集合练习题

合集下载

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案一、选择题1. 若集合A={x|x<5},B={x|x>3},则A∩B等于:A. {x|x<3}B. {x|x>5}C. {x|3<x<5}D. {x|x≤3}2. 对于集合A={1, 2, 3}和B={2, 3, 4},A∪B的元素个数是:A. 3B. 4C. 5D. 63. 若集合C={x|x是偶数},D={x|x是自然数},则C⊆D是:A. 真B. 假4. 集合E={x|x²-5x+6=0}的元素个数是:A. 0B. 1C. 2D. 35. 已知集合F={x|-2≤x≤2},G={x|x²-4=0},则F∩G等于:A. {-2}B. {2}C. {-2, 2}D. 空集二、填空题6. 集合H={x|x²-3x+2=0}的元素是_________。

7. 若集合I={x|x²-1=0},则I的补集(相对于实数集R)是_________。

8. 集合J={x|x>0且x<10}与K={x|x是整数}的交集J∩K包含的元素个数是_________。

9. 集合L={x|x²+4x+4=0}的元素个数是_________。

10. 若集合M={x|x²-4=0},则M的元素是_________。

三、解答题11. 给定集合N={1, 2, 3}和O={2, 3, 4},请找出N∩O,并说明其元素的个数。

12. 集合P={x|x²-4x+3=0},请列出集合P的所有元素。

13. 集合Q={x|x²+2x+1=0},请判断该集合是否为空集,并说明理由。

14. 若集合R={x|x²-6x+8=0},请找出R的补集(相对于实数集R)。

15. 集合S={x|x²-9=0},请列出S的元素,并计算S的元素个数。

答案:1. C2. B3. A4. C5. C6. 1, 27. 所有非-1和非1的实数8. 99. 010. -2, 211. N∩O={2, 3},元素个数为2。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合是数学中的一个基本概念,它描述了一组对象的全体。

以下是一些集合的简单练习题及答案,适合初学者进行练习。

练习题1:确定以下集合的元素。

集合A = {x | x是小于10的正整数}答案: A = {1, 2, 3, 4, 5, 6, 7, 8, 9}练习题2:判断以下两个集合是否相等。

集合B = {x | x是偶数}集合C = {2, 4, 6, 8, 10, 12, ...}答案: B和C是相等的,因为集合B包含了所有偶数,而集合C也是所有偶数的集合。

练习题3:找出集合A和集合B的交集。

集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B没有交集,即A ∩ B = ∅。

练习题4:找出集合A和集合B的并集。

集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B的并集是A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

练习题5:确定集合A的补集,假设全集U包含所有小于等于10的整数。

集合A = {1, 3, 5, 7, 9}全集U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}答案: A的补集是A' = {0, 2, 4, 6, 8, 10}。

练习题6:如果集合D = {x | x是A和B的元素},求D。

集合A = {1, 2, 3}集合B = {2, 3, 4}答案: D = {2, 3}。

练习题7:如果集合E = {x | x不属于A且不属于B},求E。

集合A = {1, 2, 3}集合B = {2, 3, 4}答案: E = {1, 4}。

练习题8:确定集合A和集合B的差集。

集合A = {1, 2, 3, 4, 5}集合B = {3, 4, 5, 6}答案: A和B的差集是A - B = {1, 2}。

练习题9:假设集合F = {x | x是A的元素且不是B的元素},求F。

《集合》专题练习

《集合》专题练习

《集合》练习1.下列表示正确的是( ).A. *0N ∈B. R ∉πC. Q ∉1D. Z ∈02.下列各组集合中,表示同一集合的是 ( )A.(){}(){}3,2,2,3M N =B.{}{}3,2,2,3M N ==C.(){},1M x y x y =+=,{}1N y x y =+=D. {}(){}1,2, 1.2M N ==3.下列方程的实数解的集合为12,23⎧⎫-⎨⎬⎩⎭的个数为 ( )(1)224941250x y x y +-++=; (2)2620x x +-=;(3) ()()221320x x -+=; (4) 2620x x --=A.1B.2C.3D.44.已知集合S={}c b a ,,中的三个元素分别是ABC ∆的三边长,那么ABC ∆一定不是() A. 锐角三角形 B.直角三角形 C. 钝角三角形 D. 等腰三角形5.方程组⎩⎨⎧=-+=--02201y x y x 的解集在下列表示中:①{}0,1; ②{}0y 1==或x ; ③(){}0,1④ (){}0y 1|y x ==且,x .其中正确表示的是( )A. ①②B. ①③C. ②③D. ③④.6.下列表示正确的是( ).A. *0N ∈B. R ∉πC. Q ∉1D. Z ∈07.下列各组集合中,表示同一集合的是 ( )A.(){}(){}3,2,2,3M N =B.{}{}3,2,2,3M N ==C.(){},1M x y x y =+=,{}1N y x y =+=D. {}(){}1,2, 1.2M N ==8.下列方程的实数解的集合为12,23⎧⎫-⎨⎬⎩⎭的个数为 ( )(1)224941250x y x y +-++=; (2)2620x x +-=;(3) ()()221320x x -+=; (4) 2620x x --=A.1B.2C.3D.49.已知集合S={}c b a ,,中的三个元素分别是ABC ∆的三边长,那么ABC ∆一定不是( )A. 锐角三角形B.直角三角形C. 钝角三角形D. 等腰三角形10.集合}{Z x x x A ∈<≤=且30的真子集的个数为 ( )A.5B.6C.7D.811.已知集合}{{x B x x A =<<-=,21}10<<x ,则 ( )A.B A >B. B A ⊆C. A BD. B A12.已知}13,2,1{2--=a a M ,{,3}N a =-,若3,M N M a ∈且不是的子集则的值为 ()A.1B.4C.-1或-3D.-4或113.已知集合⎭⎬⎫∈⎩⎨⎧==Z k k x x A ,3,=B ⎭⎬⎫∈⎩⎨⎧=Z k kx x ,6,则 ( )A. A BB. B AC.B A =D. A 与B 关系不确定14.已知集{}}{a x x B x x A <=<<=,21,满足A B ,则 ( )A.2≥aB. 1≤aC.1≥aD. 2≤a15.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是 ( ).A. 1B. -1C. 1或-1D. 0,1或-116.已知集合{A =,{1,}B m =,A B A =,则m = ( )A .0B .0或3C .1D .1或317.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有 ( )A .3个B .5个C .7个D .8个18.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ).A .2k ≤B .1k ≥-C .1k >-D .2k ≥19.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为 ( ).A . 0B .1C .1-D .220.集合{}02|2=+-m x x x 含有两个元素,则实数m 满足的条件为 .21.用描述法表示集合{被5除余2的整数}: .22.已知集合{}1,0,1,2--=P ,集合{},,|p x x y y Q ∈==则=Q .23.以下三个集合各表示什么?(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-24.设集合{}1,0=A ,{|}B x x A =∈,{|}C x x A =⊆,则A 与B 的关系是 .25.若集合{|}A x x a =>,{|250}B x x =-≥,且满足A B ⊆,则实数a 的取值范围是 .26.已知集合{|5}A x a x =<<,{|2}B x x =≥,且满足A B ⊆,则实数a 的取值范围为 .27.已知集合A={x|x ≤1}, B={x|x ≥a}, 且A ∪B=R, 则实数a 的取值范围为 .28.集合{}02|2=+-m x x x 含有两个元素,则实数m 满足的条件为 。

集合简单的练习题

集合简单的练习题

集合简单的练习题题目一:集合的定义与性质1. 假设集合A={1,2,3,4,5},请列举出A的所有子集。

2. 用集合的形式表示以下集合:a) 所有小于10的正整数。

b) 所有女性学生。

c) 所有大于0小于1的实数。

3. 已知集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的交集和并集。

题目二:集合的运算1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的差集。

2. 已知集合A={2,4,6,8},集合B={1,3,5,7},求A与B的并集。

题目三:集合的特殊运算1. 设集合A={x | x是偶数且1 ≤ x ≤ 10},请列举出A的所有元素。

2. 设集合B={x | x是奇数或x是负数},请列举出B的所有元素。

3. 设集合C={x | x是素数且x < 20},请列举出C的所有元素。

题目四:集合的关系1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否是B的子集。

2. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否与B相等。

3. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A与B是否有交集。

题目五:特殊集合1. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={2,4,6,8},求A的补集。

2. 设全集为U={a,b,c,d,e,f,g,h,i,j},集合A={a,b,c,f,g},集合B={a,c,d,g,i},求A与B的并集的补集。

答案:题目一:1. 集合A的所有子集为:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3, 5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2, 4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}2. 集合的表示形式:a) {1,2,3,4,5,6,7,8,9}b) {女性学生的姓名}c) {x | 0 < x < 1, x为实数}3. A与B的交集为{4,5},并集为{1,2,3,4,5,6,7,8}题目二:1. A与B的差集为{1,2,3}2. A与B的并集为{1,2,3,4,5,6,7,8}题目三:1. A={2,4,6,8,10}2. B={x | x为奇数,x为负数}3. C={2,3,5,7,11,13,17,19}题目四:1. A是B的子集。

集合练习题(包含详细答案)

集合练习题(包含详细答案)

集合练习题1.设M={x|x≤211},a=2 015,则下列关系中正确的是()A.a⊆M B.a∉MC.{a}∉M D.{a}⊆M答案D解析∵2 015<211=2 048,∴{2 015}⊆M,故选D.2.已知集合P={x|x2-4<0},Q={x|x=2k+1,k∈Z},则P∩Q=()A.{-1,1} B.[-1,1]C.{-1,-3,1,3} D.{-3,3}答案A》3.若P={x|x<1},Q={x|x>-1|,则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P答案C解析由题意,得∁R P={x|x≥1},画数轴可知,选项A,B,D错,故选C.4.(2013·广东)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}答案D解析M={-2,0},N={0,2},故M∪N={-2,0,2}.?5.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4答案D解析由题意可得,A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D项.6.(2013·山东文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅答案A^解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B={3}.7.(2014·苏锡常镇一调)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>2答案C解析∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1}.又∵A={x|x<a}且A∪(∁R B)=R,∴a≥2.8.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P%答案C解析依题意得集合P={y|y≤1},Q={y|y>0},∴∁R P={y|y>1},∴∁R P⊆Q,选C.9.已知全集U=R,A={x∈Z||x-3|<2},B={x|x2-2x-3≥0},则A∩∁U B为()A.{2} B.{1,2}C.{1,2,3} D.{0,1,2,3}答案A解析A={x∈Z|1<x<5}={2,3,4},∁U B={x∈Z|x2-2x-3<0}={x∈Z|-1<x<3}={0,1,2},∴A∩∁U B={2},故选A.10.已知集合P={x|5x-a≤0},Q={x|6x-b>0},a,b∈N,且P∩Q∩N={2,3,4},则整数对(a,b)的个数为()、A.20 B.30C.42 D.56答案B11.(2014·人大附中期末)已知集合A={1,10,110},B={y|y=lg x,x∈A},则A∩B=()A.{110} B.{10} C.{1} D.∅答案C解析∵B={y|y=lg x,x∈A}={y|y=lg1,y=lg10,y=lg 110}={0,1,-1},∴A∩B={1},选C.12.已知集合A={1,2,k},B={2,5}.若A∪B={1,2,3,5},则k=________.答案3]13.将右面韦恩图中阴影部分用集合A、B、C之间的关系式表示出来________.答案A∩B∩(∁U C)14.(2014·皖南八校联考)已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠∅,则实数a的取值范围是________.答案(0,1)解析∵A中-1,0不属于B,且A∩B≠∅,∴a∈B,∴a∈(0,1).15.已知集合A={x|log2x<1},B={x|0<x<c},(c>0).若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合S n={1,2,3,…,n},若x是S n的子集,把x中的所有元素的乘积称为x的容量(若x中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若x的容量为奇(偶)数,则称x为S n的奇(偶)子集.则S4的所有奇子集的容量之和为________.,答案7解析由奇子集的定义,可知奇子集一定是S n中为奇数的元素构成的子集.由题意,可知若n=4,S n中为奇数的元素只有1,3,所以奇子集只有3个,分别是{1},{3},{1,3},则它们的容量之和为1+3+1×3=7.17.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.答案(1)a=5或a=-3(2)a=-3解析(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.|∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a=-3.讲评9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.18.已知集合A={x|x2-6x+8<0},B={x|(x-a)·(x-3a)<0}.(1)若A B,求a的取值范围;(2)若A∩B=∅,求a的取值范围;(3)若A∩B={x|3<x<4},求a的取值范围.答案 (1)43≤a ≤2 (2)a ≤23或a ≥4 (3)3*解析 ∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)当a >0时,B ={x |a <x <3a },应满足⎩⎨⎧ a ≤2,3a ≥4且等式不能同时成立⇒43≤a ≤2. 当a <0时,B ={x |3a <x <a },应满足⎩⎨⎧3a ≤2,a ≥4⇒a ∈∅. ∴43≤a ≤2时,A B . (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2,∴0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a },a ≤2或a ≥43.∴a <0时成立.验证知当a =0时也成立.综上所述,a ≤23或a ≥4时,A ∩B =∅.(3)要满足A ∩B ={x |3<x <4},显然a >0且a =3时成立. ∵此时B ={x |3<x <9},而A ∩B ={x |3<x <4}, 故所求a 的值为3.…。

集合练习题及答案

集合练习题及答案

集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∪B。

A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}2. 若集合A={x|x<5},B={x|x>3},则A∩B表示的集合是:A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}3. 集合A={1,2,3},B={4,5,6},A∩B等于:A. {1,2,3}B. {4,5,6}C. 空集D. {1,2,3,4,5,6}4. 集合A={x|x^2-5x+6=0},求A的元素。

A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}5. 若集合A={x|-3≤x≤3},B={x|x>-2},求A-B。

A. {x|-3≤x≤-2}B. {x|-2<x≤3}C. {x|-3<x<-2}D. 空集二、填空题6. 集合{1,2,3}的补集(相对于全集U={1,2,3,4,5})是_________。

7. 若A={x|0<x<10},B={x|-5<x<5},则A∩B=_________。

8. 集合{a,b,c}的幂集含有的元素个数是_________。

9. 集合{1,2}的笛卡尔积{1,2}×{1,2}包含的元素个数是_________。

10. 若A={x|0<x<10},B={x|-5<x<5},且A⊆B,则A的元素个数最多是_________。

三、解答题11. 已知集合A={1,2,3},B={2,3,4},求A∩B,并说明交集的定义。

12. 集合C={x|x^2-4=0},求C,并解释补集的概念。

13. 给定集合D={x|-1<x<2},E={x|x>1},求D∪E,并解释并集的定义。

14. 若F={x|x^2+4x+3=0},求F,并求F相对于全集U={1,2,3,4,5,6}的补集。

集合基础练习题100个

集合基础练习题100个

集合基础练习题100个1. 设A={1,2,3},B={2,3,4},求并集A∪B。

2. 设A={1,2,3},B={3,4,5},求交集A∩B。

3. 设A={1,2,3},B={3,4,5},求差集A-B。

4. 设U={1,2,3,4,5},A={2,3},求A的补集。

5. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否是B的子集。

6. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否与B相等。

7. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的并集。

8. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的交集。

9. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的差集。

10. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的对称差。

11. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的并集。

12. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的交集。

13. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的差集。

14. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的对称差。

15. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的并集。

16. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的交集。

17. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的差集。

18. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的对称差。

19. 设U={苹果、香蕉、橙子、西瓜、葡萄},A={苹果、香蕉、橙子},B={橙子、西瓜},求A与B的并集。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案一、判断题1. 空集是任何集合的子集。

2. 若A∩B=A,则A⊆B。

3. 集合{1, 2, 3}和集合{3, 2, 1}是不同的集合。

4. 任意两个集合的交集一定是空集。

5. 若A⊆B,则A∪B=B。

二、选择题1. 设A={x|x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 32. 已知集合M={1, 2, 3, 4, 5},下列选项中不属于M的子集的是()A. {1, 2, 3}B. {5, 4, 3, 2, 1}C. {6}D. {}3. 若集合A={x|x²5x+6=0},B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅4. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B=()A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}5. 设集合A={x|x²x6=0},B={x|x²4x+3=0},则AB=()A. {2}B. {3}C. {2}D. {3}三、填空题1. 已知集合A={1, 2, 3, 4},B={3, 4, 5, 6},则A∩B=_________。

2. 若集合M={x|x²4x+3=0},则M的元素个数为_________。

3. 设集合P={x|x²2x+1=0},则P=_________。

4. 已知集合A={x|x²5x+6=0},B={x|x²3x+2=0},则A∪B=_________。

5. 若集合A={1, 2, 3},B={x|x²5x+6=0},则AB=_________。

四、解答题1. 设集合A={x|x²4x+3=0},B={x|x²3x+2=0},求A∩B。

2. 已知集合M={1, 2, 3, 4, 5},求满足条件“集合中的元素都是偶数”的M的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共4页 ◎ 第2页 共4页绝密★启用前2013-2014学年度兴仁民中试卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为A 、5B 、4C 、3D 、22.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A 、{0} B 、{0,1} C 、{-1,1} D 、{-1,0,0} 3.集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A 、(1,2)B 、[1,2)C 、(1,2]D 、[1,2] 4.已知集合A =},B ={1,m} ,AB =A, 则m=A 、0、0或3 C 、1、1或35.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U C A C B(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 6.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为A 、{}1,2,4B 、{}2,3,4C 、{}0,2,4D 、{}0,2,3,47.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D . 既不充分也不必要条件8.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 9.设集合A ={}2560x x x --<,B ={}57x x ≤≤,则A ∩B =( ). A .[5,7] B .[5,6) C .[5,6] D .(6,7]10.已知函数2,0,()0,x x f x x ⎧≥⎪=<则2a =是()4f a =成立的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11.已知集合(){}lg 3A x y x ==+,{}2B x x =≥,则下列结论正确的是( ) A.3A -∈ B.3B ∉ C.A B B =D.A B B =12.已知命题:,2lg P x R x x ∃∈->,命题2:,0q x R x ∀∈>,则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题)(q p ⌝∧是真命题 D.命题)(q p ⌝∨是假命题第3页共4页◎第4页共4页第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)13.设全集{,,,}U a b c d=,集合{,}A a b=,{,,}B b c d=,则=)()(BCACUU_______。

14.{}2(1)37A x x x=-<-,则A Z的元素个数为。

15.已知集合{}|1A x x a=-≤,{}2540B x x x=-+≥.若A B=∅,则实数a的取值范围是.16.有下列命题:①0x=是函数31y x=+的极值点;②三次函数dcxbxaxxf+++=23)(有极值点的充要条件是230b ac->;③奇函数nxmxmmxxf+-+-+=)2(48)1()(23在区间(4,)+∞上是递增的;④曲线xy e=在1=x处的切线方程为y ex=.其中真命题的序号是 .三、解答题(题型注释)17.已知集合{}1A x x=>,集合B={}3x m x m≤≤+(1)当1m=-时,求,A B A B⋂⋃;(2)若B A⊆,求m的取值范围.18.已知集合,,且,求实数的取值范围。

19.已知集合2{|150}A x x px=-+=,2{|0}B x x ax b=--=,{2,3,5}A B=,{3}A B=,求,,p a b的值.20.已知:函数()lg(39)xf x=-的定义域为A,集合}{20,B x x a a R=-<∈.(Ⅰ)求集合A;(Ⅱ)求A B.21.设集合{}21A x x=-<<-,|lg,0,3x aB x y a a Ra x-⎧⎫==≠∈⎨⎬-⎩⎭.(1)当a=1时,求集合B;(2)当A B B=时,求a的取值范围.集合参考答案1.C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等 2.B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N. 3.C 【解析】{}{}{}1,22,12,.M x x N x x M N x x C =>=-≤≤∴⋂=<≤故选【考点定位】本题主要考察集合的运算以及不等式的解法 4.B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B. 5.B【解析】由已知条件可得{2,4,6,U C A =,{0,1,3,7,9}U C B =所以()(){7U U C A C B =,故选B 考点定位:本题集合的运算,意在考查考生对集合的补集交集的计算能力; 【答案】C【解析】{}0,4,U C A = (){}0,2,4.U C A B =【考点定位】本题考查了集合运算中的两种重要运算——并集、补集运算,涉及元素较少,运算层次较低 7.B【解析】当a=0时,如果b=0同时等于零,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义 8.A【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件 9.B【解析】∵A ={}16x x -<<,∴A ∩B ={}56x x ≤< 10.A 【解析】试题分析:当2a =时,()()2224f a f ===,所以充分条件成立;当()4f a =时,00162244a a a a ≥⎧⎧⎪⇒=-=⎨==⎩a <或或,所以必要性不成立,故A 正确。

考点:1.充分必要条件;2.分段函数 11.C 【解析】 试题分析:(){}{}lg 33A x y x x x ==+=>-,{}2B x x =≥,故A 选项错误,B 选项错误,B A ⊆,所以AB B =,故C 选项正确,A B A =,D 选项错误,故选C.考点:1.函数的定义域;2.集合间的包含关系 12.C 【解析】试题分析:由函数图象可知:命题P 为真命题,而20x ≥,所以命题q 为假命题,所以命题)(q p ⌝∧是真命题.考点:1.函数的图像;2.命题的真假;3.简单的逻辑连结词. 【答案】{a, c, d}【解析】∵d}{c,=)(A C U ;}{a B C U =)( ∴=)()(B C A C U U {a,c ,d} [点评]本题难度较低,只要稍加注意就不会出现错误.14.0【解析】本小题考查集合的运算和解一元二次不等式。

由2(1)37x x -<-得2580x x -+<,因为0∆<,所以A φ=,因此A Z φ=,元素的个数为0。

15.(23),【解析】集合{}|1A x x a =-≤={x | a -1≤x ≤a +1},{}2540B x x x =-+≥={x | x ≥4或x ≤1 }.又AB =∅,∴ 1411a a +<⎧⎨->⎩,解得2<a <3,实数a 的取值范围是(2,3)。

16.②③④ 【解析】试题分析:对于①,230y x '=≥,所以31y x =+在R 上单调递增,没有极值点;对于②,对于三次函数32()f x ax bx cx d =+++有极值点的充要条件是2()320f x ax bx c '=++=有两个不相等的实根,所以24120b ac ∆=->即230b ac ->,正确;对于③,因为函数32()(1)48(2)f x mx m x m x n =+-+-+为奇函数,所以()()f x f x +-=即3232(1)48(2)(1)48(2)0mx m x m x n mx m x m x n +-+-+-+---+=即22(1)20m x n -+=对任意x R ∈都成立,所以1,0m n ==,此时3()48f x x x =-,所以2()3483(4)(4)f x x x x '=-=-+,当4x >时,()0f x '>,所以()f x 在区间(4,)+∞上递增;对于④,因为11||x x x k y e e =='===,所以曲线xy e =在(1,)e 处的切线方程为(1)y e e x -=-即y ex =;综上可知②③④正确.考点:1.函数的极值与导数;2.函数的单调性与导数;3.导数的几何意义;4.充分必要条件.17.(1)[-1,2],[-1,+ ∞] (2)()1,+∞ 【解析】试题分析:解:(1)根据题意可知集合{}1A x x =>, 集合B={}3x m x m ≤≤+ ,那么结合数轴法可知,当1m =-时{}{}{}12,12,1B x x A B x x A B x x =-≤≤∴⋂=<≤⋃=≥-;(6分)(2)若B A ⊆,则分情况来讨论当B= φ时,则m>m+3,不成立,当B φ≠,则有1m >即可,故可知m 的取值范围为()1,+∞(12分)考点:集合的运算点评:主要是考查了集合的并集和交集的运用,以及子集关系的运用,属于基础题。

相关文档
最新文档