2015第一章 质点运动学作业答案
2015第一章质点运动学作业答案

第一章质点运动学.选择题::B : 1、[基础训练2]—质点沿x轴作直线运动,其(A) 5m . (B) 2m .(C) 0 . (D) -2 m .(E) -5 m.4.5 s【答】x = vdt,质点在x轴上的位置即为这段时间内v-t曲线下的面积的代数和:x = (1 2.5) 2 2 - (2 1) 1 2 = 2(m):A : 2、[基础训练5]一条河在某一段直线岸边同侧有4 km/h .如河水流速为2 km/h,方向从A到B,则(B) 甲和乙同时回到A.(D)甲比乙早2分钟回到A.. . . 一1 1 2 ,.、上甲=I A jB ' t o >A ( h)J4 4 2 4-2 3乙:t^ t A ,B t B = 2t A B =2 ,2 (h);••• At =t 甲-匕=-(h) =10 (min)6:C : 3、[自测提高1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0收绳,绳不伸长、湖水静止,则小船的运动是甲、乙两人需要从码头A到码头B,再立即由B返回。
甲划船前去,船相对河水的速度为(A)匀加速运动.(C)变加速运动. (B)匀减速运动.(D)变减速运动. (E)匀速直线运动.【答】如图建坐标系,设船离岸边x米, -h2x22l d^=2x dXdt dtdx I dl x2 h2 dl dldt x dt x dt dtdx h2 x2iv i v0idt x v -t曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5 s时,质点在x轴上的位置为A、B两个码头,相距1 km。
km/h ;而乙沿岸步行,步行速度也为(A)甲比乙晚10分钟回到A.(C)甲比乙早10分钟回到A.【答】甲::B : 4、(自测提高3)质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 -:R/T , 2 -R/T . (C) 0,0 .【答】平均速度大小:V = — =0II A t:C : 5、[自测提高6]某物体的运动规律为 dv/dt - -kv 2t ,式中的k 为大于零的常 量.当t =0时,初速为V 。
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
(完整版)第一章,练习册答案

第一章质点运动学1-1质点作曲线运动,在时刻 t 质点的位失为r ,速度为v ,速率为v , t 至(t t 路程为 s ,位失大小的变化量为 r (或称 r ),平均速度为v ,平均速率为v 。
(1)根据上述情况,则必有( B ) 时间内的位移为 r ,(A) r s r (B) r s r ,当 t 0时有 dr ds dr (C ) r r s ,当 t 0时有 dr dr ds (D)r s r ,当 t 0时有 dr dr ds (2)根据上述情况,则必有 ( C )(A) v vj 7 v (B) v vj v v(C ) v v 侗 v (D) v vj v v1-2 一运动质点在某瞬时位于位失 r (x, y )的端点处,对其速度的大小有四种意见,即 dr (1)巴;(2) dr ;(3) ds . (4) J (dx )2 (dy ) dt dt dtXdt dt下述判断正确的是 :( D )(A )只有(1) (2) 正确; (A ) 只有 ( 2)正确(A )只有(2) (3) 正确; (A ) 只有 ( 3) (4) 正确 1-3质点作曲线运动, r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,a t 表示切向加速度。
/、 dv/、 dr / 、ds v ; (4) dv (1) 一a ; (2)— v ; (3)— dt dt dt dt对下列表达式,即 a t 下述判断正确的是( D ) (A )只有(1)( 4 )是对的;(A )只有(2)( 4)是对的 (A )只有(2 )是对的;(A )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B ) 切向加速度可能不变,法向加速度一定改变 (C ) 切向加速度可能不变,法向加速度不变 (D ) 切向加速度一定改变,法向加速度不变 1-5有一质点作直线运动,其运动方程为 x =6t -2t (SI 制),试求: (1) 第二秒内的平均速度; (2) 第三秒末的速度; (3) 第一秒末的加速度;(4) 质点作什么类型的运动?(5 0解:⑴ 先求出质点在第二秒内的位移。
2015第一章质点运动学作业答案

一.选择题::B ]1、[基础训练2]—质点沿x轴作直线运动,其v t曲线如图所示,如t=0时,质点位于坐标原点则t=4、5 s时质点在x轴上得位置为(A) 5m. (B) 2m.(C) 0. (D) 2 m.(E) 5 m、【答】,质点在x轴上得位置即为这段时间内vt曲线下得面积得代数与::A : 2、[基础训练5]一条河在某一段直线岸边同侧有A、B两个码头,相距1 km。
甲、乙两人需要从码头A到码头B,再立即由B返回。
甲划船前去,船相对河水得速度为 4 km/h; 而乙沿岸步行,步行速度也为4 km/h.如河水流速为 2 km/h,方向从A到B,则(A)甲比乙晚10分钟回到A. (B)甲与乙同时回到A.(C)甲比乙早10分钟回到A. (D)甲比乙早2分钟回到A.【答】甲:;乙:;:C : 3、[自测提高1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处得定滑轮.设该人以匀速率收绳,绳不伸长、湖水静止,则小船得运动就是拉湖中得船向岸边运动(A)匀加速运动. (B)匀减速运动.(C)变加速运动. (D)变减速运动.(E)匀速直线运动【答】如图建坐标系,设船离岸边x米,,可见,加速度与速度同向,且加速度随时间变化。
:B : 4、(自测提高3)质点沿半径为R得圆周作匀速率运动,每T秒转一圈.在2T时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R/T , 2 R/T. (B) 0,2 R/T(C) 0,0. (D) 2 R/T , 0、【答】平均速度大小:平均速率::C : 5、[自测提高6]某物体得运动规律为,式中得k为大于零得常量.当时,初速为V0, 则速度与时间t得函数关系就是(A) , (B),(C) , (D)【答】,分离变量并积分”得、:B : 6、[自测提高7]在相对地面静止得坐标系内,A、B二船都以2 m/s速率匀速行驶,A 船沿x 轴正向,B船沿y轴正向.今在A船上设置与静止坐标系方向相同得坐标系(x、y方向单位矢用、表示),那么在A船上得坐标系中,B船得速度(以m/s为单位)为(A) 2 + 2. (B) 2+ 2. (C) —2-2. (D) 2 —2.【答】 =+ ==填空题7、[基础训练10] 一物体作如图所示得斜抛运动,测得在轨道A 点处速度得大小为 v,其方向与水平方向夹角成 30° ,则物体在5g ,轨道得曲率半径、(重力加速度为g)【答】如图,将重力加速度分解为切向加速度分量与法向加速度分量2a t gsin 300 0.5g, gcos30°8、[基础训练12] 一质点沿直线运动,其运动学方程为x = 6 t -12 (SI),则在t 由0至4s 得时 间间隔内,质点得位移大小为 ,在t 由0到4s 得时间间隔内质点走过得路程为 . 【答】(1) x = 6 t - t 2 (SI),位移大小;(2),可见,t<3s 时,>0;t=3s 时,=0;而 t>3s 时,<0;所以,路程=9、 [基础训练13]在xy 平面内有一运动质点,其运动学方程为:(SI),则t 时刻其速度;其切向加 速度得大小a t = 0 :该质点运动得轨迹就是 圆 .【答】(1); (2) 速率,切向加速度 (3) ,,可见,,轨迹为一个圆。
《新编大学物理》(上、下册)教材习题答案

答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
(完整版)大学物理01质点运动学习题解答

第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
第1章 质点运动学——习题解答

第1章 质点运动学1-1 一运动质点某一瞬时位于径矢()r x y ,的端点处,关于其速度的大小有4种不同的看法,即 (1)d d tr; (2)d d t r; (3)d d sr;(4下列判断正确的是( ). (A) 只有(1)和(2)正确 (B) 只有(2)正确 (C) 只有(3)和(4)正确 (D) (1)(2)(3)(4)都正确 答案:(C )解析:瞬时速度的大小等于瞬时速率,故(3)正确;速度可由各分量合成,故(4)正确。
1-2 一质点的运动方程为22cos cos sin sin x At Bt y At Bt θθθθ⎧⎪⎨⎪⎩=+,=+,式中A ,B ,θ均为常量,且A >0,B >0,则该质点的运动为( ). (A) 一般曲线运动(B) 匀速直线运动 (C) 匀减速直线运动(D) 匀加速直线运动答案:(D )解析:由tan yxθ=可知,质点做直线运动.a x =2B cos θa y =2B sin θa =2B加速度a 为定值,故质点做匀加速直线运动.1-3 一质点沿半径为R 的圆周运动,其角速度随时间的变化规律为ω=2bt ,式中b 为正常量.如果t =0时,θ0=0,那么当质点的加速度与半径成45°角时,θ角的大小为( ) rad.(A) 12(B) 1 (C) b (D) 2b答案:(A )解析: a t =R β=2bRa n =R 2ω=4Rb 2t 2a t =a n t 2=b21θ=20tω⎰d t =bt 2=211-4 一人沿停靠的台阶式电梯走上楼需时90 s ,当他站在开动的电梯上上楼,需时60 s .如果此人沿开动的电梯走上楼,所需时间为( ).(A) 24 s (B) 30 s (C) 36 s (D) 40 s答案:(C )解析:设电梯长度为s ,则=+9060s s st , 解得t =36 s.1-5 已知质点的加速度与位移的关系式为32a x =+,当t =0时,v 0=0,x 0=0,则速度v 与位移x 的关系式为________. 答案:v 2=3x 2+4x 解析: d d d d d d d d v v x v a v t x t x ===, d d v v a x =,d =(3+2)d vxv v x x ⎰⎰,v 2=3x 2+4x .1-6 在地面上以相同的初速v 0,不同的抛射角θ斜向上抛出一物体,不计空气阻力.当θ=________时,水平射程最远,最远水平射程为________. 答案:45°20v g解析:对于斜抛运动:0cos x v t θ⋅=201sin 2y v t gt θ⋅=-当y =0时,解得02sin v t gθ=物体的水平射程20sin 2v x gθ=当θ=45°时有最远水平射程,其大小为20max v x g=1-7 某人骑摩托车以115m s -⋅的速度向东行驶,感觉到风以115m s -⋅的速度从正南吹来,则风速的大小为________ m·s -1,方向沿________.答案:m/s 东偏北45° 解析:如答案1-7图所示,由图可知=+v v v 风地风人人地故风速大小m/s v 风地=方向为东偏北45°.v 地风v 人地15v 人风15答案1-7图1-8 一质点作直线运动,加速度2sin a A t ωω=,已知t =0时,x 0=0,v 0=-ωA ,则该质点的运动方程为_______________. 答案:sin x A t ω=-,解析: d d v a t =20d sin d vtAv A t t ωωω-=⎰⎰解得,该质点的速度为cos v A t ωω=-d d x v t =d cos d xtx A t t ωω=-⎰⎰解得,该质点的运动方程为sin x A t ω=-1-9 一质点在xOy 平面上运动,运动方程为x =3t +5,y =12t 2+3t -4式中,t 以s 计,x ,y 以m 计.(1) 以时间t 为变量,写出质点位置矢量的表示式; (2) 计算第1 s 内质点的位移;(3) 计算t =0 s 时刻到t =4 s 时刻内的平均速度;(4) 求出质点速度矢量表示式,计算t =4 s 时质点的速度; (5) 计算t =0 s 到t =4 s 内质点的平均加速度;(6) 求出质点加速度矢量的表示式,计算t =4 s 时质点的加速度. (位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式) 解:(1) 质点t 时刻位矢为21(35)342r t i t t j ⎛⎫=+++- ⎪⎝⎭(m)(2) 第1 s 内位移为11010()()r x x i y y j ∆=-+-2213(10)(10)3(10)23 3.5()i ji j m ⎡⎤=-+-+-⎢⎥⎣⎦=+(3) 前4 s 内平均速度为11(1220)35(m s )4r v i j i j t -∆==⨯+=+⋅∆ (4) 质点速度矢量表示式为1d 3(3)(m s )d rv i t j t-==++⋅ t =4 s 时质点的速度为143(43)37(m s )v i j i j -=++=+⋅(5) 前4 s 内平均加速度为240731(m s )4s 4v v v a j j t -∆--====⋅∆(6) 质点加速度矢量的表示式为2d 1(m s )d va j t-==⋅t =4 s 时质点的加速度为241(m s )a j -=⋅1-10 质点沿直线运动,速度v =(t 3+3t 2+2) m·s -1,如果当t = 2 s 时,x =4 m ,求:t =3 s 时,质点的位置、速度和加速度. 解: 32d 32d x v t t t==++ 431d d 24x x v t t t t c ===+++⎰⎰当t =2时,x =4,代入可得c =-12.则质点的位置、速度和加速度的表达式分别为4312124x t t t =++-32232d 36d v t t v a t tt=++==+ 将t =3 s 分别代入得上述各式,解得1233341.25m 56m s 45m s x v a --==⋅=⋅,,1-11 质点的运动方程为2[4(32)] m r t i t j =++,t 以s 计.求: (1) 质点的轨迹方程;(2) t =1 s 时质点的坐标和位矢方向; (3) 第1 s 内质点的位移和平均速度; (4) t =1 s 时质点的速度和加速度.解:(1) 由运动方程2432x t y t⎧=⎨=+⎩消去t 得轨迹方程2(3)0x y --=(2) t =1 s 时,114m 5m x y ==,,故质点的坐标为(4,5). 由11tan 1.25y x α==得51.3α=︒,即位矢与x 轴夹角为53.0°. (3) 第1 s 内质点的位移和平均速度分别为1(40)(53)42(m)r i j i j ∆=-+-=+1142(m s )r v i j t-∆==+⋅∆ (4) 质点的速度与加速度分别为d 82d r v ti j t ==+d 8d va i t==故t =1 s 时的速度和加速度分别为1182m s v i j -=+⋅() 218m s a i -=⋅()1-12 以速度v 0平抛一球,不计空气阻力,求:t 时刻小球的切向加速度a t 和法向加速度a n 的量值. 解:小球下落过程中速度为v故切向加速度为2t d d v a t =由222n t a g a =-得,法向加速度为n a =1-13 一种喷气推进的实验车,从静止开始可在1.80 s 内加速到1 600 km·h -1的速率.按匀加速运动计算,它的加速度是否超过了人可以忍受的加速度25g ?这1.80 s 内该车跑了多少距离?解:实验车的加速度为3222160010m /s 2.4710m/s 3600 1.80v a t ⨯===⨯⨯故它的加速度略超过25g . 1.80 s 内实验车跑的距离为3160010 1.80m 400m 223600v s t ⨯==⨯=⨯ 1-14 在以初速率-1015.0 m s v ⋅=竖直向上扔一块石头后,(1) 在1.0 s 末又竖直向上扔出第二块石头,后者在h =11.0 m 高度处击中前者,求第二块石头扔出时的速率;(2) 若在1.3 s 末竖直向上扔出第二块石头,它仍在h =11.0 m 高度处击中前者,求这一次第二块石头扔出时的速率.解:(1) 设第一块石头扔出后经过时间t 被第二块击中,则2012h v t gt =-代入已知数据得2111159.82t t =-⨯解此方程,可得二解为111.84s 1.22s t t ==,′第一块石头上升到顶点所用的时间为10m 15.0s 1.53s 9.8v t g ===1m t t >,这对应于第一块石头回落时与第二块相碰;1m t t <′,这对应于第一块石头上升时被第二块赶上击中.设20v 和20v ′分别为在t 1和1t ′时刻两石块相碰时第二石块的初速度,则由于22011111()()2h v t t g t t =--- 所以2211201111()119.8(1.841)22m/s 17.2m/s 1.841h g t t v t t +-∆+⨯⨯-===-∆- 同理,2211201111()119.8(1.221)22m/s 51.1m/s 1.221h g t t v t t +-∆+⨯⨯-===-∆-′′′ (2) 由于211.3s t t ∆=>′,所以第二块石头不可能在第一块上升时与第一块相碰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题:[B]1、[基础训练2]一质点沿x轴作直线运动,其v-t曲线如图所示,如t=0时,质点位于坐标原点,则t=4、5 s时,质点在x轴上的位置为(A) 5m. (B) 2m.(C) 0. (D) -2 m.(E) -5 m、【答】4.5sx vdt=⎰,质点在x轴上的位置即为这段时间内v-t曲线下的面积的代数与:(1 2.5)22(21)122()x m=+⨯÷-+⨯÷=[A]2、[基础训练5] 一条河在某一段直线岸边同侧有A、B两个码头,相距1 km。
甲、乙两人需要从码头A到码头B,再立即由B返回。
甲划船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速度也为4 km/h.如河水流速为2 km/h, 方向从A到B,则(A) 甲比乙晚10分钟回到A. (B) 甲与乙同时回到A.(C) 甲比乙早10分钟回到A. (D) 甲比乙早2分钟回到A.【答】甲:()()112()42423A B B At t t h→→=+=+=+-甲;乙:1122 ()42A B B A A Bt t t t h→→→=+==⨯=乙;∴1()10 (min)6t t t h∆=-==甲乙[C]3、[自测提高1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v收绳,绳不伸长、湖水静止,则小船的运动就是(A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动.【答】如图建坐标系,设船离岸边x米,222l h x=+,22dl dxl xdt dt=,dx l dl dldt x dt x dt==,dlvdt=-,22dx h xv i v idt x+==-223v hdv dv dxa idt dx dt x==⋅=-,可见,加速度与速度同向,且加速度随时间变化。
-12[B]4、(自测提高3)质点沿半径为R的圆周作匀速率运动,每T秒转一圈.在2T时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR/T , 2πR/T.(B) 0 , 2πR/T(C) 0 , 0. (D) 2πR/T , 0、【答】平均速度大小:0rvt∆==∆平均速率:2s Rvt T∆==∆π[C]5、[自测提高6]某物体的运动规律为tkt2d/d vv-=,式中的k为大于零的常量.当0=t时,初速为v0,则速度v与时间t的函数关系就是(A)221vv+=kt, (B)221vv+-=kt,(C)2121vv+=kt, (D)2121vv+-=kt【答】tkt2d/d vv-=,分离变量并积分,2v tvdvktdtv=-⎰⎰,得2121vv+=kt、[B]6、[自测提高7]在相对地面静止的坐标系内,A、B二船都以2 m/s速率匀速行驶,A 船沿x轴正向,B船沿y轴正向.今在A船上设置与静止坐标系方向相同的坐标系(x、y方向单位矢用i、j表示),那么在A船上的坐标系中,B船的速度(以m/s为单位)为(A) 2i+2j. (B) -2i+2j. (C) -2i-2j. (D) 2i-2j.【答】B A对v=B对v地+A对v地=B对v地-A对v地=2222 (/)j i i j m s-=-+、二、填空题7、[基础训练10] 一物体作如图所示的斜抛运动,测得在轨道A点处速度v的大小为v,其方向与水平方向夹角成30°,则物体在A点的切向加速度a t = -0.5g ,轨道的曲率半径23vg⨯、(重力加速度为g)【答】如图,将重力加速度分解为切向加速度分量与法向加速度分量,得2200sin300.5,cos30cos30t nv va g g a ggρρ=-=-==∴=8、[基础训练12] 一质点沿直线运动,其运动学方程为x = 6 t-t2(SI),则在t由0至4s的时间间隔内,质点的位移大小为 8 ()m,在t由0到4s的时间间隔内质点走过的路程为 10 ()m.【答】(1)x = 6 t-t2(SI),位移大小()24064408 ()r x x m∆=-=⨯--=;(2)62x dxv t dt==-,可见,t<3s 时,x v >0;t=3s 时,x v =0;而t>3s 时,x v <0;所以,路程=()()()3034()909810 ()x x x x m -+-=-+-=9、[基础训练13]在xy平面内有一运动质点,其运动学方程为:jt i t r5sin 105cos 10+=(SI),则t时刻其速度=v(m/s) )5cos 5sin (50 j t i t +-;其切向加速度的大小a t = 0 ;该质点运动的轨迹就是 圆 . 【答】(1)50(sin 5cos 5) (m/s)drv t i t j dt==-+; (2)速率50 /v m s =,切向加速度0t dva dt== (3)10cos5x t =,t y 5sin 10=,可见,22100x y +=,轨迹为一个圆。
10、[自测提高8] 距河岸(瞧成直线)500 m 处有一艘静止的船,船上的探照灯以转速为n =1 r/min 转动.当光束与岸边成60°角时,光束沿岸边移动的速度v = 69.8 m/s 、 【答】如图,设25002/3060d m n rad s πωπθ====︒,,; tan x d θ=,22200sec 69.8/cos 9dx dx d d v d m s dt d dt θωπθωθθ===⋅===11、[自测提高11]一质点从O 点出发以匀速率1 cm/s 作顺时针转向的圆周运动,圆的半径为1 m,如图所示.当它走过2/3圆周时,走过的路程就是__4、19(m),这段时间内的平均速度大小为34.1310(/) m s -⨯,方向就是__与x 轴正方向逆时针成600. 【答】24S 2R4.19(m)33ππ=⨯==路程 03r 2cos30v 4.1310(/)S t vm s -∆⨯====⨯∆平均速度大小;方向如图。
三.计算题12、[基础训练16 ]有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4、5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;vd(3) 第2秒内的路程.解:(1)t 1=1s 时,x 1=2.5m ; t 2=2s 时,x 2=2m ;21212 2.50.5 (/)21x x x x v m s t t t -∆-====-∆--,0.5 (/)v i m s =- (2)),69(2t t dtdx v x -== )/(6 ),/( 6 2s m i v s m v s t x -=-==时,(3)令0)69(2=-=t t v x , 得:' 1.5t s =、 此时 3.375m x ='第二秒内的路程()()m ....x'x x x's 2522375352375321=-+-=-+-=13、[基础训练18 ] 一物体以初速度0v 、仰角α 由地面抛出,并落回到与抛出处同一水平面上.求地面上方该抛体运动轨道的最大曲率半径与最小曲率半径.解 :如图,以θ 表示物体在运动轨道上任意点P 处其速度与水平方向的夹角, 则有αθcos cos 0v v =, θα22202cos cos v v =又因θcos g a n =,且2n v a ρ=,故该点θαρ3222cos cos g a n v v== 因为αθ≤, 所以地面上方的轨道各点均有αθcos cos ≥,上式的分母在αθ=处最小,在0=θ处最大,故()αρcos /20max g v = , g /cos 220min αρv =14、[基础训练19 ]质点沿半径为R 的圆周运动,加速度与速度的夹角ϕ保持不变,求该质点的速度随时间而变化的规律,已知初速为0v 。
解:tan ,n t a a ϕ= 将t dva dt=,2n v a R =代入,得2tan dv v dt R ϕ=,分离变量并积分:002000tan 11, tan tan tan vtv v R dv dt tv v R v v R R v t ϕϕϕϕ=-+=∴=-⎰⎰15、[基础训练20 ] 当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为30°,当火车以35 m/s 的速率沿水平直路行驶时,发现雨滴下落方向偏向车尾,偏角为45°,假设雨滴相对于地的速度保持不变,试计算雨滴相对地的速度大小.解:根据伽利略速度变换式:v v v =+雨地雨地对对车车对,作图。
由正弦定理sin 45sin 75=雨地地v v 对车对 ,解得: 25.6=雨地v 对(m/s)16、[自测提高15 ] 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s.试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 2附加题:17、[自测提高18] 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ 后,加速度为2a 0,经过时间2τ 后,加速度为3 a 0 ,…求经过时间n τ 后,该质点的速度与走过的距离.解:设质点的加速度为 a = a 0+α t ∵ t = τ 时, a =2 a 0 ∴ α = a 0 /τ即 a = a 0+ a 0 t /τ ,由 a = d v /d t 分离变量得 ()00/dv a a t dt τ=+,积分()00/vtdv a a t dt τ=+⎰⎰,得:2002av a t t τ=+ 由 v = d s /d t ,分离变量并积分得t t s t s d d d )2(2000t a t a tτ+==⎰⎰⎰v ,302062t at a τ+=s ;当t = n τ 时,质点的速度 τ0)2(21a n n +=τn v ; 质点走过的距离 2τ02)3(61a n n +=τn s 、r vt va v v°v 45° vv 雨对车v 地车对v雨地对。