矩形的性质练习题

合集下载

矩形的性质与判定练习题

矩形的性质与判定练习题

四边形平行四边形矩形菱形梯形为一角90°邻一组边相等正方形平两组对边行只有一组对边平行一角为直角且一组邻边相等邻边相等一9角为0°等腰梯形两腰相等证明(三)┄┄矩形的性质与判定【知识要点:】1.矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。

2.矩形的性质:矩形具有平行四边形的所有性质。

(1)角:四个角都是直角。

(2)对角线:互相平分且相等。

3.矩形的判定:  (1)有一个角是直角的平行四边形。

(2)对角线相等的平行四边形。

(3)有三个角是直角的四边形。

4.矩形的对称性:矩形是中心对称图形,对角线的交点是它的对称中心;矩形是轴对称图形,对称轴有2条,是经过对角线的交点且垂直于矩形一边的直线。

5.矩形的周长和面积:矩形的周长=)(2b a + 矩形的面积=长´宽=ab (b a ,为矩形的长与宽) ★注意:(1)矩形被两条对角线分成的四个小三角形都是等腰三角形且面积相等。

(2)矩形是轴对称图形,两组对边的中垂线是它的对称轴。

【经典例题:】例1、如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE=2,矩形ABCD 的周长为16,且CE=EF ,求,求AE 的长.例2、已知:、已知:如图,平行四边形如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。

A B E C D BAC D N MH GOFE DCB APH DCBA例3、已知:如图所示,、已知:如图所示,矩形矩形ABCD 中,E 是BC 上的一点,且AE=BC ,°=Ð15EDC .求证:AD=2AB .例4、已知:如图,四边形ABCD 是由两个全等的正三角形ABD 和BCD 组成的,M 、N•分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.例5、如图,已知在四边形ABCD 中,AC DB ^交于O ,E 、F 、G 、H 分别是四边的中点,求证:四边形EFGH 是矩形.例6、 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分ÐCBH.【课堂练习题:】1.判断一个四边形是矩形,下列条件正确的是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线互相垂直且相等。

矩形的性质专项练习30题(有答案)ok

矩形的性质专项练习30题(有答案)ok

矩形的性质专项练习30题(有答案)1.已知:如图,在矩形ABCD中,AF=DE,求证:BE=CF.2.如下图,已知矩形ABCD中,对角线AC、BD交于点O,作BE∥AC交DC的延长于点E.(1)请判断△DEB的形状,并说明理由;(2)若AD=8,DC=6,试△DEB的周长.3.如图,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O,以OB、OC为邻边作平行四边形OBB1C,求平行四边形OBB1C的面积.4.如图,已知在矩形ABCD中,AB=2,BC=4,四边形AFCE为菱形,求菱形的面积.5.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2cm(1)求证:△AOB是等边三角形;(2)求矩形ABCD的面积.6.如图,四边形ABCD是矩形,△EAD是等腰直角三角形,△EBC是等边三角形.已知AE=DE=2,求AB的长.7.如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=3cm,BC=7cm.(1)求证:△AEF≌△DCE;(2)请你求出EF的长.8.如图,在矩形ABCD中,点E在AD上,CE平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠DCE=22.5°,求BC长.9.如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.(1)试说明四边形AECG是平行四边形;(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?10.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.11.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.12.如图,矩形ABCD的对角线交于点O,E是边AD的中点.(1)OE与AD垂直吗?说明理由;(2)若AC=10,OE=3,求AD的长度.13.如图,在矩形ABCD中,BM⊥AC,DN⊥AC,M、N是垂足.(1)求证:AN=CM;(2)如果AN=MN=2,求矩形ABCD的面积.14.如图,矩形ABCD中,角平分线AE交BC于点E,BE=5,CE=3.(1)求∠BAE的度数;(2)求△ADE的面积.15.如图,已知在矩形ABCD中,对角线AC、BD交于点O,CE=AE,F是AE的中点,AB=4,BC=8.求线段OF的长.16.如图,矩形纸片ABCD中,AB=8,AD=10,沿AE对折,点D恰好落在BC边上的F点处.17.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.18.已知:如图,矩形ABCD的对角线AC和BD相交于点O,AC=2AB.求证:∠AOD=120°.19.在矩形ABCD中,对角线AC,BD交于点O,AB=6cm,AC=8cm.(1)求BC的长;(2)画出△AOB沿射线AD方向平移所得的△DEC;(3)连接OE,写出OE与DC的关系?说明理由.20.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?21.如图,矩形ABCD纸片,E是AB上的一点,且BE:EA=5:3,CE=15,把△BCE沿折痕EC向上翻折,若点B恰好与AD边上的点F重合,求AB、BC的长.22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当△FCG的面积为1时,求DG的长;(3)当△FCG的面积最小时,求DG的长.23.设E,F分别在矩形ABCD边BC和CD上,△ABE、△ECF、△FDA的面积分别是a,b,c.求△AEF的面积S.24.如图,过矩形ABCD对角线AC的中点O作EF⊥AC,分别交AB、DC于E、F,点G为AE的中点,若∠AOG=30°,求证:OG=DC.25.如图,在矩形ABCD中,AB=6,AD=4,E是AD边上一点(点E与A、D不重合).BE的垂直平分线交AB 于M,交DC于N.(1)设AE=x,试把AM用含x的代数式表示出来;(2)设AE=x,四边形ADNM的面积为S.写出S关于x的函数关系式.(1)求∠COE的度数.(2)若AB=4,求OE的长.27.如图,在矩形ABCD中,AB=b,AD=a,过D和B作DE⊥AC,BF⊥AC,且AE=EF,试求a与b之间的关系.28.如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3,AB=.(1)求证:△AOB为等边三角形;(2)求BF的长.29.如图,在等腰梯形ABCD中,AD∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC 的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.30.已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连接AF、CF.求证:(1)∠ADF=∠BCF;(2)AF⊥CF.参考答案:1.连接BF 、CE ,已知矩形ABCD ,∴AB=CD ,∠BAF=∠CDE=90°, 又AF=DE ,∴△AFB ≌△DEC , ∴BF=CE ,∠AFB=∠DEC , ∵矩形ABCD ,AD ∥BC ,∴∠CBF=∠AFB ,∠BCE=∠DEC , ∴∠CBF=∠BCE , BC=BC ,∴△BCF ≌△CBE , ∴BE=CF2.(1)△DEB 的形状为等腰三角形. 理由:∵矩形ABCD , ∴DC ∥AB ,AC=BD . ∵BE ∥AC ,∴四边形ABEC 为平行四边形. ∴AC=BE . ∴BE=BD .∴△DEB 的形状为等腰三角形. (2)∵AD=8,DC=6, ∴AC==10.∴BD=BE=10.∵BC ⊥DE , ∴CD=DE=6.∴△DEB 的周长=2(CD+BD )=2(6+10)=32 3.在Rt △ABC中,,∴,∵矩形ABCD 对角线相交于点O , ∴,∵四边形OBB 1C 是平行四边形, ∴.4.∵四边形AFCE 为菱形, ∴AF=CF=EC=AE ,∵四边形ABCD 是矩形, ∴∠B=90°,设AE=x ,则BE=BC ﹣EC=4﹣x ,∴x=,∴S 菱形AFCE =EC •AB=×2=5.∴菱形的面积为55.1)证明:在矩形ABCD 中,AO=BO , 又∠AOB=60°,∴△AOB 是等边三角形.(2)解:∵△AOB 是等边三角形 ∴OA=OB=AB=2(cm ), ∴BD=2OB=4cm , 在Rt △ABD ,(cm )∴S 矩形ABCD =2×2=4(cm 2),答:矩形ABCD 的面积是4cm 2.6.过点E 作EF ⊥BC ,交AD 于G ,垂足为F . ∵四边形ABCD 是矩形, ∴AD ∥BC , ∴EG ⊥AD .(1分)∵△EAC 是等腰直角三角形,EA=ED=2, ∴AG=GD ,AD=.∴EG==.(1分)∵EB=EC=BC=AD=2,∴BF=,(1分)∴EF=.(1分) ∴AB=GF=EF ﹣EG=7. (1)证明:在矩形ABCD 中,∠A=∠D=90°,∴∠ECD+∠CED=90°, ∵EF ⊥EC ,∴∠AEF+∠CED=90°, ∴∠ECD=∠AEF , 在△AEF 与△DCE 中,,∴△AEF ≌△DCE (AAS );∴AF=DE,∵DE=3cm,BC=7cm,∴AF=3cm,AE=AD﹣DE=BC﹣DE=7﹣3=4cm,在Rt△AEF中,EF===5.故答案为:58.(1)△BEC是等腰三角形,理由是:∵矩形ABCD,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠BED,∴∠DEC=∠CEB,∴∠CEB=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(2)解:∵矩形ABCD,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°﹣22.5°)=135°,∴∠AEB=180°﹣∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=1,由勾股定理得:BE=BC==,答:BC 的长是9.(1)由题意,得∠GAH=∠DAC,∠ECF=∠BCA,∵四边形ABCD为矩形,∴AD∥BC,∴∠DAC=∠BCA,∴∠GAH=∠ECF,∴AG∥CE,又∵AE∥CG∴四边形AECG是平行四边形;(2)∵四边形AECG是菱形,∴F、H重合,∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,在Rt△ABC中AC2=AB2+BC2,即(2x)2=32+x2,解得x=,即线段BC 的长为cm.10.(1)∵四边形ABCD是矩形,∴AE∥FC,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,FE⊥AC,又∠AOE=∠COF,∴△AOE≌△COF,又∵FE⊥AC,∴平行四边形AFCE为菱形;(2)在Rt△ABC中,由AB=5,BC=12,根据勾股定理得:AC===13,又EF=6,∴菱形AFCE的面积S=AC•EF=×13×6=3911.(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=1812.(1)解:OE⊥AD,理由:∵四边形ABCD是矩形,∴AC=BD,AO=OC,DO=BO,∴AO=DO,又∵点E是AD的中点,∴OE⊥AD.(2)解:由(1)知OE⊥AD,AO=5,在Rt△AOE中,由勾股定理得:AE===4,∵E是边AD的中点,∴AD=2AE=8.答:AD的长度是813.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,又∵DN⊥AC,BM⊥AC,∴∠DNA=∠BMC,∴△DAN≌△BCM,∴AN=CM.(2)连接BD交AC于点O.∵AN=NM=2,∴AC=BD=6,又∵四边形ABCD是矩形,∴DN=,∴矩形ABCD的面积=,答:矩形ABCD的面积是12.14.(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵AE平分∠BAD,∴∠BAE=∠BAD=×90°=45°.(2)∵四边形ABCD是矩形,∴AD∥BC,∠BAD=∠B=90°,∴∠DAE=∠AEB∵∠BAE=∠DAE=45°,∴∠AEB=45°,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=3+5=8=AD,∴S△ADE =AD×AB=×8×5=2015.∵四边形ABCD是矩形,∴∠ADC=90°,AD=BC=8,CD=AB=4.(1分)设DE=x,那么AE=CE=8﹣x,(1分)∵在Rt△DEC中,CE2=DE2+CD2,(1分)∴(8﹣x)2=x2+42,(1分)∴x=3.(1分)∴CE=8﹣x=5.(1分)∵四边形ABCD是矩形,∴O为AC中点.(1分)又∵F是AE 的中点,∴.16.(1)设BF=x,CE=y,则CF=10﹣x,EF=DE=8﹣y,在Rt△ABF中根据勾股定理可得x2+82=102,在Rt△CEF中根据勾股定理可得y2+(10﹣x)2=(8﹣y)2,解得x=6,y=3,即BF=6,CE=3;(2)△ABF 的面积为×8×6=24,△ADE 的面积为×10×5=25,∴四边形AFCE的面积为8×10﹣24﹣25=31,答:BF的长为6,CE的长度为3,四边形AFCE的面积为31∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在△GFE和△GCE中,,∴△GFE≌△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=18.∵四边形ABCD是矩形,∴∠ABC=90°(矩形的四个角都是直角),∵在Rt△ABC中,AC=2AB,∴∠ACB=30°,∵四边形ABCD是矩形,∴OB=OD=BD,OC=OA=AC,AC=BD,∴BO=CO,∴∠OBC=∠OCB=30°,∵∠OBC+∠OCB+∠BOC=180°,∴∠BOC=120°,∴∠AOD=∠BOC=120°19.(1)∵矩形ABCD,∴∠CBA=90°,AB=6cm,AC=8cm,由勾股定理:BC===2(cm),答:BC的长是2cm.(2)解:如图所示(3)答:OE与DC的关系是互相垂直平分.理由是:∵矩形ABCD,∴OA=OC,OD=OB,AC=BD,∴OD=OC=DE=CE,∴四边形ODEC是菱形,∴OE⊥CD,OG=EG,CG=DG,即OE与DC的关系是互相垂直平分20.∵四边形ABCD是矩形,∴AC=BD=13cm,∵△AOB、△BOC、△COD和△AOD四个三角形的周长和为86cm,∴OA+OB+AB+OB+OC+BC+OC+OD+DC+OD+OA+A D=86cm,∴AB+BC+CD+DA=86﹣2(AC+BD)=86﹣4×13=34(cm).答:矩形ABCD的周长等于34cm.21.∵四边形ABCD是矩形∴∠A=∠B=∠D=90°,BC=AD,AB=CD,∴∠AFE+∠AEF=90°(2分)∵F在AD上,∠EFC=90°,∴∠AFE+∠DFC=90°,∴∠AEF=∠DFC,∴△AEF∽△DFC,(3分)∴.(4分)∵BE:EA=5:3设BE=5k,AE=3k∴AB=DC=8k,由勾股定理得:AF=4k ,∴∴DF=6k∴BC=AD=10k(5分)在△EBC中,根据勾股定理得BE2+BC2=EC2∵CE=15,BE=5k,BC=10k∴∴k=3(6分)∴AB=8k=24,BC=10k=3022.∴HG=HE,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS)∴DG=AH=2(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG.∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S△FCG =GC=1,解得GC=1,DG=6.(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,又在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,x ≤,∴S△FCG 的最小值为,此时DG=23.设AB=x1,BE=x2,EC=x3,CF=x4,则FD=x1﹣x4,AD=x2+x3,由题意得x1•x2=2a,x3•x4=2b,(x1﹣x4)×(x2+x3)=2c,即x2•x3﹣x2•x4=2(b+c﹣a),又x1x2x3x4=4ab代入x2x4=x1x3﹣2(b+c﹣a)得关于x1x3的一元二次方程,即(x1x3)2﹣2(b+c﹣a)x1x3﹣4ab=0解之得x1x3=(b+c﹣a)+又S矩形=x1(x2+x3)=2a+(b+c﹣a)+=(a+b+c)+∴S△AEF=S矩形﹣S△ABE﹣S△CEF﹣S△ADF=(a+b+c)+﹣a﹣b﹣c=∴△AOE是直角三角形∴OG=AG=GE,∴∠BAC=∠AOG=30°,∠AEO=60°,∠GOE=∠AOE ﹣∠AOG=60°,∴△OEG是正三角形,∴OG=OE=GE,∴∠ABO=∠BAC=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠BOE=∠AOB﹣90°=30°,∴△OEB是等腰三角形,∴OE=EB,∴OG=AG=GE=EB=OE,∴OG=AB=DC.25.(1)连接ME.∵MN是BE的垂直平分线,∴BM=ME=6﹣AM,在△AME中,∠A=90°,由勾股定理得:AM2+AE2=ME2,AM2+x2=(6﹣AM)2,AM=3﹣x.(2)连接ME,NE,NB,设AM=a,DN=b,NC=6﹣b,因MN垂直平分BE,则ME=MB=6﹣a,NE=NB,所以由勾股定理得AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2即a2+x2=(6﹣a)2,b2+(4﹣x)2=42+(6﹣b)2,解得a=3﹣x2,b=x2+x+3,所以四边形ADNM的面积为S=×(a+b)×4=2x+12,即S关于x的函数关系为S=2x+12(0<x<2),答:S关于x的函数关系式是S=2x+1226.(1)∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°;∴EC=DC,又∵∠ADB=30°,∴∠CDO=60°;又∵因为矩形的对角线互相平分,∴OD=OC;∴△OCD是等边三角形;∴∠DCO=60°,∠OCB=90°﹣∠DCO=30°;∵DE平分∠ADC,∠ECD=90°,∠CDE=∠CED=45°,∴CD=CE=CO,∴∠COE=∠CEO;∴∠COE=(180°﹣30°)÷2=75°;(2)过O作OF⊥BC于F,∵AO=CO,∴BF=CF,∴OF=AB=2,∵∠ADB=30°,AB=4,∴AC=8,∴BC==4,∴BF=CF=2,∵CD=CE=4,∴EF=CE﹣CF=4﹣2,在Rt△OFE中,OE==4.27.:a与b的关系是b=a,理由是:∵矩形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF,∴AE=CF,∵AE=EF,∴AE=EF=CF,∵矩形ABCD,∴∠ABC=90°=∠BFC,∴∠BCF+∠CBF=90°,∠ABF+∠CBF=90°,∴∠ABF=∠BCF,∵∠AFB=∠CFB=90°,∴△ABF∽△BCF,∴==,矩形的性质专项练习--11设AE=EF=CF=c,则BF2=AF•CF=2c2,∴BF=c,∵AB=b,BC=a,∴==,∴b=a,即a与b之间的关系是b= a28.(1)证明:在Rt△ABD中,BD===2,∵矩形ABCD,∴OA=OB=BD=,∴△AOB为等边三角形;(2)解:∵AE是∠BAD的平分线,∴∠BAE=45°,∴△ABE是等腰直角三角形,△BEO是等腰三角形,又∠EBO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)÷2=75°,在△BOC中∠COE=180°﹣30°×2﹣75°=45°,所以,在△BEF和△COE 中,∴△BEF≌△COE(ASA),∴BF=CE,又CE=BC﹣BE=3﹣,∴BF=3﹣.29.在△GEF和△HCF中,∵GE∥DC,∴∠GEF=∠HCF,∵F是EC的中点,∴FE=FC,而∠GFE=∠CFH(对顶角相等),∴△GEF≌△HCF,∴GE=HC,四边形ABCD为等腰梯形,∴∠B=∠DCB,∵GE∥DC,∴∠GEB=∠DCB,(2分)∴∠GEB=∠B,∴GB=GE=HC,∴BG=CH30.(1)在矩形ABCD中,∵AD=BC,∠ADC=∠BCD=90°,∴∠DCE=90°,在Rt△DCE中,∵F为DE中点,∴DF=CF,∴∠FDC=∠DCF,∴∠ADC+∠CDF=∠BCD+∠DCF,即∠ADF=∠BCF;(2)连接BF,∵BE=BD,F为DE的中点,∴BF⊥DE,∴∠BFD=90°,即∠BFA+∠AFD=90°,在△AFD和△BFC 中,∴△ADF≌△BCF,∴∠AFD=∠BFC,∵∠AFD+∠BFA=90°,∴∠BFC+∠BFA=90°,即∠AFC=90°,∴AF⊥FC.矩形的性质专项练习--12。

矩形的性质练习题及答案

矩形的性质练习题及答案

矩形的性质练习题及答案
练题
1. 矩形是一种特殊的四边形,具有哪些特点?
2. 矩形的四边分别叫什么?
3. 矩形的对角线有什么特点?
4. 如何判断一个四边形是否为矩形?
5. 下列哪个形状不是矩形?
- (A) 正方形
- (B) 长方形
- (C) 梯形
- (D) 菱形
6. 一个矩形的长和宽分别为8cm和6cm,求他的面积和周长。

答案
1. 矩形具有以下特点:
- 四个角都是直角(90°)
- 两对相邻边相等
- 对角线相等
2. 矩形的四边分别叫:
- 上边(或上底)
- 下边(或下底)
- 左边(或左底)
- 右边(或右底)
3. 矩形的对角线有以下特点:
- 对角线长度相等
- 对角线互相垂直(成直角)
4. 判断一个四边形是否为矩形,需满足以下条件:- 四个角都是直角
- 两对相邻边相等
5. 下列哪个形状不是矩形?
- (C) 梯形
6. 长为8cm,宽为6cm的矩形的面积和周长计算如下:
- 面积:8cm × 6cm = 48cm²
- 周长:2 × (8cm + 6cm) = 28cm
注意:矩形的面积单位为平方单位,周长单位为长度单位。

---
以上为矩形的性质练习题及答案。

了解矩形的特点和计算方法能够帮助我们更好地理解和应用矩形的性质。

如果还有其他问题,欢迎继续咨询。

矩形的性质练习题

矩形的性质练习题

矩形的性质练习题矩形的性质练习题矩形是我们学习几何学时经常遇到的一种形状。

它有很多有趣的性质,通过解决一些练习题,我们可以更好地理解和掌握这些性质。

1. 假设矩形的长为a,宽为b,周长为20,求矩形的面积。

解析:根据矩形的性质,周长等于长和宽的两倍之和。

即2a + 2b = 20。

由此可得a + b = 10。

我们可以将这个方程表示为b = 10 - a。

矩形的面积等于长乘以宽,即ab。

将b的值代入,得到a(10 - a)。

展开后得到10a - a^2。

为了求得最大的面积,我们需要找到这个二次函数的顶点。

顶点的横坐标是a = -b/2a,即a = -10/(-2) = 5。

将a = 5代入原方程,得到b = 10 - 5 = 5。

所以矩形的长和宽都是5,面积为25。

2. 若一个矩形的面积是36,它的长和宽之间的差是3,求矩形的周长。

解析:设矩形的长为a,宽为b。

根据题意,ab = 36,a - b = 3。

我们可以将第二个方程表示为a = b + 3。

将这个值代入第一个方程,得到(b + 3)b = 36。

展开后得到b^2 + 3b - 36 = 0。

这是一个二次方程,可以因式分解为(b + 9)(b- 4) = 0。

所以b = -9或b = 4。

由于矩形的长和宽不能为负数,所以b = 4。

将b = 4代入a = b + 3,得到a = 7。

矩形的周长等于长和宽的两倍之和,即2a + 2b = 2(7) + 2(4) = 14 + 8 = 22。

3. 一个矩形的周长是32,它的长是宽的3倍,求矩形的面积。

解析:设矩形的宽为b,则长为3b。

根据矩形的性质,周长等于长和宽的两倍之和,即2(3b) + 2b = 32。

展开后得到8b = 32,解得b = 4。

将b = 4代入长的表达式,得到长为3(4) = 12。

矩形的面积等于长乘以宽,即12(4) = 48。

4. 一个矩形的周长是24,它的面积是16,求矩形的长和宽。

矩形的判定和性质练习题

矩形的判定和性质练习题

O FE DCBAODC B AONM DCBA OEDCBA矩形的判定和性质(基础练习)1. 在矩形ABCD 中, 对角线交于O 点,AB=, BC=, 那么△AOB 的面积为_______________;周长为_______________.2. 一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.3. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_____________________.4. 如图, 矩形ABCD 对角线交于O 点, EF 通过O 点, 那么图中全等三角形共有_____________________对.5. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.6. 在矩形ABCD 内有一点Q, 知足QA=1, QB=2, QC=3, 那么QD 的长为____________________.7. 如图, 矩形ABCD 的对角线交于O 点, 假设那么∠BDC 的大小为________________.8. 如图, 矩形ABCD 对角线交于O 点, 且知足AM=BN, 给出以下结论: ①MN ∠∠OMDONCS S=其中正确的选项是______________.9. 一个平行四边形的四个内角的角平分线相交围成的四边形的形状是________________.10. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.二. 解题技术11. 在矩形ABCD 中,∠A 和∠B 的平分线交边CD 于点M 和N ,假设M 、N 是CD的三等分点,那么AB :BC 的值为___________________.PHDCBAE DCBAFE D C BAFED CB A12. 如图, 在矩形ABCD 中,DE ⊥AC 于点E,BC=, CD=2, 那么BE=_______________________.13. 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分∠CBH.14. 如图, 矩形ABCD 的周长为16cm, DE=2cm, 假设△CEF 是等腰直角三角形, 那么那个三角形的面积为______________.15. 如图, 在矩形ABCD 中, AD=12, AB=7, DF 平分∠ADC, AF ⊥EF, (1)求EF 长; (2)在平面上是不是存在点Q, 使得QA=QD=QE=QF? 假设存在, 求出QA 的长; 假设不存在, 说明理由.16. 一个四边形知足: 它的每一个极点到其它三个极点的距离之和相等, 试判定那个四边形的形状.17. 已知矩形ABCD ,试问:当边AB 和BC 知足什么条件时, 在边CD 上必然存在点P, 使得PA ⊥PB?矩形的判定和性质(巩固练习)1.矩形的一内角平分线把矩形的一条边分成3和5两部份,那么该矩形的周长是___________.2.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.3.假设一个直角三角形的两条直角边别离为5和12,那么斜边上的中线等于 .4.如图,E为矩形ABCD对角线AC上一点,DE⊥AC于E,∠ADE: ∠EDC=2:3,则∠BDE为_________.5.矩形的两邻边别离为4㎝和3㎝,那么其对角线为㎝,矩形面积为 cm2.6.假设矩形的一条对角线与一边的夹角是40°,那么两条对角线相交所成的锐角是___________.7.矩形具有一样平行四边形不具有的性质是()A. 对边彼此平行B. 对角线相等C. 对角线彼此平分D. 对角相等8.矩形具有而平行四边形不具有的性质是()A.对角线相互平分 B.邻角互补 C.对角相等 D.对角线相等9.在以下图形性质中,矩形不必然具有的是()A.对角线相互平分且相等 B.四个角相等C.是轴对称图形 D.对角线相互垂直平分10.如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N别离是AC、BD•的中点,那么MN⊥BD 成立吗?试说明理由.11.如图,在矩形ABCD中,AB=3,BC=4,若是将该矩形沿对角线BD重叠,求图中阴影部份的面积.CEDAB12.如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 别离是四边的中点, 求证:四边形EFGH 是矩形.13. 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 别离是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,求证:四边形PQMN 是矩形.14. 如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.15. 如图,矩形ABCD 中,CE BD ⊥于E ,AF 平分BAD ∠交EC 于F , 求证:CF BD =.HG OFEDCB ANMQPDCBAABCE FDDABCEF。

矩形的性质与判定练习题

矩形的性质与判定练习题

PMNAB CDR矩形的性质与判定练习题矩形的性质1.下面的图形中,既是轴对称图形,又是中心对称图形的是 ( ) A. 角 B. 任意三角形 C. 矩形 D. 等腰三角形2. 若矩形的一条角平分线分一边为3cm 和5cm 两部分,则矩形的周长为 ( )A .22B .26C .22或26D .283.已知一矩形的周长是24cm ,相邻两边之比是1:2,那么这个矩形的面积是 ( ) A .24cm 2 B .32cm 2C .48cm 2D .128cm 24.由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )A 、°B 、45°C 、30°D 、60°5.如图,在矩形ABCD 中,DE ⊥AC,∠ADE= ∠CDE,那么∠BDC 等于 ( )A .60°B .45°C .30°D .°6.如图,矩形ABCD 中,E 是BC 的中点,且∠AED=90°.当AD=10cm 时,AB 等于( )7.如图,过矩形ABCD 的对角线BD 上一点R 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMRP 的面积S 1,与矩形QCNR 的面积S 2的大小关系是 ( ) A. S 1> S 2 B. S 1= S 2 C. S 1< S 2 D. 不能确定 填空题:1、矩形ABCD 的两条对角线相交于O,∠AOB =60o ,AB =8,则矩形对角线的长___2、矩形的两条对角线的夹角为60°,若一条对角线与短边的和为15,则短边的长是,对角线的长是;若较短的边长为5cm .则这个矩形的面积是_____cm 2.3、矩形ABCD 的对角线相交于O ,AC=2AB ,则△COD 为________三角形。

4、矩形一个角的平分线分矩形一边成2cm 和3cm ,则这个矩形的面积为 。

2013—2014新人教版八年级下矩形的性质练习题

2013—2014新人教版八年级下矩形的性质练习题

矩形的性质练习题一、选择题1.(2013·济宁)如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( )A . cm 2B . cm 2C .cm 2 D .cm 22.在矩形ABCD 中,AB=1,DAB ,过C点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF=FH ;②BO=BF ;③CA=CH ;④BE=3ED.正确的是 ( )A. ②③B.③④C.①②④D.②③④3.(2013·四川南充,3分)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( )A.12B. 24C. 123D. 1634.如图,矩形ABCD 中,AB ∶AD=4∶3,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE ,则DE ∶AC= ( )A.1∶3B.3∶8C.8∶27D.7∶255.(2013•包头)如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( )A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分7.(2013•宜昌)如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )1题图 3题图 4题图 5题图7题图8.若矩形的一条角平分线分一边为3cm 和5cm 两部分,则矩形的周长为 ( )A .22B .26C .22或26D .289.(2013·河北)如已知:线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对10.(2013·台湾)如图,长方形ABCD 中,M 为CD 中点,今以B 、M 为圆心,分别以BC 长、MC 长为半径画弧,两弧相交于P 点.若∠PBC=70°,则∠MPC 的度数为何?( )A .20B .35C .40D .55二、填空题1.(2013•资阳)在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .2.矩形是轴对称图形,它有______条对称轴.3.(2013·安徽省)已知矩形纸片ABCD 中,AB=1,BC=2,将该纸片叠成一个平面图形,折痕EF 不经过A 点(E 、F是该矩形边界上的点),折叠后点A 落在A ,处,给出以下判断:(1)当四边形A ,CDF 为正方形时,EF=2(2)当EF=2时,四边形A ,CDF 为正方形(3)当EF=5时,四边形BA ,CD 为等腰梯形;(4)当四边形BA ,CD 为等腰梯形时,EF=5。

矩形的性质练习(一)-最新,经典试题,通用

矩形的性质练习(一)-最新,经典试题,通用

第1题第2题第4题 第6题 第9题 第12题 《18.2.1 矩形的性质》练习一、选择——基础知识运用1.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm ,则这个矩形的一条较短边的长度为( )A .10cmB .8cmC .6cmD .5cm 2.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,EF ⊥AD交AD 于点F ,若EF =3,AE =5,则AD 等于( )A .5B .6C .7D .83.Rt △ABC 中,∠C =90°,锐角为30°,最短边长为5cm ,则最长边上的中线是( )A .5cmB .15cmC .10cmD .2.5cm4.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =7,BC=10,则△EFM 的周长是( )A .17B .21C .24D .27 5.如图,在矩形ABCD 中,AF ⊥BD 于E ,AF 交BC 于点F ,连接DF ,则图中面积相等但不全等的三角形共有( )A .2对B .3对C .4对D .5对6.如图,在平面直角坐标系中,矩形OABC ,OA =3,OC =6,将△ABC沿对角线AC 翻折,使点B 落在点B ′处,AB ′与y 轴交于点D ,则点D的坐标为( )A .(0,-)B .(0,-)C .(0,-)D .(0,-)7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.已知AC 为矩形ABCD 的对角线,则图中∠1与∠2一定不相等的是( )A .B .C .D .9.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.410.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米( )A.50B.50或40C.50或40或30D.50或30或2011.菱形具有而矩形不具有性质是( )第5题第13题 第14题 第15题 第16题 第18题 A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线平分且相等12.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF .EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是( )A.②③B.③④C.①②④D.②③④13.如图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD上,图中面积相等的四边形有( )A.3对B.4对C.5对D.6对14. 将矩形ABCD 沿AE 折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED 的大小是( )A.60°B.50°C.75°D.55°15.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连接CE ,则△CDE 的周长为( )A.5cmB.8cmC.9cmD.10cm16.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直角三角形共有( )A.6对B.5对C.4对D.3对17.矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内,B 、D 两点对应的坐标分别是(2,0).(0,0),且A 、C 两点关于x 轴对称,则C 点对应的坐标是( )A.(1,1)B.(1,﹣1) C .(1,﹣2) D.(,﹣)18.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A.600m 2B.551m 2C.550m 2D.500m 2二、填空——知识巩固运用19.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下方的点的坐标是(0,0),右下方的点的坐标是(32,0),左上方的点的坐标是(0,28),则右上方的点的坐标是 .20.长方形ABCD 面积为12,周长为14,则对角线AC 的长为 .21.如图,把一个矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在A ′的位置上.若OB =,21=OC BC ,求点A ′的坐标为 .22.在矩形ABCD 中,A (4,1),B (0,1),C (0,3),则点D 的坐标为 .23.如图,一张矩形纸片沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD 等于_________.第21题 第22题 第24题第23题24.如图,点A、D、G、M在半⊙O上,四边形ABOC、DEOF、HMNO均为矩形.设BC=a,EF=b,NH=c,则a、b、c的大小关系为______________.三、解答——知识提高运用25.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF =BD,连接AF,求∠BAF的大小.26.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的.27.如图,在矩形ABCD中,AD=12,AB=7,DF平分∠ADC,AF⊥EF.(1)求证:AF=EF;(2)求EF长.第27题28.八年级(12)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线,如果一条对角线用了38盆红花,还需要从花房运来多少盆红花?为什么?如果一条对角线用了49盆呢?29.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积是多少?30.如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=8,DF=4,则菱形ABCD的边长为多少?31.如图,矩形的长与宽分别为a和b,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a和b要满足什么数量关系?32.如图,在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE的度数是多少?4.参考答案一、选择——基础知识运用1.【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC= AC,OD=OB= BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质练习题
一.选择题
1.矩形具有而一般平行四边形不具有的性质是 ( )
A. 对角相等
B. 对边相等
C. 对角线相等
D. 对角线互相平分
2.如图,矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于().
A.15° B.30° C.45° D.60°
3.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长
为()
A.22 B.26 C.22或26 D.28
4.由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为()
A、22.5°
B、45°
C、30°
D、60°5.如图,在矩形ABCD中,DE⊥AC,∠ADE=∠CDE,那么∠BDC等于()
A.60° B.45° C.30° D.22.5°6.如图,矩形ABCD中,E是BC的中点,且∠AED=90°.当AD=10cm时,AB等于()
A. 10
B. 5
C.
D.
7.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC 的长为()
第(4)题第(7)题第(8)题第(10)题
A. B.2 C.3 D.二.填空题
1、在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边
BC=•8cm,•则△ABO的周长为________.
2、矩形ABCD的两条对角线相交于O,∠AOB=60o,AB=8,则矩形对角线的长___
3、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是,对角线的长是 .
4、矩形ABCD的对角线相交于O,AC=2AB,则△COD为________三角形。

5、如果一个矩形较短的边长为5cm.两条对角线所夹的角为60°,则这个矩形的面积是_____cm2.
三.解答题
1、已知,如图,矩形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OB的中点.
(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求OF的长.
2、如图,在矩形ABCD中,已知AB=8cm,BC=10cm,折叠矩形的一边AD,使点D 落在BC边的中点F处,折痕为AE,求CE的长.
3、如图,在矩形ABCD中,AE平分∠BAD,∠1=15°.
(1)求∠2的度数.(2)求证:BO=BE.
※※※※※※ 密封线※※※※※※※※※※※※※※※ 密封线※※※※※※※※※※※※※※※※※※密封线※※※※※※※
--- ---答题线------------答题线------------答题线---------答题线------------
4、如图:矩形ABCD中,AB=2 cm , BC=3 cm . M是BC的中点,求D点到AM的距离。

5、在矩形中,,,
平分
,过点作
于,延长、交于点。

求证:①

;③。

相关文档
最新文档