b c c b a b b a b a a c c b cb a ac a c c b c b b a b a c b a c b a 222 1>⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛---ca cb ba c a cb b a所以b a ac c b c b a c b a c b a +++>2222.综合法综合法是“由因导果”,即从已知条件出发,依据不等式的性质、函数性质或熟知的基本不等式,逐步推导出要证明的不等式.常利用不等式的性质或借助于现成的不等式.因此,掌握的不等式越多,应用这种方法就越方便.例3 试证:若0,,>∀c b a ,则有abc b a c a c b c b a 6)()()(222222≥+++++证明方法1 因为0)(2≥-b a ,所以ab b a 2)(22≥+.又0>c ,所以abc b a c 2)(22≥+同理有 abc a c b abc c b a 2)(,2)(2222≥+≥+ 由相同加法则,三式相加即得结论. 方法2 欲证不等式等价于6≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+a b b a c a a c b c c b 因为2,2,2≥+≥+≥+abb ac a a c b c c b ,三式相加,即得结论. 说明 将所要证不等式分成几个同向不等式,然后将各式相加或相乘,这是证明不等式的常用手法.3.分析法分析法是“执因索果”,即从所要证明的结论出发,步步推求使不等式能成立的充分条件(或充分必要条件),直至归结到已知条件或已知成立的结论为止.例4 已知1,≥∈n N n ,求证⎪⎭⎫⎝⎛+++≥⎪⎭⎫ ⎝⎛-+++++n n n n 21412111215131111 (1)证明 欲证不等式(1),只需证⎪⎭⎫ ⎝⎛++++≥⎪⎭⎫ ⎝⎛-++++n n n n 214121)1(12151311(2)(2)式左边即⎪⎭⎫ ⎝⎛-+++++121513122n n n n (3)(2)式右边即=⎪⎭⎫ ⎝⎛+++++++n n n 214121214121 ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++n n n n 21412141212(4)比较(3)与(4)式,显然nn 2161411215131+++≥-+++ . 可知要证(2)式成立,只需证nn 2141212+++≥ (5)当1=n 时,(5)式成立;若k n =时,(5)式成立.则1+=k n 时22121412121221+++++≥+=+k k k k )1(21214121+++++=k k 即(5)式成立,结论得证.应用分析法的基本思路是“要C成立,只要B成立即可;要B成立,只要A成立…”,一直追溯到已知条件或已知的不等式为止.用形式符号表示出来,就是“ ←←←C B A ”.如果分析的每一步都是充分必要的,即“B A ⇔”则更好.应该强调的是,分析的思想和分析的方法是研究一切问题的一个基本方法.无论是数学,自然科学,还是经济学或社会科学,多半是以分析为先导.没有中肯的分析,就不会有正确的综合.所以在数学教育中培养学生分析问题的能力是有意义的.4.数学归纳法数学归纳法是由皮亚诺公理派生出来的一个重要数学方法.它对于等式或不等式的证明同样是有效的.主要用于与自然数n 有关的不等式命题.例5 求证对于任意的自然数n ,有121212654321+<-∙∙n n n 证明方法1 当n =1时,有3121<,不等式成立. 假设n =k 时,不等式为真,那么当n =k +1时,有221222121212212212654321++=++∙+<++∙-∙∙k k k k k k k k k 又)32)(12(3212212++⇔+<++k k k k k2)22()32)(12(22+<++⇔+<k k k k末式成立,故原不等式对1+=k n 成立.结论得证.方法2 构造数列 记122765432,212654321+∙∙=-∙∙=n n b n n a n n 显然),2,1( =<n b a n n1212+=<n b a a n n n所以121+<n a n 即得结论121212654321+<-∙∙n n n 说明 这个不等式的左边有明显的特点,不等式右式成平方根的形式.5.反证法前面几种方法都是直接证法,而反证法是一种间接证法,其中包括归谬法和穷举法. 反证法从否定所要证的结论入手,假设结论的否定为真,那么由此所引出的结论与已知条件或已知公理、定理、定义域性质之一相矛盾,或自相矛盾,因而结论的否定不成立,故原结论是真实的.当给定不等式不便于用直接法证明时,或其自身是一种否定式命题时,可考虑用反证法.例6 设+∈R z y x ,,,且1sin sin sin 222=++z y x ,求证2π>++z y x 证明 假如2π≤++z y x(1)则有220ππ≤-≤+<z y x因为正弦函数在区间⎪⎭⎫⎝⎛2,0π上是增函数,所以 z z y x cos )2sin()sin(=-≤+π(2)(2)式两边均为正数,两边平方,有x y y x x y y x cos sin cos sin 2cos sin cos sin 2222++y x z z 2222sin sin sin 1cos +=-=≤整理得0)cos(sin sin ≤+y x y x(3)但是,由(1)式可知⎪⎭⎫⎝⎛∈+2,0,,πy x y x ,表明(3)式不可能成立. 因此2π>++z y x6.换元法换元法是根据不等式的结构特征,选择适当的变量代换,从而化繁为简,化难为易,化未知为已知,或实现某种转化,达到证明的目的.换元法有时称为变换法.例7 设1=++z y x ,试证31222≥++z y x 证明 当31===z y x 时,不等式中的等号成立.于是引进参数v u ,,作变换: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=+=+=v u z v y u x 313131实际上这是平面1=++z y x 的一个参数表示形式.代入不等式的右端,得到=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++222222313131v u v u z y x3131)(222≥++++v u v u 7.放缩法放缩法又称传递法,它是根据不等式的传递性,将所求证的不等式的一边适当地放大或缩小,使不等关系变得明朗化,从而证得不等式成立.这是不等思维的一个显著特征,其依据是实数集R的阿基米德性质.放缩法的具体做法要依据原不等式的结构来确定.例如,对于和式,采用将某些项代之以较大(或较小)的数,以得到一个较大(或较小)的和;或者用舍去一个或几个正项的办法,以得到较小的和.对于分式,则采取缩小(或放大)分母或者放大(或缩小)分子的办法来增值(或减值).总之,放缩法使用的是不等量代换,这与换元法使用等量代换有着明显的区别.例8 设),,2,1(0n i a i =>,求证123212321322121)()()(a a a a a a a a a a a a a n n <++++++++++ 证明左边+++++++<))(()(3212132112a a a a a a a a a a=++++++++-))((3211321n n na a a a a a a a a++⎪⎪⎭⎫ ⎝⎛++-++⎪⎪⎭⎫ ⎝⎛+- 321212111111a a a a a a a a=⎪⎪⎭⎫ ⎝⎛+++-+++-n n a a a a a a 21121111211111a a a a a n <+++- 说明 用放缩法证明不等式时,以下式子很有用: (1))1(111)1(11)1(11112>--=-<<+=+-n nn n n n n n n n (2)1121111-+<<++=-+n n n n n n n)1(1>--=n n n(3))1(212)1(≥+<+<n n n n n (4))(211N n n n n n ∈++<+ 不等式的证明方法还有构造法、判别式法、排序法、调整法、凸函数法以及微积分法等,这里不再一一列举.(四)解不等式1.同解不等式若两个不等式的解集相等,则称这两个不等式为同解不等式. 对于同解不等式,有以下重要结论:(1)不等式)()(x g x f >与不等式)()(x g x f <同解.(2)如果对于不等式)()(x g x f >定义域中的一切值)(x h 都有意义,则不等式)()()()(x h x g x h x f +>+与)()(x g x f >同解.(3)如果对于不等式)()(x g x f >定义域中的一切值都有0)(>x h ,则不等式)()()()(x h x g x h x f >与)()(x g x f >同解;如果0)(<x h ,则不等式)()()()(x h x g x h x f <与)()(x g x f >同解.(4)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则原不等式)()(x g x f >与)()(x g x f n n >在这个子集上同解,其中1,≥∈n n N .(5)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则不等式n nx g x f )()(>在这个子集上与原不等式)()(x g x f >同解,其中1,≥∈n n N .(6)不等式0)()(>x g x f 与下面两个不等式组同解:⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (7) 不等式0)()(<x g x f 与下面两个不等式组同解:⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (8) 不等式0)()(>x g x f 与下面两个不等式组同解: ⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (9) 不等式0)()(<x g x f 与下面两个不等式组同解: ⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (10) 不等式)()(x g x f <与不等式组)()()(x g x f x g <<-或⎩⎨⎧-><)()()()(x g x f x g x f同解;不等式)()(x g x f >与不等式组⎩⎨⎧-<>)()()()(x g x f x g x f 同解.2.不等式的解法 (1)一元一次不等式任何一元一次不等式都可以经过恒等变形整理成b ax > (2-3)的形式.不等式(2-3)的解集,视a 而定.若0>a 解集为}{a b x x >;若0<a ,解集为}{abx x <;若0=a ,不等式b ax >变成为b x >0,它不是一元一次不等式.此时如果0>b ,则b x >0无解;如果b x b ><0,0是绝对不等式,解集为),(+∞-∞.(2)一元一次不等式组解不等式组,首先要分别求出组内每个不等式的解集,然后求它们的交集.求交集时,可先在数轴上画出每个不等式的解集,然后根据重合部分找出它们的交集.设一元一次不等式组⎩⎨⎧>>dcx bax (2-4)中每个不等式都有解,则归纳为下列四种情形之一;⎩⎨⎧>>βαx x ⎩⎨⎧<<βαx x ⎩⎨⎧<>βαx x ⎩⎨⎧><βαx x 假设βα<,则以上四组的解集依次是:βααβ<<<>x x x空解(无解)(3)一元二次不等式任何一个一元二次不等式都可经过恒等变形整理成)0(02≠∨++a c bx ax(2-5)的形式,两边同除以非0实数a ,即可归纳成下面两种情形之一:第一种情形:02>++q px x①如果042<-=∆q p ,不等式①的解集为),(+∞-∞;如果042=-=∆q p ,不等式①的解集为}2{p x x ≠; 如果042>-=∆q p ,则02=++q px x 有两个实根21,x x ,设21x x <,那么不等式①的解集为}{21x x x x x ><或.第二种情形:02<++q px x②如果042≤-=∆q p ,不等式②无解;如果042>-=∆q p ,不等式②的解集为}{21x x x x <<,其中21,x x 是02=++q px x 的两个根.(4)一元二次不等式组一元二次不等式组可经过恒等变形整理成⎩⎨⎧∨++∨++0022221121c x b x a c x b x a的形式.其中21a a 和至少有一个不为0.这时可分别求出不等式(2-6)①和(2-6)②的解集.然后求出这两个解集的交集,即为原不等式的解.(5)一元高次不等式一元高次不等式的标准形式是)0(0)(0111≠∨++++=--n n n n n a a x a x a x a x f(2-7)其中),,1,0(n i a i =∈R .当3≥n 时,不等式(2-7)称为一元高次不等式.由高等代数知道,在实数域上多项式f (x )总可以分解成一次因式或既约二次因式的乘积,所以f (x )总可以表成)()()(21x f x f a x f n =.其中)(1x f 是f (x )中所有首项系数为1的一次因式的乘积,)(2x f 是所有首项系数为1的二次既约因式的乘积.由于首项系数为1的二次既约因式恒为正值,所以当0>n a 时,不等式f (x )>0或0)(1>x f 同解;当0<n a 时,不等式0)(>x f 与0)(1<x f 同解.0)(1∨x f 的解法有以下两种情形:第一种情形 当)(1x f 中没有重因式时,按以下步骤求解: 第一步,将)(1x f 表示成0)())(()(211∨---=k x x x x x x x f的形式,其中x i 是)(1x f 的零点,并有k x x x <<< 21.第二步,将)(1x f 的各个零点k x x x ,,,21 在数轴上标出,从而将数轴划分为k +1个子(2-6)① ②区间.从最右一个子区间),(+∞k x 开始,向左在各个子区间上依次相间地标出“+”,“-”标志.第三步,所有“+”的子区间(开区间)的并集,就是0)(1>x f 的解集;所有“-”的子区间(开区间)的并集,就是0)(1<x f 的解集.第二种情形 当)(1x f 中有重因式时,可将奇次重因式改为一次单因式,并将偶次重因式弃去,这样就可以按照没有重因式的情形处理.但是应将所得解集去掉偶次重因式的零点.这种解法叫做“零点分区法”.当用此法求解0)(1≥x f 或0)(1≤x f 时,要将开区间改为闭区间;同时,在弃去偶次重因式后,不必去掉偶次重因式的零点.(6)一元分式不等式一元分式不等式的一般形式为0)()(∨x g x f (2-8)由同解不等式的重要结论(7)可知,解不等式(2-8)只需解不等式0)()(∨x g x f . (7)无理不等式一元无理不等式的一般形式为0)(∨x f(2-9)其中f (x )是x 的无理函数.解无理不等式的基本方法是:利用同解不等式的重要结论(4),将所给无理不等式转化为与它同解的有理不等式组.解无理不等式常按如下步骤进行: 第一步,求出f (x )的定义域.第二步,解无理方程f (x )=0,即求出f (x )的零点[或判断f (x )没有零点].零点由小到大依次为k x x x ,,,21 ,将它们在数轴上标出,从而将定义域划分为k +1个子区间.第三步,在各个子区间内各任取一值α,使得0)(>αf [或0)(<αf ]的α所在的区间就是不等式0)(>x f [或0)(<x f ]解的区间.在解无理不等式的过程中,经常会因为在不等式的两边实施乘方运算而出现增根,所以必须检查所得解是否超出原不等式的定义域.另外,有些不等式的一边允许取负值,忽略这一点可能导致失解.(8)绝对值不等式绝对值号内含有未知元(或变元)的不等式称为含绝对值的不等式,简称绝对值不等式.解绝对值不等式的关键是去掉绝对值符号,使其转化为普通不等式.其主要依据是绝对值的定义和同解不等式的重要结论(10).(9)初等超越不等式指数不等式)1,0()(≠>∨a a ba x f若0≤b ,则不等式b ax f >)(为绝对不等式;不等式b a x f <)(无解.若0>b ,则当1>a 时,b x f a log )(>;当10<<a 时b x f a log )(<.指数不等式的常用解法:先将不等式两边化为同底的幂,然后区分1>a 和10<<a 两种情形,据此比较它们的指数.对数不等式)1,0(log ≠>∨a a bx a对数不等式的常用解法:先将不等式两边化为同底的对数,然后区分1>a 和10<<a 两种情形,据此比较它们的真数.解题时应注意不等式的定义域.三角不等式 含有变元(未知元)的三角函数不等式称为三角不等式. 解三角不等式一般都要归结到最简单三角不等式,形如)(tan ,cos ,sin R ∈∨∨∨a a x a x a x的不等式,叫做最简三角不等式.解最简三角不等式,可先在所给三角函数的一个周期内求出其特解,然后加上该函数的最小周期的整数倍,即为它的一般解.对于可以用初等方法求解的三角不等式,通常使用变量代换、因式分解等方法化繁为简,归结为最简三角不等式。
常用的不等式

常用的不等式1. 介绍不等式是数学中一种重要的关系,用于表示两个数或者两个代数式之间的大小关系。
常用的不等式包括等于、大于、小于、大于等于、小于等于等。
在数学中,不等式可以用于证明和推导各种数学问题,尤其在代数和几何中有着广泛的应用。
掌握常用的不等式是解决数学问题的基础,也是进一步学习高级数学的前提。
本文将介绍一些常用的不等式,包括基本的不等式、一元二次不等式、三角不等式、均值不等式等。
希望通过本文的学习,读者能够掌握这些不等式的性质和应用,提高解决数学问题的能力。
2. 基本的不等式2.1. 算术平均-几何平均不等式算术平均-几何平均不等式是一种常用的不等式,用于描述一组非负实数的平均值与几何平均值之间的关系。
对于任意非负实数a1,a2,…,a n,算术平均-几何平均不等式可以表示为:a1+a2+⋯+a nn ≥√a1⋅a2⋅…⋅a n n其中等号成立的条件是a1=a2=⋯=a n。
算术平均-几何平均不等式的证明可以使用数学归纳法或者其他方法,这里不再赘述。
2.2. 柯西-施瓦茨不等式柯西-施瓦茨不等式是一种常用的不等式,用于描述内积空间中两个向量之间的关系。
对于任意的实数或复数向量a=(a1,a2,…,a n)和b=(b1,b2,…,b n),柯西-施瓦茨不等式可以表示为:(∑|a i b i| ni=1)2≤(∑|a i|2ni=1)(∑|b i|2ni=1)其中等号成立的条件是向量a和b之间存在线性关系。
柯西-施瓦茨不等式的证明可以使用向量的内积性质,这里不再赘述。
3. 一元二次不等式一元二次不等式是指形如ax2+bx+c>0或ax2+bx+c<0的不等式,其中a,b,c是实数且a≠0。
解一元二次不等式的方法和解一元二次方程类似,可以使用因式分解、求根公式、判别式等方法。
需要注意的是,在解不等式时,要考虑不等号的方向。
例如,对于不等式x2−5x+6>0,可以先求出方程x2−5x+6=0的解,得到x1=2和x2=3,然后根据二次函数的图像和不等号的方向,确定不等式的解集为(2,3)。
不等式的概念

不等式的概念不等式是数学中一个重要的概念,用于描述数值之间的大小关系。
它是数学分析、代数学和几何学中的基本概念之一。
不等式被广泛应用于各个领域,包括物理学、经济学和工程学等。
本文将介绍不等式的定义、性质以及解不等式的方法。
一、不等式的定义不等式是数学中利用不等号表示的一种关系。
形式上,不等式可以写成a ≤ b、a < b、a ≥ b或a > b等形式,分别表示“不大于”、“小于”、“不小于”和“大于”。
不等式中的a和b可以是任意实数或变量。
对于两个实数a和b,可以利用比较运算符(如“≤”、“≥”、“<”、“>”)来判断它们的大小关系。
二、不等式的性质1. 传递性:如果a ≤ b且b ≤ c,则a ≤ c。
2. 反对称性:如果a ≤ b且b ≤ a,则a = b。
3. 加法性:如果a ≤ b,则a + c ≤ b + c,其中c为任意实数。
4. 乘法性:如果a ≤ b,且c为正实数或零,则ac ≤ bc;如果c为负实数,则ac ≥ bc。
5. 不等式的加减混合性:如果a ≤ b且c ≤ d,则a + c ≤ b + d。
6. 不等式的乘除混合性:如果a ≤ b且c ≥ 0,则ac ≤ bc;如果c ≤ 0,则ac ≥ bc。
三、解不等式的方法解不等式的目标是确定不等式中变量的取值范围。
根据不等式的性质,可以采用以下方法来解不等式:1. 图形法:将不等式表示的数值关系在数轴上进行图形表示,进而确定变量的取值范围。
2. 变量替换法:通过引入辅助变量,将原始不等式转化为等效的形式,进而求解。
3. 分情况讨论法:根据不等式中的条件,将问题分解为不同的情况,逐个求解。
4. 开区间法:通过定义开区间来确定变量的取值范围,如(a, b)表示不包括a和b的区间。
5. 不等式的性质法:借助不等式的性质进行变形和简化,得到更容易求解的形式。
四、不等式的应用不等式在许多实际问题中起着重要的作用。
不等式

不等式
1.不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.
凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.
2.不等式的基本性质
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或am>bm;
③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a>b,且m<0,那么am<bm或am<bm;
3.不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.
4.不等式的解的定义:使不等式成立的未知数的值叫做不等式的解.
5.不等式的解集:能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.
4.解不等式的定义:求不等式的解集的过程叫做解不等式.
5.不等式的解和解集的区别和联系
不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内。
6.用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环球雅思学科教师辅导教案学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师: 授课类型 C ——不等式 星 级 ★★★★授课日期及时段教学内容知识梳理:拓展:已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则ba的取值范围是________.首先,4c-a>=b>=0,c/a>=1/4 ;5c-3a<=4c-a ,c/a<=2 从而 b/a<=2*4-1=7,特别当b/a=7时,第二个不等式不成立。
又c ln b≥a+c ln c 知道0<a<=cln(b/c) 从而b/a>=(b/c)/ln(b/c),设函数f(x)=x/ln(x).(x>1)由导数知识知道函数的最小值为e ,从而b/a>=e, 等号当且仅当b/c=e,b/a=e 成立。
代入第一个不等式知:2<=b/a=e<=3,不等式成立,从而e 可以取得。
从而b/a 的取值范围是[e,7)左闭右开10、当0>x 时,()122+=x xx f 的值域是 (]1,0 。
11.已知0<x <34,则函数y =5x (3-4x )的最大值为________.4516解:因为0<x <34,所以34-x >0,所以y =5x (3-4x )=20x (34-x )≤20(x +34-x2)2=4516,当且仅当x =34-x ,即x =38时等号成立.12.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 .a b ≥9.不等式解:∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 13.设a ,b 均为正的常数且x >0,y >0,x a+yb =1,则x +y 的最小值为 . (a +b )2.解析:由已知xay ,y bx均为正数,∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab ,即x +y ≥(a +b )2,当且仅当1=+=yb x a y bx x ay 即 ab b y ab a x +=+=时取等号. 14.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m1+n2的最小值为 .8. 解:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知m n ,nm 4均为正, ∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且 仅当 1=+24=n m n m m n 即 21=41=n m 时取等号. 15.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为______. 解:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥2 2(x -a )·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32. 答案:3216.求函数12++=x x xy (x >0)的值域。
解:xx x x xy 11112++=++=∵x >0 ∴x x 1+≥2 ∴x x 1++1≥3 ∴]31,0(∈y17.当x 为何值时,28(1)1x y x x +=>-有最小值 解:182-+=x x y =1912-+-x x =1+x +19-x =1-x +19-x +2,∵x >1,∴1-x >0,∴y ≥29+2=8,当且仅当1-x =19-x 即x=4时,y 有最小值8 三、解答题18.求函数y =1+10+7+2x x x (x >-1)的最小值.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9. 19.若,x y 是正数,且1222=+y x ,求21y x +的最大值 解:因为1222=+y x 所以222x y -= ∴21y x +=223x x -=)(2223x x -=)23(22222x x -≤)2232(2222x x ++=423 当且仅当 22223x x -=,即 23=x 时,21y x +有最大值423一、填空题1、(常州市2015届高三)若实数,x y 满足约束条件22,1,1,x y x y x y -⎧⎪--⎨⎪+⎩≤≥≥则目标函数2z x y =+的最小值为 ▲2、(常州市2015届高三)若不等式22()2cx y x x y --≤对任意满足0x y >>的实数,x y 恒成立,则实数c 的最大值为 ▲3、(连云港、徐州、淮安、宿迁四市2015届高三)若实数x ,y 满足40x y +-≥,则226210z x y x y =++-+的最小值为 ▲4、(连云港、徐州、淮安、宿迁四市2015届高三)已知函数()22,0,2,0≥x x f x x x x ⎧-=⎨+<⎩,则不等式(())3f f x ≤的解集为 ▲5、(南京市、盐城市2015届高三)若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲6、(南京市、盐城市2015届高三)若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲7、(南通市2015届高三)已知函数(0)x y a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .8、(苏州市2015届高三上期末)已知,a b 为正实数,且2a b +=,则2221a b a b +++的最小值为 9、(泰州市2015届高三上期末)已知实数,,a b c 满足222a b c +=,0c ≠,则2ba c-的取值范围为 ▲ 10、(无锡市2015届高三上期末)已知正实数,a b 满足2291a b +=,则3aba b+的最大值为11、(扬州市2015届高三上期末)实数x ,y 满足24011x y x y +-≤⎧⎪≥⎨⎪≥⎩,则2z x y =-的最小值为__12、(扬州市2015届高三上期末)设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是____二、解答题1、(常州市2015届高三)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为x (m ),三块种植植物的矩形区域的总面积...为S (m 2). (1)求S 关于x 的函数关系式; (2)求S 的最大值.2、(南京市、盐城市2015届高三)某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025t <≤,单位:米);曲线BC 是抛物线250(0)y ax a =-+>的一部分;CD AD ⊥,且CD 恰好等于圆E 的半径. 假定拟建体育馆的高50OB =米.(1)若要求30CD =米,AD =245米,求t 与a 的值;(2)若要求体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围; (3)若125a =,求AD 的最大值. (参考公式:若()f x a x =-,则1()2f x a x'=--)3、(南通市2015届高三)已知a ,b ,c 均为正数,求证:4、(苏州市2015届高三上期末)如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园种植桃树,已知角A 为120,,AB AC ︒的长度均大于200米,现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙AP,AQ 总长度为200米,如何围可使得三角形地块APQ 的面积最大?(2)已知AP 段围墙高1米,AQ 段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?x113(17)第题311APQBC5、(泰州市2015届高三上期末)如图,我市有一个健身公园,由一个直径为2km 的半圆和一个以PQ 为斜边的等腰直角三角形PRQ ∆构成,其中O 为PQ 的中点.现准备在公园里建设一条四边形健康跑道ABCD ,按实际需要,四边形ABCD 的两个顶点C D 、分别在线段QR PR 、上,另外两个顶点A B 、在半圆上, ////AB CD PQ ,且AB CD 、间的距离为1km .设四边形ABCD 的周长为c km .(1)若C D 、分别为QR PR 、的中点,求AB 长; (2)求周长c 的最大值.6、(泰州市2015届高三上期末)已知正实数,,a b c 满足3a b c ++=,求证:2223b c aa b c ++≥. 7、(无锡市2015届高三上期末)某公司生产的某批产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足24x P +=(其中0,x a a #为正常数).已知生产该批产品还要投入成本16()P P+万元(不包含促销费用),产品的销售价格定为20(4)P+元/件. (1)将该产品的利润y 万元表示为促销费用x 万元的函数; (2)当促销费用投入多少万元时,该公司的利润最大?参考答案一、填空题1、12、224-3、184、(,3]-∞5、86、4DRCAPQOB7、92 8、3223+ 9、33[,]33- 10、212 11、-2 12、512-二、解答题1、解:(1)由题设,得()9007200822916S x x x x ⎛⎫=--=--+ ⎪⎝⎭,()8,450x ∈. ………………………6分(2)因为8450x <<,所以27200720022240x x x x+⨯=≥, ……………………8分 当且仅当60x =时等号成立. ………………………10分 从而676S ≤. ………………………12分 答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676m 2 .2、解:(1)因为5030CD t =-=,解得20t =. …………… 2分此时圆222:(20)30E x y +-=,令0y =,得105AO =,所以245105145OD AD AO =-=-=,将点(145,30)C 代入250(0)y ax a =-+>中,解得149a =. ………… 4分 (2)因为圆E 的半径为50t -,所以50CD t =-,在250y ax =-+中令50y t =-,得t OD a=, 则由题意知5075tFD t a=-+≤对(0,25]t ∈恒成立, ………… 8分 所以125t a t≤+恒成立,而当25t t =,即25t =时,25t t +取最小值10, 故110a≤,解得1100a ≥. ………… 10分 (3)当125a =时,5OD t =,又圆E 的方程为222()(50)x y t t +-=-,令0y =,得1025x t =±-,所以1025AO t =-,从而()10255(025)AD f t t t t ==-+<≤, ………… 12分又因为215(252)()5()2525t t f t t t t t--'=-+=--⋅,令()0f t '=,得5t =, ………… 14分 当(0,5)t ∈时,()0f t '>,()f t 单调递增;当(5,25)t ∈时,()0f t '<,()f t 单调递减,从而当5t = 时,()f t 取最大值为255.答:当5t =米时,AD 的最大值为255米. …………16分 (说明:本题还可以运用三角换元,或线性规划等方法解决,类似给分) 3、4、解 设AP x =米,AQ y =米.(1)则200x y +=,APQ ∆的面积13sin12024S xy xy =︒=. …………………………………………………………3分∴S 23()42x y +≤25003=. 当且仅当100x y ==时取“=”. …………………………………………………………6分 (注:不写“=”成立条件扣1分)(2)由题意得100(1 1.5)20000x y ⨯⋅+⋅=,即 1.5200x y +=. …………………8分 要使竹篱笆用料最省,只需其长度PQ 最短,所以2222cos120PQ x y xy =+-︒22x y xy =++22(200 1.5)(200 1.5)y y y y =-++- 21.7540040000y y =-+(40003y <<) ………………………………………11分 当8007y =时,PQ 有最小值200217,此时2007x =. …………………………13分 答:(1)当100AP AQ ==米时,三角形地块APQ 的面积最大为25003平方米; (2)当2007AP =米800,7AQ =米时,可使竹篱笆用料最省.……………………… 14分 5、(1)解:连结RO 并延长分别交AB CD 、于M N 、,连结OB ,∵C D 、分别为QR PR 、的中点,2PQ =,∴112CD PQ ==, PRQ ∆为等腰直角三角形,PQ 为斜边,112RO PQ ∴==, 1122NO RO ==.∵1MN =,∴12MO =.………………3分在Rt BMO ∆中,1BO =,∴2232BM BO OM =-=, ∴23AB BM ==. ……………6分 (2) 解法1 设BOM θ∠=,02πθ<<.在Rt BMO ∆中,1BO =,∴sin BM θ=,cos OM θ=. ∵1MN =,∴1cos CN RN ON OM θ==-==,∴21(sin cos )BC AD θθ==+-,……………………………………………………8分∴22(sin cos 1(sin cos ))c AB CD BC AD θθθθ=+++=+++-………………10分22222(sin cos )(1(sin cos ))26θθθθ≤+++-=,(当12πθ=或512π时取等号) ∴当12πθ=或512πθ=时,周长c 的最大值为26km . …………………14分 解法2 以O 为原点,PQ 为y 轴建立平面直角坐标系. 设(,)B m n ,,0m n >,221m n +=,(1,)C m m -,∴2AB n =,2CD m =,21()BC AD m n ==+-.……………………………8分∴22(1())c AB CD BC AD m n m n =+++=+++- ………………………10分22222()(1())26m n m n ≤+++-=,(当624m +=,624n -=或624m -=,624n +=时取等号) ∴当624m +=,624n -=或624m -=,624n +=时,周长c 的最大值为26km . ……………14分7、。