排列组合问题的类型及解题策略
高中数学 排列组合的常见题型及其解法解题思路大全

排列组合的常见题型及其解法排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。
复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。
一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)。
三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
例析排列组合问题类型及解题常用方法

例析排列组合问题类型及解题常用方法排列组合问题是数学中的一个重要分支,广泛应用于概率论、统计学、组合数学等多个领域。
在解决排列组合问题时,我们需要明确问题类型,并选用适当的方法进行求解。
下面将介绍几种常见的排列组合问题类型及解题常用方法。
1.组合问题组合问题是在给定的元素集合中,选择出若干个元素的子集,并以不同的顺序来表示这些子集。
组合问题的典型例子有"从n个不同的元素中,选取m个元素的组合个数是多少"。
解题方法:1)使用组合数公式进行计算,公式为C(n,m)=n!/(m!(n-m)!),其中C表示组合数,n表示元素个数,m表示要选择的元素个数。
2)利用递归方法求解,即对问题进行拆解,递归地求解子问题,然后将子问题的解合并得到原问题的解。
2.排列问题排列问题是将一组元素进行有序的排列,即考虑元素的顺序。
典型例子有"从n个不同的元素中,选择m个元素进行排列,有多少种不同的排列方式"。
解题方法:1)使用排列数公式进行计算,公式为P(n,m)=n!/(n-m)!,其中P表示排列数,n表示元素个数,m表示要选择的元素个数。
2)利用递归方法求解,将问题分解成子问题,进行子问题的排列,然后按照不同的顺序进行合并,得到原问题的解。
3.重复元素的排列组合问题重复元素的排列组合问题是在给定元素集合中,包含有重复元素的情况下,选择出若干个元素的子集,并以不同的顺序来表示这些子集。
解题方法:1)使用重复组合数公式进行计算,公式为C'(n,m)=(n+m-1)!/(m!(n-1)!),其中C'表示重复组合数,n表示元素个数,m表示要选择的元素个数。
2)使用重复排列数公式进行计算,公式为P'(n,m)=n^m,其中P'表示重复排列数,n表示元素个数,m表示要选择的元素个数。
4.包含条件的排列组合问题包含条件的排列组合问题是在给定一组元素和一组条件的情况下,选择满足条件的子集,并以不同的顺序进行排列。
排列组合解题方法和策略总结

排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。
排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。
以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。
2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。
3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。
4.分类讨论:对于一些复杂的问题,需要进行分类讨论。
根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。
5.排除法:在某些情况下,可以通过排除法求解问题。
根据问题的限制条件,排除一些不可能的情况,从而减少计算量。
6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。
通过递推关系,逐步推导出最终的排列组合情况。
7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。
通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。
8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。
通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。
解决排列组合问题需要掌握一定的方法和策略。
通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。
同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。
排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。
例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。
2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。
数学排列组合常见题型及解法

例5. 9ቤተ መጻሕፍቲ ባይዱ人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?
解:9个人可以在三排中随意就坐,无其他限制条件,三排可以看作一排来处理,不同的坐标共有 种。
7.至少问题正难则反“排除法”:有些问题从正面考虑较为复杂而不易得出答案,这时,可以采用转化思想从问题的反面入手考虑,然后去掉不符合条件的方法种数往往会取得意想不到的效果。在应用此法时要注意做到不重不漏。
例7亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?
解 设亚洲队队员为a1,a2,…,a5,欧洲队队员为b1,b2,…,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为 =252(种)
【华图解析】直接求5个小球的全错位排列不容易,我们先从简单的开始。
小球数/小盒数 全错位排列
1 0
2 1(即2、1)
3 2(即3、1、2和2、3、1)
4 9
5 44
6 265
当小球数/小盒数为1~3时,比较简单,而当为4~6时,略显复杂,考生们只需要记下这几个数字即可(其实0,1,2,9,44,265是一个有规律的数字推理题,9=(1+2)*3;44=(2+9)*4;265=(44+9)*5;(44+265)*6=1854)由上述分析可得,5个小球的全错位排列为44种。
排列组合问题的基本类型及解题方法

排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。
其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。
加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。
分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。
以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。
(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。
在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。
例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。
故共有2111242323(A A A )+A A 30+=种。
注:在考虑每一类时,又要优先考虑个位。
解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有111233A A A 种。
故共有21114233A +A A A =30(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有 解:由题意,可先安排甲,并按其进行分类讨论:(1)若甲在第二个位置上,则剩下的四人可自由安排,有44A 种方法;(2)若甲在第三个或第四个位置上,则根据分布计数原理不同的站法有113333A A A 种站法;再根据分类计数原理,不同的站法共有:21134333A A A A 78+=种.(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。
题目:排列组合常见种类与解决办法

题目:排列组合常见种类与解决办法排列组合常见种类与解决办法介绍排列组合是离散数学中的一个重要概念,应用广泛于各个领域,包括数学、计算机科学、统计学等。
排列组合问题涉及到元素的排列和组合方式,常见的种类包括排列、组合、置换和分组等。
本文将介绍这些常见的排列组合种类,并提供相应的解决办法。
排列排列是指从一组元素中选取若干元素进行排序,其中元素的顺序是重要的。
排列问题可以分为有重复元素和无重复元素的情况。
无重复元素的排列无重复元素的排列问题可以通过以下方法解决:1. 阶乘法:对于给定的元素个数 n,可以通过计算 n 的阶乘来得到所有可能的排列数。
$$P(n) = n!$$2. 递归法:可以通过递归的方式来生成所有可能的排列。
从给定的元素列表中选取一个元素作为起始,然后递归地对剩余的元素进行排列。
有重复元素的排列有重复元素的排列问题可以通过以下方法解决:1. 字典序法:首先将元素按照字典序排序,然后通过递归的方式生成排列。
组合组合是指从一组元素中选取若干元素,无需考虑元素的顺序。
组合问题可以分为有重复元素和无重复元素的情况。
无重复元素的组合无重复元素的组合问题可以通过以下方法解决:1. 组合数公式:对于给定的元素个数 n 和选取的元素个数 k,可以使用组合数公式来计算组合数。
$$C(n, k) = \frac{{n!}}{{k! \cdot (n-k)!}}$$2. 回溯法:通过回溯的方式生成所有可能的组合。
从给定的元素列表中选取一个元素作为起始,然后递归地对剩余的元素进行组合。
有重复元素的组合有重复元素的组合问题可以通过以下方法解决:1. 增加限制条件:在生成组合的过程中,设置限制条件,限制重复元素的选择次数。
置换置换是指从一组元素中选取若干元素进行排列,其中元素的顺序非常重要。
与排列不同的是,置换要求选取的元素个数与元素总数相同。
置换问题可以通过以下方法解决:1. 阶乘法:对于给定的元素个数 n,可以通过计算 n 的阶乘来得到所有可能的置换数。
排列组合题型总结

排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。
在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。
1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。
解决排列问题时,可以使用如下的排列公式。
公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。
2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。
解决组合问题时,可以使用如下的组合公式。
公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。
3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。
解决重复排列问题时,可以使用如下的重复排列公式。
公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。
4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。
解决重复组合问题时,可以使用如下的重复组合公式。
公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。
排列组合问题的类型及解答策略

排列组合问题的类型及解答策略
排列组合问题是组合数学的基本问题,主要涉及对象的排列和组合,一般分为以下几种类型:
1. 排列问题:求n个不同元素按照一定规律排列的方案数,其中每个元素只能出现一次。
例如,从8个人中选取3个人组成一支队伍,求按照一定顺序排列的方案数。
解策略:使用排列公式an = n!/ (n-r)!,其中n表示元素个数,r表示选取个数。
2. 组合问题:求n个不同元素中选取r个元素的方案数,其中
元素的顺序不重要。
例如,从8个人中选取3个人组成一支队伍,不考虑人的排列顺序,求方案数。
解策略:使用组合公式Cn,r = n!/ (r!(n-r)! ),其中n表示元素
个数,r表示选取个数。
3. 含有限制条件的问题:在组合问题的基础上,加入限制条件,例如某些元素必须或者不能一起选取。
例如,从6个男人和4
个女人中选择3人组成一个委员会,其中必须有至少一名女性。
解策略:分别考虑满足和不满足限制条件的情况,分别计算方案数并相加。
4. 区分问题与不区分问题:确定是否考虑对象间的区分性。
例如,从8个相同的球中选取3个球,不考虑球的区分性,求方
案数。
解策略:对于不区分问题,使用组合公式;对于区分问题,使用排列公式。
5. 带替换问题:从n个元素中选取r个元素,其中每个元素可以重复选取s次。
例如,从5个牌子中选取3个牌子,其中每个牌子可以选取多次。
解策略:使用带替换的组合公式,即C(n+r-1,r)。
通过以上不同类型排列组合问题的解答策略,能够有效解决各种实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合应用题的类型及解题策略四川省双流县中学 周汝东排列组合问题,通常都是出现在选择题或填空题中,或结合概率统计综合出题,它联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
例1.(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A 22种;中间4个为不同的商业广告有A 44种,从而应当填 A 22·A 44=48. 从而应填48.(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要“完成什么样的事件”是前提。
三.基本题型及方法:1.相邻问题(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。
A )720B )360C )240D )120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有47A 种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为4676A A 种例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A )1800 (B )3600 (C )4320 (D )5040解:不同排法的种数为5256A A =3600,故选B说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
(3).不全相邻排除法,排除处理例5.五个人站成一排,其中甲、乙、丙三人有两人相邻,有多少排法?解:533235332372A A A A A --=222232或3A A A 例6.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是 解法一: ①前后各一个,有8×12×2=192种方法②前排左、右各一人:共有4×4×2=32种方法③两人都在前排:两人都在前排左边的四个位置:乙可坐2个位置乙可坐1个位置 2+2=4 1+1=2 此种情况共有4+2=6种方法因为两边都是4个位置,都坐右边亦有6种方法,所以坐在第一排总共有6+6=12种方法④两人都坐在第二排位置,先规定甲左乙右∴ 甲左乙右总共有55102110128910=⨯+=+++++Λ种方法.同样甲、乙可互换位置,乙左甲右也同样有55种方法,所以甲、乙按要求同坐第二排总共有55×2=110种方法。
综上所述,按要求两人不同排法有 192+32+12+110=346种解法二:考虑20个位置中安排两个人就坐,并且这两人左右不相邻,4号座位与5号座位不算相邻(坐在前排相邻的情况有12种。
),7号座位与8号座位不算相邻(坐在后排相邻的情况有22种。
),共有346)611(2220=+-A 种2、顺序一定,除法处理或分类法。
例7、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把5面旗都挂上去,可表示不同信号的种数是( )(用数字作答)。
解:5面旗全排列有55A 种挂,由于3面红旗与2面白旗的分别全排列均只能作一次的挂法,故有 55323210A A A = 说明:在排列的问题中限制某几个元素必须保持一定的顺序问题,这类问题用缩小倍数的方法求解比较方便快捷例8.(06湖北卷)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
那么安排这6项工程的不同排法种数是 。
(用数字作答)解一:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中(插一个或二个),可得有22525A A +⨯=30种不同排法。
解二:6!4!=30 例9、由数字0、1、2、3、4、5组成没有重复数字的6位数,其中个位数字小于十位的数字的共有( )A )210个B )300个C )464个D )600个解: 155513002A A = 故选(B ) 4、多元问题,分类法例10.(06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种解析:某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,可以分情况讨论,① 甲、丙同去,则乙不去,有2454C A ⋅=240种选法;②甲、丙同不去,乙去,有3454C A ⋅=240种选法;③甲、乙、丙都不去,有45120A =种选法,共有600种不同的选派方案.例11:(06全国卷I )设集合{}1,2,3,4,5I =。
选择I 的两个非空子集A 和B ,要使B 中最小的数大于A中最大的数,则不同的选择方法共有A .50种B .49种C .48种D .47种解析:若集合A 、B 中分别有一个元素,则选法种数有25C =10种;若集合A 中有一个元素,集合B 中有两个元素,则选法种数有35C =10种;若集合A 中有一个元素,集合B 中有三个元素,则选法种数有45C =5种;若集合A 中有一个元素,集合B 中有四个元素,则选法种数有55C =1种;若集合A 中有两个元素,集合B中有一个元素,则选法种数有35C =10种;若集合A 中有两个元素,集合B 中有两个个元素,则选法种数有45C =5种;若集合A 中有两个元素,集合B 中有三个元素,则选法种数有55C =1种;若集合A 中有三个元素,集合B 中有一个元素,则选法种数有45C =5种;若集合A 中有三个元素,集合B 中有两个元素,则选法种数有55C =1种;若集合A 中有四个元素,集合B 中有一个元素,则选法种 数有55C =1种;总计有49种,选B.解法二:集合A 、B 中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有25C=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有35C=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有45C=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A 集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有55C=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;总计为10+20+15+4=49种方法。
选B.例12(06天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有144C=种方法;②1号盒子中放2个球,其余2个放入2号盒子,有246C=种方法;则不同的放球方法有10种,选A.说明:元素多,取出的情况也多种,可按要求分成互不相容的几类情况分别计算,最后总计。
5、交叉问题,集合法(二元否定问题,依次分类)。
例13、从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?解:设全集U={6人中任选4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素的个数的公式可得参赛方法共有:card(U)-card(A)-card(B)+card(A∩B)=252例14、某天的课表要排入语文、数学、英语、物理、化学、体育共六门课程,且上午安排四节课,下午安排两节课。
(1)若第一节不排体育,下午第一节不排数学,一共有多少种不同的排课方法?(2)若要求数学、物理、化学不能排在一起(上午第四节与下午第一节不算连排),一共有多少种不同的排课方法?例15、同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡不同的分配方式有()A)6种B)9种C)11种D)23种解:此题可以看成是将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一数,且每个方格的标号与所填数字不同的填法问题。
所以先将1填入2至4的3个方格里有3种填法;第二步把被填入方格的对应数字填入其它3个方格,又有3种填法;第三步将余下的两个数字填入余下的两格中只有一种填法,故共有3×3×1=9种填法。
故选B说明:求解二元否定问题可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依此即可完成。
例16、(06湖北卷)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是.(用数字作答) 。
(答:78种)说明:某些排列组合问题几部分之间有交集,可用集合中求元素的个数的公式来求解。
6、多排问题,单排法例17、两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一座位),则不同的座法为A ) 5388C CB )153288A C C C )3588A A D )88A 解:此题分两排座可以看成是一排座,故有 88A 种座法。
∴选(D )说明:把元素排成几排的问题,可归纳为一排考虑,再分段处理。
7、至少问题,分类法 或 间接法(排除处理)例18.(06福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有3374A A -=186种,选B.例19.(06辽宁卷)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有_______种.(以数作答)【解析】两老一新时, 有112322C 12C A ⨯=种排法;两新一老时, 有123233C C 36A ⨯=种排法,即共有48种排法.【点评】本题考查了有限制条件的排列组合问题以及分类讨论思想.例20.(06重庆卷)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(A )30种 (B )90种 (C )180种 (D )270种解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有12542215C C A ⋅=种方法,再将3组分到3个班,共有331590A ⋅=种不同的分配方案,选B.说明:含“至多”或“至少”的排列组合问题,是需要分类问题,或排除法。