上海市杨浦区2020-2021学年度九年级第一学期期末质量调研数学试题
2020届上海市杨浦区九年级上期末质量调研英语试题含解析

杨浦区第一学期初三期末质量调研英语试卷B. Listen to the dialogue and choose the best answer to the question you hear7. A) A reporter. B) A TV host. C) An air hostess. D) A lawyer.8. A) Classical music. B) Jazz. C) Country music. D) Rock.9. A) ¥110. B) ¥100. C) ¥90. D) ¥80.10. A) Anything he liked. B) Jacket and tie.C) Jacket and hat. D) Suit and tie.11. A) In an old house. B) In a little shop. C) On a train. D) On a boat.12. A) He will be waiting for a package. B) He will do some online shopping.C) He will deliver jeans to customers. D) He has ordered some food online.13. A) The man is saving money for a new car. B) The man spends a lot of money on gas.C) The man is driving his parents' car. D) Repairing the car costs the man a lot.14. A) Susan can sell her present house. B) It's necessary for Susan to buy a new house.C) Susan can't afford a new house. D) It's not wise of Susan to buy another house.C. Listen to the passage and tell whether the following statements are true or false15. The story happened on a windy and rainy day.16. Two children came to the house to sell newspapers.17. The speaker invited them in and served them milk and bread.18. They kept talking to the speaker while she was doing housework.19. The speaker failed to get rid of the dirty marks on the carpet.20. The story tells us that we should be thankful for everything we have.D. Listen to the passage and complete the following sentences21. Over a hundred people died in a plane crash _______ __________ last night.22. A British couple are missing, only _______ __________ after they started climbing Mount Everest.23. There are _______ __________ in many parts of India and 32 people died yesterday.24. A report shows that for every one hour of commuting, 30 minutes _______ __________ on traffic jams in Beijing.25. Joe Hall's _______ __________ won him over 13,000,000 pounds last night.Part 2 Phonetics, Grammar and vocabularyII. Choose the best answer .(20’)26.Which of the following words is pronounced as /waild/?A worldB wideC wildD wind27.Mike has only driven to the pub to show _____ his new car – he usually walks.A ofB offC aroundD with28.When _____ is dressed the same, worrying about what you look like isn’t so important.A someoneB anyoneC no oneD everyone29.We use an online bill-paying service, and we almost everything ____ credit card.A onB byC forD at30.Any way to improve this ‘welcome letter’ – I want to make sure it sounds ____.A friendlyB carefullyC gentlyD politely31._____ earthquake recorded in the 20th century occurred in Chile in 1960.A LargeB LargerC LargestD The largest32.I wonder whether buying an electric car ____ a good idea.A beB amC isD are33.I don’t mind _____back home. I feel like some fresh air.A walkB walkingC to walkD to walking34.The sign says “Passengers ____ show their tickets and passports.”A mustB mayC canD should35.I ____ 30 pages of the book so far, but I hope to finish it by next week.A readB am readingC have readD will read36.It was a terrible journey, ____ we got there safely in the end.A andB orC soD but37.We’ll have to cancel the school sports meeting ___ it snows tonight.A ifB althoughC unlessD since38.When we ____ home last night, we saw a strange object in the sky.A driveB droveC were drivingD had driven39.The police required the traveler ____ for his luggage.A checkB to checkC checkingD checked40._____ can we help victims after a natural disaster?A WhoB HowC WhereD When41.Please ____ fruits and vegetables in a basin!A washB washingC to washD washed42.Half of the Beijing’s private cars ____ off the roads due to heavy smog on Friday.A orderB are orderedC orderedD were ordered43.____ amazing the stage play War Horse is!A WhatB What aC What anD How44.–More underground lines should be built in our city!--_____A I’m glad to hear thatB Not exactlyC I couldn’t agree moreD I’m on your side45.–I’m sorry I’m late – the traffic was terrible.-____. The traffic situation is getting worse these days.A That’s OKB You’re welcomeC I don’t think soD Please go ahead.III. Complete the following passage with the words or phrases in the box. Each word or phrase can only be The US public uses about 50 billion water bottles a year and most of those 46 bottles are not recycled, according to Elizabeth Royte’s book Bottlemanid: How Water Went on Sale and Why We Bought It.More than $100 billion is spent every year on bottled water in the U.S. in many developing countries where there isn’t a safe 47 of tap water, bottled water is the only choice.In the US, tap water is controlled by the government and often 48 for dangerous substances(物质). Each American drinks 79 litres of bottled water per year 49 . The bottled water industry is so successful that it has outpaced milk, coffee, and juice in the number of gallons of drinks sold – putting it behind only beer and soda.A no longerB completelyC competeD given upE encourage51Among the cities in America that have taken action are San Francisco and Seattle, which 52 buy water for city use, and Chicago which adds a five-cent tax on each bottle. Several restaurants in those cities have also 53 bottled water for tap water. Other cities are also considering taking action.IV. Complete the sentences with the given words in their proper forms.(8’)54.With my saving, I bought _________ a mobile phone for his birthday. (he)55.Our ______ have been polluted by waste from factories. (river)56.The wheelchair gives him the _______ to go out on his own. (free)57.Black shoes go very well with jeans, and are much _________ to keep clean. (easy)58.One soldier was killed and three others were _______ when their tank was hit by a rocket. (wound)59.The modern fashion in education is to let the child _____ everything. (decision)60.Hundreds of houses were ______ damaged in the hurricane. (heavy)61.The growing problem of _______ cats and dogs has caused much trouble in the town. (home)V. Rewrite the following sentences as required. (14’)62.You have to pay to park here. (改为否定句)You ______ _______ to pay to park here63.Henry Ford invented the world’s first assembly line in 1913. (划线提问)_______ ________ Henry Ford invent the world’s first assembly line?64.They created a Children’s Fund to provide money for those who are ill. (保持句意)They _______ ________ a Children’s Fund to provide money for those who are ill.65.The newspapers will publish the results of the survey. (改为被动语态)The results of the survey will _____ _______ in the newspapers.66.We cannot drink salt water . we cannot take a shower with it, either. (保持句意)We can _____ drink salt water ____ take a shower with it.67.“Have you collected any materials about earthquakes?” asked Ms Ward. (改为宾语从句)Ms Ward asked me _____ I _____ collected any materials about earthquakes.68. a blanket, covered, Tom’s, with, legs, were (连词成句)____________________________________________.Part Three Reading and WritingVI. Reading comprehensionA. Choose the best answerOnce upon a time if we wanted to make a phone call or wait for someone to contact us, we had to sit at home or at our desks. There were public phones in the street of course, but it could be hard to find one that was working and there were often long queues to use them. And of course you had to bring a lot of coins to pay for the calls.So people didn't phone their friends as often. Mobile phones, these small pieces of electronic equipment which allow us to talk with friends and family while we are on the move, have greatly changed the way we live. Before the age of the mobile phone, our loved ones would sit around worried sick if we were late coming home. There were no quick calls to tell mum that there would be additional guests coming for dinner. We would have to depend on notes left on fridges or desks to communicate messages.But mobile phones have also had a negative effect and what people don't seem to realize is that we've lost something very valuable: our privacy. Now our friends and family can contact us wherever and whenever they want to. We can never get away from them. The way people communicate with each other is totally different now. It's difficult to have a conversation face-to-face with a friend without being disturbed every couple of minutes by the ring of their phones, ,most people don't see anything wrong in having a long conversation on their mobile phone while forgetting all about the person sitting opposite. It seems the art of real conversation may be dying.Of course, people could leave their mobile phones at home or even switch them off but no one ever does that. Why not? Because the worrying thing is we can't live without our phones. We've become communication addicts, unable to spend even a few minutes out of contact, in case we miss something 'important'.69. What does the underlined sentence tell us?A) No all-day public phone service was provided in the street.B) Public phones were in poor condition and not always available.C) Public phones were everywhere but they were always in use.D) You could always see people repairing the public phones.70. What's the writer's point about using telephones before the invention of mobile phones?A) Using a telephone was expensive. B) Phone calls were much shorter.C) People made fewer phone calls. D) People relied on notes a lot.71. What does the writer think about life before mobile phones?A) Life was less convenient. B) People were more punctual.C) Things were more relaxed. D) Everyone managed very well.72. What's the writer's main argument against mobile phones?A) They have damaged relationships. B) We give out too much information.C) They are harmful to our body and mind. D) It's impossible to escape from them.73. Which word best describes how the writer feels about the use of mobile phones.'?A) Disappointed. B) Satisfied. C) Worried. D) Surprised.74. What's the writer's main purpose in writing this article?A) To inform people about means of communication in the past.B) To show disadvantages of the way people communicate today.C) To advise readers to stop using the mobile phone.D) To compare different types of phone conversation.B. Choose the words or expressions and complete the passageThe International Climate Champions (ICC) project began in 2007. It gives young people of school age a chance to speak publicly on climate change and to call on people to take action to reduce its 75 .Each country involved selects three teenagers to be Climate Champions, who take part in local and international activities.Climate Champion Irene Sanna lived on the Italian island of Sardinia. Irene is interested in solar energy, and 76 believes that Sardinia should use the waves around its coast to produce electricity. 'We must make our plans to save our coast, which still has no pollution. We must protect the animals, birds and fish in danger from global warming. And we must recycle.'Chinese student Ding Yinghan is the Beijing Climate Champion. Ding feels it is not 77 to say that just one country - his own - is causing climate change. He says the air pollution that leads to global warming comes from many parts of the world, including poorer countries that are now growing more quickly. He believes the only way to 78 the situation getting even worse is for rich and poor countriesto work together.Sophia Angelis, a junior student in California, is a US Champion. She's against young people's generation lack of interest in politics and feels they need to discuss the problems that really matter to their generation. Sophia strongly believes that climate change is an important issue for her generation. For her, 79 in the way teenagers behave are an important way of influencing choices made by parents.In 2008, the Climate Champion attended the International Conference of Environment Ministers in the Japanese city of Kobe. 80 ,30 countries are involved in the ICC, and more countries are expected to join soon.75. A) support B) amount C) costs D) effects76. A) hardly B) also C) never D) only77. A) proud B) common C) fair D) important78. A) protect B) improve C) prevent D) explain79. A) changes B) problems C) characters D) advantages80. A) After all B) At present C) For example D) What's moreC. Read the passage and fill in the blanks with proper wordsSomeone sent me a group e-mail the other day. One of those that end with: send this to 10 friends ... I liked the story and it really got me thinking.Here's the story from the e-mail:Recently I overheard a father and a daughter in their last moments together at the a 81 . They had announced the departure.Standing near the security gate, they hugged and the father said, 'I love you, and I wish you enough.' They kissed and the daughter left. The father walked over to the window where I was seated. I tried to leave him some privacy, but I could not keep m 82 from asking:'When you were saying good-bye, I heard you say, 'I wish you enough.' May I ask what that means?'He began to smile. 'That's a wish that is p 83 on from generation to generation. My parents used to say it to everyone.'He paused a moment and looked up as if trying to remember it in d 84 , and he smiled even more.'When we said, 'I wish you enough,' we were wanting the other person to have a life filled with just enough good things to carry them on.'T 85 , slowly turning toward me, he shared the following as if he were reciting it from memory.I wish you enough sun to keep your attitude b 86 no matter how gray the day may appear.I wish you enough rain to appreciate the sun even more.I wish you enough happiness to keep your spirit alive and everlasting.I wish you enough pain so that even the s 87 of joys in life may appear bigger.I wish you enough gain to satisfy your wanting.I wish you enough loss to appreciate all that you possess.I wish you enough hellos to get you through the final good-bye.D. Read what Claire did and answer the questionsMy stay in the rainforestLast year, I left my job and went to Borneo to work without pay in the rainforest. So many people have said to me, 'I would love to do something like that,' and I say, 'If you want to, just do it.' They always reply, 'l can't.' But, if you really want to do it, there are ways to make it happen.After three day's training, I started work on an environmental project with a group of young people. The accommodation was very basic and we had to build our own place to sleep. This consisted of a simple bed, a cloth roof and a net to keep insects (昆虫) out.It was never dangerous there, but it was very challenging (挑战的). There were things that we didn't think we would manage to do, but we did. I had some of my worst moments there, but also some of my best - it mademe feel alive. I didn't miss my home comforts as much as I'd thought I might. We had food, water, somewhere to stay, about three sets of clothes and really good conversation. We were in the most beautiful place and we had things to keep us busy. We didn't need any more.One of the teenagers said, 'Before we came here, it was really important to me what clothes I wore and who my friends were. I was always thinking about shoes, but really none of that matters. Here, people accept me for who I am, what I believe and think, not for what kind of clothes I've got.' When she said that, it summed it up for me.88. Did Claire get any money from the work in Borneo?89. What did Claire do before she started work on an environmental project?90. How was Claire's 'bedroom' in the rainforest?91. What did the teenager care about before she came to Borneo?92. How did Claire feel about the experience of living in the rainforest?93. What do you think might be the worst moments Claire had during her stay in the rainforest?VII. Writing94. In at least 60 words, write a letter to your headmaster suggesting rules you think should be changed or improved. Support your opinions with facts or examples. (给校长写一封至少60个词的信,向他建议几条需要改变或改进的学校规则,并辅以事实或例子。
九年级数学上册2020-2021学年度第一学期期末调研试卷含答案

CBA2020—2021学年度第一学期期末调研试卷九年级数学一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 点P (2,1)关于原点对称点的坐标是A .(2,1)B .(2,1)C .(1,2)D .(1,2)2.抛物线2yx 的对称轴是A .直线1xB .直线1xC .y 轴D .x 轴3.如果右图是某几何体的三视图,那么该几何体是A .球B .正方体C .圆锥D .圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为 A .16B .13C .12D .235.⊙O 的半径为5,点P 到圆心O 的距离为3,点P 与⊙O 的位置关系是A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内6.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,AD CD ,如果∠CAB =40°,那么∠CAD的度数为 A .25° B .50° C .40°D .80°7.如果左图是一个正方体的展开图,那么该正方体是A B C DxyOABxyOCA8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 A .4.25分钟 B .4.00分钟 C .3.75分钟D .3.50分钟二、填空题(本题共16分,每小题2分) 9.已知∠A 为锐角,1sin 2A =,那么∠A = °. 10.在Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么cos B11.写出一个图象位于第一,三象限的反比例函数的表达式 . 12.如图,等边三角形ABC 的外接圆半径OA = 2,其内切圆的半径为 .13.函数2y ax bx c =++(a ≠0)的图象如图所示,那么ac 0.(填“>”,“=”,或“<”)14.将抛物线2y x =沿y 轴向上平移2个单位长度后的抛物线的表达式为 . 15.如图,在平面直角坐标系xOy 中,A (1,1),B (3,1),如果抛物线2y ax =(a >0)与线段AB 有公共点, 那么a 的取值范围是 .16.电影公司随机收集了2 000部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大? 答: .xyO 三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭.18.已知二次函数243y x x =-+.(1)用配方法将其化为()2y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线. 作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线P A 和PB .则P A ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥P A ,OB ⊥PB , 又∵ OA 和OB 是⊙O 的半径,∴ P A ,PB 就是⊙O 的切线( )(填依据).OP图1图 2OPNMC20.如图,在平面直角坐标系xOy 中,点A (3,3),B (4,0),C (0,1-).xyO ABC(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△''A B C ; (2)在(1)的条件下,① 点A 经过的路径'AA 的长度为 (结果保留π); ② 点'B 的坐标为 .21.如图,在四边形ABCD 中,AB = AD ,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB =求CD 的长.ABCD22.如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线4y ax =-(0a ≠)与双曲线ky x=(0k ≠)只有一个公共点A (1,2-). (1)求k 与a 的值;(2)在(1)的条件下,如果直线y ax b =+(0a ≠)与双曲线ky x=(0k ≠)有两个 公共点,直接写出b 的取值范围.xyO A1-224.如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM ,交AB 于F ,AD DC =,连接AC 和AD ,延长AD 交BM 于点E . (1)求证:△ACD 是等边三角形; (2)连接OE ,如果DE = 2,求OE 的长.DBEM OFCA25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y(℃)是时间x(min)的函数.下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x的取值范围是.(2)下表记录了17min内10个时间点材料温度y随时间x变化的情况:上表中m的值为.(3)如下图,在平面直角坐标系xOy中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.yO x(4)根据列出的表格和所画的函数图象,可以得到,当0≤x≤5时,y与x之间的函数表达式为,当x>5时,y与x之间的函数表达式为.(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为min.26.在平面直角坐标系xOy 中,抛物线22y x mx n 经过点A (0,2),B (3,4).(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.xyO27.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD .(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE .① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.ABCDE28.对于平面直角坐标系xOy 中的⊙C 和点P ,给出如下定义:如果在⊙C 上存在一个动点Q ,使得△PCQ 是以CQ 为底的等腰三角形,且满足底角∠PCQ ≤60°,那么就称点P 为⊙C 的“关联点”.(1)当⊙O 的半径为2时,① 在点P 1(2,0),P 2(1,1),P 3(0,3)中,⊙O 的“关联点”是 ; ② 如果点P 在射线3yx (x ≥0)上,且P 是⊙O 的“关联点”,求点P 的横坐标m 的取值范围.(2)⊙C 的圆心C 在x 轴上,半径为4,直线22yx与两坐标轴交于A 和B ,如果线段AB 上的点都是⊙C 的“关联点”,直接写出圆心C 的横坐标n 的取值范围.xyO第(1)问图xyO第(2)问图2020—2021学年度第一学期期末调研试卷九年级数学答案及评分参考三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:(1 0112cos454-⎛⎫+-︒+ ⎪⎝⎭124=+…………………………………………………………………………………………4分5.=……………………………………………………………………………………………………………5分18.(本小题满分5分)解:(1)配方正确;……………………………………………………………………………………………3分(2)图象正确.……………………………………………………………………………………………5分19.(本小题满分5分)解:(1)补图正确;……………………………………………………………………………………………3分(2)依据正确.……………………………………………………………………………………………5分20.(本小题满分5分)解:(1)画图正确;…………………………………………………………………………………………3分(2)①52;……………………………………………………………………………………………4分②(-1,3). ………………………………………………………………………………………5分21.(本小题满分5分) 解:过点D 作DE ⊥BC 于E . ……………………………………………………………………………1分∵ 在Rt △ABD 中,∠BAD = 90°,2ABAD,∴ 由勾股定理得B D =2. ………………………………………………………………………………2分∵ DE ⊥BC ,∴ 在Rt △DBE 中,∠DEB = 90°,∠CBD = 30°,∴DE =1, (4)分又∵ 在Rt △DEC 中,∠DEC = 90°,∠C = 45°, ∴ 由勾股定理得2CD.…………………………………………………………………………5分22.(本小题满分5分)解:(1)由题意,得 △=()44240.k -->∴5.2k <……………………………………………………………………………………………2分(2)∵ k 为正整数,∴ k =1,2.………………………………………………………………………………………3分当k =1时,方程2220x x +-=的根1x =-±不是整数;………………………………4分当k =2时,方程220x x +=的根12x =-,20x =都是整数;综上所述,k =2.…………………………………………………………………………………5分23.(本小题满分6分)解:(1)∵ 直线4y ax =-(0a ≠)过点A (1,2-),∴24a -=-,……………………………………………………………………………………1分∴2.a =……………………………………………………………………………………………2分又∵ 双曲线ky x=(0k ≠)过点A (1,2-), ∴21k-=,…………………………………………………………………………………………3分 ∴2.k =-………………………………………………………………………………………4分(2)b <-4,b >4. ………………………………………………………………………………………6分24.(本小题满分6分)(1)证明:∵ AB 是⊙O 的直径,BM 是⊙O 的切线, ∴ AB ⊥BM .∵ CD ∥BM , ∴ AB ⊥CD .∴ AD AC .…………………………………………1分∵ AD DC .∴AD AC DC .………………………………………………………………………………2分∴ AD =AC =DC . ∴ △A C D 是等边三角形. …………………………………………………………3分(2)解:连接BD ,如图.∵ AB 是⊙O 的直径,∴ ∠ADB =90°. ∵ ∠ABD =∠C =60°, ∴ ∠DBE =30°. 在Rt △BDE 中,DE =2,可得BE =4,BD = ………………………………………………………………………………………………………4分在Rt △ADB 中,可得AB =∴OB = . ……………………………………………………………………………………5分在R t △O B E 中,由勾股定理得O E =. ……………………………………………………6分25.(本小题满分6分) 解:(1)x≥0;…………………………………………………………………………………………………1分 (2)20;……………………………………………………………………………………………………2分 (3)略;……………………………………………………………………………………………………3分(4)915y x ,300yx;……………………………………………………………………………5分 A E MA BE M(5)25.3……………………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵ 点A ,B 在抛物线y =2x 2+mx +n 上,∴22,4233.n m n =⎧⎨-=⨯++⎩……………………………………………………………………………1分 解得4,2.m n =⎧⎨=⎩...................................................................................................2分 ∴ 抛物线的表达式为y =-2x 2+4x +2. (3)分 ∴ 抛物线的对称轴为x =1. ………………………………………………………………………4分 (2)43≤t<4. ……………………………………………………………………………………………6分27.(本小题满分7分) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD , ∴ ∠ACB =∠AEB = 90°, 又∵ ∠1=∠2,∴ ∠CAE =∠CBD .………………………………3分(2)① 补全图形如图2. ………………………………………4分②2EFCEBE (5)分证明:在AE 上截取AM ,使AM =BE . 又∵ AC =CB ,∠CAE =∠CBD , ∴ △ACM ≌△BCE .∴ CM =CE ,∠ACM =∠BCE . 又∵ ∠ACB =∠ACM +∠MCB =90°, ∴ ∠MCE =∠BCE +∠MCB =90°. ∴ 2.MECE又∵ 射线AE 绕点A 顺时针旋转45°后得到AF ,且∠AEF =90°,图2图1∴EF=AE=AM+ME=BE.………………………………………………………………………7分28.(本小题满分7分)解:(1)①P1,P2;……………………………………………………………………………………………2分②由题意可知⊙O的“关联点”所围成的区域是以O为圆心,半径分别为1和2的圆环内部(包含2,不包含1). ……………………………………………………………………………3分设:射线3y x(x≥0)与该圆环交于点P1和点P2,由题意易得P1,0),P20).∴<m……………………………………………………………………………………5分(2)23≤n<3,1<n≤ 3.…………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
上海市闵行区2020-2021学年第一学期九年级数学期末质量调研试卷(中考一模)带讲解

∴△FCE∽△BAE
∴ ,即FC=
∵AB//FC
∴ ,即
∴
故答案为: .
【点睛】本题主要考查了平面向量的三角形法则、平行四边形法则等知识,灵活运用向量运算的运算法则成为解答本题的关键.
21.如图, 是 的外接圆,AB长为4, ,连接CO并延长,交边AB于点D,交AB于点E,且E为弧AB的中点,求:
9.抛物线 在对称轴的右侧部分是___________的(填“上升”或“下降”).
【答案】下降
【分析】先将函数解析式化为顶点式,根据函数的性质解答.
【详解】∵ = ,
∴抛物线的开口向下,对称轴为直线x= ,
∴在对称轴右侧部分y随着x的增大而减小,
故答案为:下降.
【点睛】此题考查抛物线的性质:当a>0时,对称轴左减右增;当a<0时,对称轴左增右减,熟记抛物线的性质是解题的关键.
(1)填空:向量 __________;
(2)填空:向量 __________,并在图中画出向量 在向量 和 方向上的分向量.
(注:本题结果用含向量 、 的式子表示,画图不要求写作法,但要指出所作图中表示结论的向量)
【答案】(1) ;(2) ;作图见解析
【分析】(1)先求出AE占AC得几分之几,然后再根据向量运算的三角形法则计算即可;
19.计算:
【答案】2
【分析】分别把特殊角的三角函数值代入,再分别计算,结合分母有理化,合并化简即可解题.
【详解】解:原式
.
【点睛】本题考查特殊角 三角函数值,分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.
20.如图,在平行四边形 中,对角线AC、BD相交于点O.E为OC的中点,连接BE并延长,交边CD于点F,设 , .
2017学年度第一学期上海(杨浦区)期末考试初三数学试卷(一模)(解析版)

(2)如果设 , ,试用 、 表示 .
【答案】(1) ;(2) .
【解析】
试题分析: 在 中,根据 ,设 则 根据 得出: 根据平行线分线段成比例定理,用 表示出 即可求得.
先把 用 表示出来,根据向量加法的三角形法则即可求出.
试题解析:(1) ,
∴ ,∴设 则
即
又 ,∴AC//DE.
A.a>0B.b<0
C ac<0D.bc<0
【答案】C
【解析】
试题解析:由函数图象可得各项的系数:
故选C.
6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是( )
A. B. C. D.
【答案】C
【解析】
故选:D
【点睛】考核知识点:相似三角形性质.理解基本性质是关键.
4.如果 ( , 均为非零向量),那么下列结论错误的是( )
A. // B. -2 =0C. = D.
【答案】B
【解析】
试题解析:向量最后的差应该还是向量. 故错误.
故选B.
5.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()
【详解】过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.
由题意得:∠ADE=α,∠E=45°.
设AF=x.
∵∠E=45°,∴EF=AF=x.
在Rt△ADF中,∵tan∠ADF= ,∴DF= = .
∵DE=13 3,∴x+ =13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣10=1.4.
上海市杨浦区2020-2021学年九年级物理一模试卷(含答案)(1)

杨浦区2020学年度第一学期期末质量调研初三物理练习卷(满分100分,时间90分钟)2021.1考生注意:1.本试卷物理部分含五个大题。
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无数。
一、选择题(共20分)1.首先用实验测出大气压强值的科学家是A.托里拆利B.阿基米德C.帕斯卡D.牛顿2.下列实例中,利用连通器原理工作的是A.密度计D.液位计C.吸尘器D.抽水机3.影响某导体电流大小的物理量是A.电荷量B.通电时间C.质量D.电压4.一包医用口罩(10只装)的质量约为A.0.03千克B.3千克C.30千克D.300千克5.以下事例中,属于增大压强的是A.载重卡车有很多车轮B.书包背带较宽C.针尖做得很尖锐D.铁轨铺在枕木上6.有一轻质柱形容器置于水平地面上,容器内盛有10牛重的水。
若将重为5牛的物块浸入水中(水不溢出),物块受到的浮力为3牛,则放入物块后容器对水平地面的压力为A.一定为10牛B.一定为15牛C.可能为12牛D.可能为13牛7.同种材料制成的长度相等的甲、乙导体申联在电路中,若甲导体两端的电压大于乙导体两端的电压,则关于甲、乙的横截面积S甲、S乙大小,下列判断正确的是A.S甲一定小于S乙B.S甲可能等于S乙C.S甲一定大于S乙D.S甲可能小于S乙8.两个相同柱形容器置于水平地面上,两容器中分别盛有体积相等的不同液体甲、乙。
若两个质量相等的物块A、B浸入液体中,物块漂浮于液面,如图1所示。
下列判断正确是A.液体的密度ρ甲<ρ乙B.液体的质量m甲<m乙C.液体对容器底部的压强p甲>p乙D.液体对容器底部的压力F甲=F乙甲乙图1A B9.在图2所示的电路中,电源电压保持不变。
开关S 从闭合到断开时,变大的是 A .电压表V 的示数 B .电压表V 示数与电流表A 示数的乘积 C .电流表A 的示数 D .电压表V 示数与电流表A 示数的比值10.如图3所示,形状大小相同的实心长方体甲、乙置于水平地面上,对地面的压强分别为p 甲、p 乙。
九年级数学上册2020-2021学年度第一学期九年级期末学业水平质量检测含答案

2020—2021学年第一学期九年级期末学业水平质量检测数学试卷一、选择题(本题共8个小题,每小题2分,共16分.每小题只有一个正确选项)1.如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②AE DEAB BC=;③AD AEAC AB=. 使△ADE与△ACB一定相似的是A.①②B.②③C.①③D.①②③2. 如图,A、B、C是半径为4的⊙O上的三点. 如果∠ACB=45°,那么AB的长为A.πB.2πC.3πD.4π3. 小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地. 如果他再抛第5次,那么硬币正面朝上的概率为A.1 B.12C.14D.154.如图,数轴上有A、B、C三点,点A、C关于点B对称,以原点O为圆心作圆,如果点A、B、C分别在⊙O外、⊙O内、⊙O上,那么原点O的位置应该在A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点5. 如图,P A和PB是⊙O的切线,点A和点B为切点,AC是⊙O的直径. 已知∠P=50°,那么∠ACB的大小是A.65°B.60°C.55°D.50°6. 如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为80米.如果设河的宽度为x米,那么下列关系式中正确的是A.1802xx=+B.180xx=+C.802xx=+D.803xx=+cCBA7. 体育节中,某学校组织九年级学生举行定点投篮比赛, 要求每班选派10名队员参加.下面是一班和二班 参赛队员定点投篮比赛成绩的折线统计图(每人投 篮10次,每投中1次记1分),请根据图中信息判断:①二班学生比一班学生的成绩稳定;②两班学生成绩的中位数相同;③两班学生成绩的众数相同. 上述说法中,正确的序号是 A .①② B .①③C .②③D .①②③8. 运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线可以看作是一条抛物线,不考虑空气阻力,足球距离地面的高度y (单位:m )与足球被踢出后经过的时间x (单位:s )近似满足函数关系()20y ax bx c a =++≠.如图记录了3个时刻的数据,根据函数模型和所给数据,可推断出足球飞行到最高点时,最接近的时刻x 是 A .4 B .4.5C .5D .6二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,线段BD 、CE 相交于点A ,DE ∥BC .如果AB =4,AD =2,DE =1.5, 那么BC 的长为_________.10.在平面直角坐标系xOy 中,二次函数()214y x =--+的图象如图,将二次函数()214y x =--+的图象平移,使二次函数()214y x =--+的图象的最高点与坐标原点重合,请写出一种平移方法:__________________________________________.11.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,则直尺的宽度为____cm.12. “阅读让自己内心强大,勇敢面对抉择与挑战.”某校倡导学生读书,下面的表格是该校九年级学生本学期内阅读课外书籍情况统计表. 请你根据统计表中提供的信息,求出表中a 、b 的值:a = ,b = .13.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y 美元. 设2017年到2019年该地区居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是________________________. 图书种类 频数 频率 科普常识 210 b 名人传记 204 0.34 中外名著 a 0.25 其他360.06x s ()y m ()182014O yx4O 1EDBCA二班一班成绩/分109876109876543201514. 如图,直角三角形纸片ABC ,90ACB ∠=︒,AC 边长为10 cm. 现从下往上依次裁剪宽为4 cm 的矩形纸条, 如果剪得第二张矩形纸条恰好是正方形,那么BC 的长 度是____cm .15. 已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出一组满足条件的a ,b 的值:a =______,b =________.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线a 和直线外一点P . 求作:直线a 的垂线,使它经过P . 作法:如图2.(1)在直线a 上取一点A ,连接P A ; (2)分别以点A 和点P 为圆心,大于12AP 的长为半径 作弧,两弧相交于B ,C 两点,连接BC 交P A 于点D ; (3)以点D 为圆心,DP 为半径作圆,交直线a 于点E (异于点A ),作直线PE .所以直线PE 就是所求作的垂线.请回答:该尺规作图的依据是_____________________________________________. 三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17.计算:(4cos30π1︒+--.18. 已知:如图,AB 为⊙O 的直径,OD ∥AC . 求证:点D 平分BC .19.如图,在□ABCD 中,连接DB ,F 是边BC 上一点,连接DF 并延长,交AB=∠A . (1)求证:△BDF ∽△BCD ;(2)如果BD =9BC =,求ABBE的值. 图1aaP20. 如图,菱形ABCD 的对角线交于点O ,点E 是菱形外一点,DE ∥AC ,CE ∥BD . (1)求证:四边形DECO 是矩形;(2)连接AE 交BD 于点F ,当∠ADB =30°,DE=2时,求AF 的长度.21.如图,直线2y x =+与反比例函数()00ky k x x=>>,的图象交于点A (2,m ),与y 轴交于点B .(1)求m 、k 的值;(2)连接OA ,将△AOB 沿射线BA 方向平移,平移后A 、O 、B 的对应点分别为A'、O'、B',当点O'恰好落在反比例函数()0ky k x=>的图象上时,求点O' 的坐标; (3)设点P 的坐标为(0,n )且04n <<,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky k x=>的图象分别交于点C ,D ,当C 、D 间距离小于或等于4时,直接写出n 的取值范围.22.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,连接CD ,过点C 作CE ⊥DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点. (1)求证:CF 是⊙O 的切线; (2)当185BD=,3sin 5F=时,求OF 的长.23. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每名被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有_______人,扇形统计图中α的度数是_______; (2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或画树状图法求出选中书法与乐器组合在一起的概率.24.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,30CAB ∠=︒,D 是直径AB 上一动点,连接CD 并过点D 作CD 的垂线,与⊙O 的其中一个交点记为点E (点E 位于直线CD 上方或左侧),连接EC .已知AB =6 cm ,设A 、D 两点间的距离为x cm ,C 、D 两点间的距离为1y cm ,E 、C 两点间的距离为2y cm . 小雪根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小雪的探究过程:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请将表格补充完整; x /cm 0 1 2 3 4 5 61y /cm5.20 4.36 3.60 2.65 2.65 2y /cm5.204.564.224.244.775.606.00 (2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y ),(x ,y ),并画出函数y 的图象;y 2cm6543学生选修课程条形统计图学生选修课程扇形统计图25. 在平面直角坐标系xOy 中,抛物线()240y ax ax m a =-+≠与x 轴的交点为A 、B ,(点A 在点B 的左侧),且AB =2. (1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);(2)若抛物线()240y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a 的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接 写出a 的取值范围.26. 如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系是___________________;(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形; ②求证:DF =.图2图127. 在平面直角坐标系xOy中,⊙C的半径为r,点P与圆心C不重合,给出如下定义:若在⊙C上存在一点M,使30MPC∠=︒,则称点P为⊙C的特征点.(1)当⊙O的半径为1时,如图1.①在点P1(-1,0),P2(1,P3(3,0)中,⊙O的特征点是______________.②点P在直线y b=+上,若点P为⊙O的特征点,求b的取值范围.(2)如图2,⊙C的圆心在x轴上,半径为2,点A(-2,0),B(0,.若线段AB上的所有点都是⊙C的特征点,直接写出圆心C的横坐标m的取值范围.2020—202021学年第一学期九年级期末学业水平质量检测数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 3 10. 向左平移1个单位,再向下平移4个单位(答案不唯一) 11. 312. 150,0.3513. ()23001y x =+ 14. 20 15. 1,2(答案不唯一) 16. 到线段两个端点距离相等的点在这条线段的垂直平分线上,直径所对的圆周角是直角,两点确定一条直线三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17. 解:原式=411+-, ………………… 4分 =11+-,=0. ………………… 6分18. 证明:连接CB . ………………… 1分∵AB 为⊙O 的直径,∴90ACB ∠=︒. ………………… 3分 ∵OD ∥AC ,∴OD ⊥CB ,. …………………5分 ∴点D 平分BC . ………………… 6分 另证:可以连接OC 或AD .19. (1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AE ,A C ∠=∠,AB =DC . ………………… 1分 ∵EDB A ∠=∠,∴EDB C ∠=∠. ………………… 2分 ∵DBF CBD ∠=∠,∴△BDF ∽△BCD . ………………… 3分(2)解:∵△BDF ∽△BCD ,∴BF BDBD BC =. ………………… 4分9=.∴5BF=. …………………5分∵DC∥AE,∴△DFC∽△EFB.∴CF DCBF BE=.∴45ABBE=. …………………6分20. (1)证明:∵四边形ABCD是菱形,∴AC⊥BD. ………………1分∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形.∴四边形DECO是矩形. ………………2分(2)解:∵四边形ABCD是菱形,∴AO OC=.∵四边形DECO是矩形,∴DE OC=.∴2DE AO==. ………………3分∵DE∥AC,∴OAF DEF∠=∠.∵AFO EFD∠=∠,∴△AFO≌△EFD.∴OF DF=. ………………4分在Rt△ADO中,tanOAADBDO∠=.∴2DO=.∴DO=………………5分∴FO=∴AF===. ………………6分方法二:∴△AFO≌△EFD.在Rt △ACE 中,AC =4,CE =OD=∴AE=∴AF =12AE. 21. 解:(1)∵直线2y x =+过点A (2,m ),∴224m =+=. ……………… 1分 ∴点A (2,4). 把A (2,4)代入函数ky x=中, ∴42k =. ∴8k =. ……………… 2分 (2)∵△AOB 沿射线BA 方向平移,∴直线OO' 的表达式为y x =. ……………… 3分∴,8y x y x =⎧⎪⎨=⎪⎩.解得x =. ……………… 4分 ∴点O'的坐标为(. ……………… 5分(3)24n <≤. ……………… 6分22. (1)证明:连接OC .∵CB CB =,∴2BOC BAC ∠=∠. ……………… 1分 ∵∠ABD =2∠BAC , ∴BOC ABD ∠=∠.∴BD ∥OC . ……………… 2分 ∵CE ⊥DB ,∴CE ⊥OC . ……………… 3分 ∴CF 是⊙O 的切线.(2)解:连接AD .∵AB 为⊙O 的直径,∴BD ⊥AD . ∵CE ⊥DB , ∴AD ∥CF .在Rt △ABD 中, ∴3sin sin 5BD F=BAD AB ∠==. ∴18355AB =. ∴6AB =. ……………… 5分 ∴3OC =. 在Rt △COF 中, ∴3sin 5OC F OF ==. ∴335OF =. ∴5OF =. ……………… 6分 另解:过点O 作OG ⊥DB 于点G .23. 解:(1)40,108︒; ……………… 2分 (2)条形统计图补充正确; ……………… 4分 (3)列表法或画树状图正确: ……………… 5分∴P (AC )=126=. ……………… 6分 24. 解:(1)3,3 ……………… 2分(2) ……………… 4分 (3)4.5 或6 ……………… 6分25.解:(1)对称轴为直线422ax a-=-=. ……………… 1分 ∵AB =2,点A 在点B 的左侧,∴A ()10,,B ()30, 把A (1,0)代入()240y ax ax m a =-+≠中,y 2cm 65432∴3m a =. ……………… 2分(2)∵抛物线()2430y ax ax a a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,∴0a <. ……………… 3分当抛物线()2430y ax ax a a =-+≠经过点(0,-1)时,可得13a =-. ∴a 的取值范围是103a -<<. ……………… 4分 (3)32a -<-≤或2<3a ≤. ……………… 6分26. (1)BF =. ……………… 1分(2)①依据题意补全图形; ……………… 3分②证明:如图,连接BF 、GB .∵四边形ABCD 是正方形,∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠. ∴45BAC DAC ∠=∠=︒. 在△ADF 和△ABF 中,AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△ABF . ……………… 4分∴DF BF =.∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点,∴AG EG BG FG ===. ……………… 5分 ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上. ∵BF BF =,45BAC ∠=︒,∴290BGF BAC ∠=∠=︒. ……………… 6分 ∴△BGF 是等腰直角三角形.∴BF =.∴DF =. ……………… 7分27. 解:(1) P 1,P 2.……………… 2分②当0b >时,设直线y b =+与以2为半径的⊙O 相切于点C ,与y 轴交于点E ,与x 轴交于点F . ∴E (0,b ),F,0),OC ⊥EF .∴3tan OF FEO OE b ∠===. ∴30FEO ∠=︒. (3)∵1sin 2OC FEO OE ∠==,∴212b =. ∴4b =. ……………… 4分 当0b <时,由对称性可知:4b =-. ……………… 5分 ∴b 的取值范围是44b -≤≤. ……………… 6分 (2)∴m 的取值范围为22m -<≤. ……………… 7分。
2020届上海市杨浦区初三一模数学试卷+详解答案

杨浦区2019学年度第一学期期末质量调研初 三 数 学 试 卷 2019.12(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.把抛物线2x y =向左平移1个单位后得到的抛物线是A .21y x =+();B .21y x =-();C .21y x =+;D .21y x =-.2.在Rt △ABC 中,∠C =90°,如果AC =2,3cos 4A =,那么AB 的长是 A .52;B .83;C .103; D3.已知a 、b 和c 都是非零向量,下列结论中不能判定//a b 的是A .////a c b c ,;B .12a c =,2bc =;C .2a b =;D .a b =.4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A 、B ,如果线段AB 与网格线的其中两个交点为M 、N ,那么AM ∶MN ∶NB 的值是 A .3∶5∶4; B .3∶6∶5; C .1∶3∶2;D .1∶4∶2.5.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上 水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是236042y x x x =-+≤≤(),那么水珠的高度达到最大时,水珠与喷头的水平距离是 A .1米; B .2米; C .5米; D .6米.6.如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP ,AC 与BF 相交于点H ,下列结论中错误的是 A .AE =2DE ;B .△CFP ∽△APH ;C .△CFP ∽△APC ;D .CP 2=PH •PB .二、填空题:(本大题共12题,每题4分,满分48分) 7.如果cot αα= ▲ 度.8.如果抛物线231y x x m =-+-+经过原点,那么m = ▲ . 9ADBCEP F H第6题图第4题图10.已知点11A x y (,)、22B x y (,)为抛物线22y x =-()上的两点,如果122x x <<,那么1y ▲ 2y . (填“>”、“<”或“=”)11.在比例尺为1:8 000 000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为 ▲ 千米.12.已知点P 是线段AB 上的一点,且2BP AP=⋅ 13.已知点G 是△ABC 的重心,过点G 作MN ∥BC 分别交边AB 、AC 于点M、N ,那么AMNABCS S ∆∆14.如图,某小区门口的栏杆从水平位置AB 绕固定点O 旋转到位置DC ,已知栏杆AB 的长为3.5米,OA 的长为3米,点C 到AB 的距离为0.3米,支柱OE 的高为0.6米,那么栏杆端点D 离地面的距离为▲ 米. 15.如图,某商店营业大厅自动扶梯AB 的坡角为31°,AB 的长为12米,那么大厅两层之间BC 的高度为 ▲ 米.(结果保留一位小数)【参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】 16.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,4tan 3A =,那么CD = ▲ .17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD 中,对角线BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC= ▲ 度.18.在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题6分,第(2)小题4分)抛物线y =ax 2+bx +c 中,函数值y 与自变量x 之间的部分对应关系如下表:(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点M (2,4)的位置,那么其平移的方法是 ▲ .ABC第15题图31°第16题图第14题图20.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,已知在梯形ABCD 中,AB //CD ,AB =12,CD =7,点E 在边AD 上,23DE AE =,过点E 作EF //AB 交边BC 于点F .(1)求线段EF 的长;(2)设AB a =,AD b =,联结AF ,请用向量a 、b 表示向量AF .21. (本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在△ABC 中,∠ACB=90º,3sin 5B =,延长边BA 至点D ,使AD =AC ,联结CD . (1)求∠D 的正切值;(2)取边AC 的中点E ,联结BE 并延长交边CD 于点F ,求CFFD的值.22.(本题满分10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精确到0.1m 1.414≈ 1.732≈ 2.449) 23.(本题满分12分,每小题各6分)如图,已知在ABC △中,AD 是ABC △的中线,DAC B ∠=∠,点E 在边AD 上,CE CD =.(1)求证:AC BDAB AD =; (2)求证:22AC AE AD =⋅.第21题图ABCD第20题图第23题图A CDE30º 45º 第22题图A B C DFEM24.(本题满分12分,每小题各4分)已知在平面直角坐标系xOy 中,抛物线224y mx mx =-+(0)m ≠与x 轴交于点A 、B (点A 在点B 的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点E 02(,),点F 为第一象限内抛物线上一点,联结BF 、EF ,如果=10OEFB S 四边形, 求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于∠EBF ,求点P 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)已知在菱形ABCD 中,AB=4,120BAD ∠=︒,点P 是直线AB 上任意一点,联结PC ,在∠PCD 内部作射线CQ 与对角线BD 交于点Q (与B 、D 不重合),且∠PCQ=30︒. (1)如图,当点P 在边AB 上时,如果3BP =,求线段PC 的长;(2)当点P 在射线BA 上时,设BP =x ,CQ =y ,求y 关于x 的函数解析式及定义域; (3)联结PQ ,直线PQ 与直线BC 交于点E ,如果△QCE 与△BCP 相似,求线段BP 的长.第24题图 A BC DPQ第25题图备用图A BCD杨浦区2019学年度第一学期初三数学期末质量调研试卷答案2019.12一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.B ; 3.D ; 4.C ; 5.B ; 6.C 二、填空题:(本大题共12题,每题4分,满分48分)7.8.1; 9.0(,-1);10.320; 1213 14.2.4; 15.6.2; 16.145; 18.、4(本大题共7题,满分78分) 19.解:(1)∵二次函数2y ax bx c =++图像过点10(-,)、 (01)-,和(14)-,, ∴01 4.a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩,, ··········································································· (3分) ∴121.a b c =-⎧⎪=-⎨⎪=-⎩,,∴二次函数解析式为221y x x =---. ·································· (3分) (2)平移的方法是先向右平移3个单位再向上平移4个单位或先向上平移4个单位再向右平移3个单位. ······················· (4分)20.解:(1)过D 作DH //BC 交AB 于H ,交EF 于G .∵DH //BC ,AB //DC ,∴四边形DHBC 是平行四边形. ································· (1分) ∴BH =CD ,∵CD=7,∴BH =7.······························································ (1分) 同理GF =7. ······················································································· (1分) 又AB=12,∴AH =5. ············································································ (1分) ∵EF //AB , ∴EG DEAH DA=. ···································································· (1分) ∵23DE AE =,∴25DE DA =. ∴255EG =,2EG =,∴9EF =. ·························································· (1分) (2)3345a b →→+ ··················································································· (4分)21. 解:(1)过C 作CH ⊥AB 于H .在Rt △ABC 中,∵3sin =5B ,∴3=5AC AB . ·········································· (1分) ∴设AC =3k ,AB =5k ,则BC =4k . ∵1122ABC S AC BC AB CH ∆=⋅=⋅,∴125AC BC CH k AB ⋅==. ··············· (1分) ∴9=5AH k . ················································································ (1分)∵AD=AC ,∴DH =924355k k k +=. ················································· (1分)在Rt △CDH 中,1215tan =2425kCH CDH DH k ∠==. ··································· (1分) (2)过点A 作AH//CD 交BE 于点H.∵AH//CD ,∴AH AECF EC =. ···································································· (1分) ∵点E 为边AC 的中点,∴AE CE =.∴AH CF =. ···································· (1分) ∵AH//CD ,∴AH ABDF BD=. ···································································· (1分) ∵AB =5k ,BD =3k ,∴58AB BD =.∴58AH DF =. ·············································· (1分) ∴58CF DF =. ······················································································· (1分) 22.解:由题意可知∠MCA =90°,∠MAC =30°,∠MBC =45°,AB =40,CF =1.5.设MC =x 米,则在Rt △MBC 中,由 tan MCMBC BC ∠=得BC =x . ················· (2分)又Rt △ACM 中,由cot ACMAC MC∠=得AC=. ···································· (2分)∴40x -=. ············································································· (2分)∴x=20+. ··············································································· (1分) ∴MF =MC+CF=56.1≈米. ····················································· (2分) 答:此楼MF 的高度是56.1米. ······························································ (1分)23.证明:(1)∵CD =CE ,∴∠CED =∠CDA . ········································ (1分) ∴∠AEC =∠BDA . ······························································· (1分) 又∵∠DAC =∠B ,∴△ACE ∽△BAD. ········································ (1分)∴AC CEAB AD=. ····································································· (1分) ∵AD 是ABC △的中线,∴BD CD =. ········································ (1分)∵CD =CE ,∴BD CE =.∴AC BDAB AD=. ······································· (1分) (2)∵∠DAC =∠B ,又∠ACD =∠BCA ,∴△ACD ∽△BCA. ······················· (1分)∴AC CD BC AC=,∴2AC CD CB =?. ················································· (1分) ∵AD 是ABC △的中线,∴2BC CD =,∴222AC CD =. ·················· (1分)∵△ACE ∽△BAD ,∴CE AEAD BD=. ················································ (1分) 又∵CD =CE=BD ,∴2CD AD AE =?. ············································ (1分) ∴22AC AD AE =?. ································································ (1分)24.解:(1)抛物线对称轴212mx m-=-=... ................................................................. (1分) ∵AB =6,∴抛物线与x 轴的交点A 为(20),-,B (40),.................................................. (1分) ∴4440m m ++=(或16840m m -+=).. ................................................................ (1分)∴12m =-.∴抛物线的表达式为2142y x x =-++. ..................................................... (1分)(2)设点F 21(4)2x x x ,-++. ...................................................................................... (1分) ∵点E 02-(,),点B 4(,0),∴OE = 2,OB = 4. ∵=+10OEF OBF OEFB S S S ∆∆=四边形, ∴211124(4)10222x x x ⨯⨯+⨯⨯-++=.. .................... (1分)∴12x =或,∴点F 912(,)、24(,).. ............................................................................... (2分)(3)∵=+10OBE BEF OEFB S S S ∆∆=四边形,又1142422OBE S OB OE ∆=⋅=⨯⨯=,∴6BEF S ∆=.过F 作FH BE ⊥,垂足为点H .∵162BEF S BE FH ∆=⋅=,又BE =FH =............................... (1分)又BF ==BH =∴在Rt BFH ∆中,tan ∠EBF=3584FH BH ==.................................................................. (1分)设直线PF 与y 轴的交点为M ,则∠PMO=∠EBF ,过F 作FG x ⊥轴,垂足为点G.∵FG//y 轴,∴∠PMO=∠PFG . ∴tan ∠PFG=tan ∠EBF ................................................ (1分)∴tan ∠PFG=34PG FG =.又FG =4,∴PG =3.∴点P 的坐标10(-,). .......................................................................................................... (1分)25.解:(1)过P 作PH BC ⊥,垂足为点H.在Rt BPH ∆中,∵BP =3,∠ABC =60°,∴32BH PH ==,................................. (2分)在Rt PCH ∆中,35422CH PC =-==,................................... (1分) (2)过P 作PH BC ⊥,垂足为点H. 在Rt BPH ∆中,12BH x PH ==,. ∴在Rt PCH ∆中,142CH x PC =-, ............ (1分) 设PC 与对角线BD 交于点G .∵AB//CD ,∴4BP PG BG xCD GC GD ===.∴BG CG ==. ···················································· (1分) ∵∠ABD =∠PCQ ,又∠PGC =∠QGC ,∴△PBG ∽△QCG .∴PB BG CQ CG =,∴x y . ···················································· (1分)∴y =08x ≤<). ······················································ (2分)(3)i )当点P 在射线BA 上,点E 在边BC 的延长线时.∵BD 是菱形ABCD 的对角线,∴∠PBQ =∠QBC=1302ABC ∠=︒.∵△PBG ∽△QCG ,∴PG BGQG CG=,又∠PGQ =∠BGC ,∴△PGQ ∽△BGC . ∴∠QPG =∠QBC 30=︒, 又∠PBQ =∠PCQ 30=︒,∴60CQE QPC QCP ∠=∠+∠=︒. ∴ 60CQE PBC ∠=∠=︒. ···································································· (1分) ∵PCB E ∠>∠,∴ PCB QCE ∠=∠.又180PCB QCE PCQ ∠+∠+∠=︒,∠PCQ 30=︒,∴ 75PCB QCE ∠=∠=︒. 过C 作CN BP ⊥,垂足为点N ,∴在Rt CBN ∆中,2BN CN ==,∴在Rt PCN ∆中,PN CN ==∴2BP = . ................................................................................................................. (2分) ii )当点P 在边AB 的延长线上,点E 在边BC上时,同理可得2BP = . ...... (3分)。
杨浦区2023学年度第一学期初三期末质量调研初三化学试卷及答案(2024届上海中考一模)

2023学年度第一学期初三期末质量调研化学试卷(满分100分,考试时间90分钟)2023.12可能用到的相对原子质量:H-1 C-12 O-16 Ca-40一、选择题1~20题均只有一个正确选项1.银元素的符号是()A.A gB.AlC.MgD.Hg2.空气中体积分数约占78%的物质是()A.氧气B.氮气C.水蒸气D.二氧化碳3.Fe2O3中Fe的化合价是()A.-3B.+3C.+2D.-24.属于同素异形体的一组物质是()A.一氧化碳和二氧化碳B.水和双氧水C.金刚石和石墨D.氧气和液氧5.物质的命名与化学式一致的是()A.氯化钙CaCl2B.硫酸钠Na2SO3C.碳酸钠NaCO3D.氢氧化钡BaOH6.能与水形成溶液的是()A.泥沙B.淀粉C.豆油D.蔗糖7.有关碳酸钙的说法,正确的是()A.蓝色固体B.易溶于水C.属于氧化物D.组成中含原子团8.关于粗盐提纯的实验,说法正确的是()A.粗盐不可以放在烧杯里称量B.涉及的分离操作有过滤和蒸发C.蒸发皿不可以直接加热D.蒸发时发现有固体开始析出,立即停止加热9.化学方程式书写正确的是()A.M g+O2=MgO2B.2Mg+O2=2MgOC.2Mg+O2点燃2MgOD.2Mg+O2↑点燃2MgO10.物质在氧气中燃烧的现象描述错误的是()A.镁:白色火焰B.硫:蓝紫色火焰C.氢气:淡蓝色火焰D.一氧化碳:蓝色火焰11.物质的用途只体现其物理性质的是()A.N2:作保护气B.CaO:加热食品C.CO:冶炼金属D.CO2:作制冷剂12.下列归类正确的是()选项内容归类A风能、太阳能绿色能源B PM2.5、CO2空气污染物C胆矾、面粉晶体D稀硫酸、氯化钠溶液酸性溶液13.如右图所示,用启普发生器制取二氧化碳,加入稀盐酸的量,适宜的位置是()A.甲B.乙C.丙D.丁14.对下列宏观事实的微观解释,合理的是()A.空气湿度增大:单位体积空气中水分子数目增多B.石墨一定条件下转变成金刚石:碳原子种类发生改变C.二氧化碳制成干冰:二氧化碳分子由运动变为静止D.水加热成水蒸气:水分子体积变大15.说法正确的是()A.摩尔是基本物理量B.物质的量就是微粒的数量C.摩尔质量就是指1 mol物质的质量D.1mol任何物质约含6.02×1023个微粒16.有关分子、原子的说法正确的是()A.分子在化学反应前后不发生改变)B.同种原子构成的物质是纯净物C.分子的质量可能比原子的质量小D.原子是不可再分的最小微粒17.干垃圾焚烧可用于发电,焚烧前一般需粉碎处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市杨浦区2020-2021学年度九年级第一学期期末质
量调研数学试题
(测试时间:100 分钟,满分:150 分)
考生注意:
1.本试卷含三个大题,共25 题,答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24 分)
1.关于抛物线y=x2 -x ,下列说法中,正确的是()
A.经过坐标原点
B.顶点是坐标原点
C.有最高点
D. 对称轴是直线x =1
2.在△ABC 中,如果sin A =1
,c ot B =
2
3
,那么这个三角形一定是()3
A.等腰三角形
B.锐角三角形
C.钝角三角形
D.直角三角形
3.如果小丽在楼上点A处看到楼下点B处小明的俯角是35︒,那么点B处小明看点A处小丽的仰角是()
A. 35︒
B.
45︒
C.
55︒
D. 65︒
4.在△ABC 中,点D、E 分别在A B 、AC 上,下列条件中,能判定D E∥BC 的是()
5.下列命题中,正确的是()
A.如果e 为单位向量,那么
B.如果a 、b 都是单位向量,那么a =b
C.如果a =-b ,那么a∥
b
D.如果,那么a =b
6. 在梯形 ABCD 中, AD ∥BC ,对角线 AC 与 BD 相交于点O ,下列说法中,错误的是 (
)
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7. 计算: 3(a + 2b )- 2(a - b )
=
.
8. 已知抛物线 y = (1- a ) x 2 +1的开口向上,那么a 的取值范围是
. 9. 如果小明沿着坡度为1: 2.4 的山坡向上走了 130 米,那么他的高度上升了
米.
10. 已
知
线段 A B 的长为 4
厘米,
点
P 是线段 A B 的黄金分割点( A P
AP 的长是 厘米.
11. 已知抛物线 y = x 2 - 4x + 3 与 x 轴交于点 A 、B ,与 y 轴交于点C ,那么△ABC 的面积等于 . 12. 已知抛物线 y = x 2 ,把该抛物线向上或向下平移,如果平移后的抛物线经过
点 A (2 , 2),那么平移后的抛物线的表达式是 .
13. 如图,已知小李推铅球时,铅球运动过程中离地面的高度 y (米)关于水平距离 x (米)的函数解析式为 y = - 1 x 2 + 2 x + 5
,那么铅球运动过程中最高点离地面的距离 12 3 3 为 米.
y
x
第13题图
G
14. 如图,已知在平行四边形 ABCD 中,点 E 在边 AB 上, AE = 1
,联结 DE 交对角线
AC 于点O ,那么 AO
的值 OC
EB 2
.
15. 如图,已知在△ABC 中,∠ACB = 90︒ ,点G 是△ABC 的重心,CG = 2 ,BC = 4 , 那么cos ∠GCB =
.
A
C
B
第15题图
16. 如图,已知在△ABC 中,∠C = 90︒ ,AB =10 ,cot B =
1 ,正方形 DEFG 的顶点G 、
2
F 分别在 A C 、BC 上,点 D 、E 在斜边 A B 上,那么正方形 D EF
G 的边长为
.
C
A
D
E
B
第16题图
17.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形
ABCD 中,A B =10 ,B C =12,CD = 5 ,t an B = 3
,那么边A D 的长为. 4
A
D
B C
第17题图
18.如图,已知在△ABC 中,∠B = 45︒,∠C =60︒,将△ABC 绕点A 旋转,点B 、C
分别落在点B1、C1处,如果BB1∥AC ,联结C1B1交边AB 于点D ,那的值为.
C
A B
第18题图
三、解答题:(本大题共7题,满分78 分)
19. (本题满分10 分)
tan2 60︒- 2sin 30︒
计算:
4cos2 45︒+ cot 30︒
.
20. (本题满分10 分,第⑴小题7 分,第⑵小题3 分)
已知一个二次函数的图像经过点A(-1,0)、B (0,3)、C (2,3).
⑴ 求这个函数的解析式及对称轴;
⑵ 如果点P (x1 , y1 )、Q (x2 , y2 )在这个二次函数图像上,且x1 <x2 < 0 ,那么y1
y
2
.(填“ <”或“ >”)
21. (本题满分10 分,第⑴小题6 分,第⑵小题4 分)
如图,已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE∥BC ,点M 为边BC
上一点,BM =1
BC ,联结AM 交DE 于点N . 3
⑴ 求DN
的值;NE
(2)设如果请用向量表示向量
22 . (本题满分10 分)
如图,为了测量河宽,在河的一边沿岸选取B 、C 两点,对岸岸边有一块石头A ,在△ABC 中,测得∠B =64︒,∠C =45︒,BC =50 米,求河宽(即点A 到边BC 的距离)
(结果精确到0.1 米).
(参考数据:≈1.41 ,s in 64︒= 0.90 ,c os64︒= 0.44 ,t an 64︒= 2.05 )
A
B C
23. (本题满分12 分,每小题各6 分)
已知:如图,在梯形ABCD 中,AD∥BC ,对角线BD 、AC 相交于点E ,过点A
作AF∥DC ,交对角线BD 于点 F .
⑴ 求证:DF
=
DE
;BD BE
⑵ 如果∠ADB =∠ACD ,求证:线段CD 是线段DF 、BE 的比例中项.
24 . (本题满分12 分,每小题各4 分)
已知在平面直角坐标系 x Oy 中,抛物线 y = -( x - m )2
+ 4 与 y 轴交于点 B ,与 x 轴交于
点C
、
D (点C 在点 D
,顶点 A 在第一象限,异于顶点 A 的点 P (1, n ) 在改抛物线上.
⑴ 如果点 P 与点C 重合,求线段 AP 的长;
⑵ 如果抛物线经过原点,点Q 是抛物线上一点, tan ∠OPQ = 3 ,求点Q 的坐标; ⑶ 如果直线 PB 与 x 轴的负半轴相交,求m 的取值范围.
25. (本题满分14 分,第⑴小题3 分,第⑵小题5 分,第⑶小题6 分)
如图,已知在Rt△ABC 中,∠ACB = 90︒,AC =BC = 4 ,点D 为边BC 上一动点(与点B 、C 不重合),点E 为AB 上一点,∠EDB =∠ADC ,过点E 作EF ⊥AD ,垂足为点G ,交射线AC 于点F .
⑴ 如果点 D 为边BC 的中点,求∠DAB 的正切值;
⑵当点F 在边AC 上时,设CD =x ,CF =y ,求y 关于x 的函数解析式及定义域;
⑶联结DF ,如果△CDF 与△AGE 相似,求线段CD 的长.。