2017届山东省聊城一中高三高考适应性测试(一) 理科数学试题及答案
2017届高三第一次统一考试 理科数学

高三理科数学 第 页(共 8 页)12017年普通高等学校招生第一次统一模拟考试 理科数学 2016.10注意事项:1.本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选考题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数63aii+-(其中,a R i ∈为虚数单位)的实部与虚部相等,则a = (A )3 (B )6 (C )4 (D )12 2.设集合1{|216}4x A x N =∈≤≤,2{|ln(3)}B x y x x ==-,则A B 中元素的个数是 (A )1 (B )2 (C )3 (D )4 3. 已知1,2==a b ,且⊥a b ,则||+a b 为 (A )5 (B )5 (C )2 (D )34. 从数字1,3,5中任取两个不同的数字构成一个两位数,则这个两位数大于50的概率为(A )12 (B )23 (C )13 (D ) 16绝密★启用前高三理科数学 第 页(共 8 页)2 5.一个圆经过椭圆的三个顶点,且圆心在正半轴上,则该圆上的点到直线3y = 4x +9的最大距离是(A ) 12 (B ) 3 (C )5 (D ) 1126.某空间几何体的三视图如图所示(其中俯视图的弧线为四分之一圆),则该几何体的表面积为(A ) 5π+4(B ) 8π+4(C ) 5π+12(D ) 8π+127. 执行右面的程序框图,若输出的结果是3231,则输入的a 为(A ) 6(B ) 5(C ) 4(D ) 3是否高三理科数学 第 页(共 8 页)3 8.已知函数()sin()(0,)2f x x πωϕωϕ=+><的最小正周期为4π,且()13f π=,则函数()f x 的一个对称中心的坐标是(A) 5(,0)3π (B)(,0)3π- (C)2(,0)3π (D) 2(,0)3π- 9. 若,x y 满足约束条件20,20,20,x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩则11y x +-的取值范围为(A )11,35⎡⎤-⎢⎥⎣⎦ (B )1,13⎡⎤-⎢⎥⎣⎦(C )11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭(D )[)1,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦10.函数f (θ ) =错误!未找到引用源。
2017年高三统一质量检测(一模)数学(理科)试卷

山东省青岛市2017年高三统一质量检测数学(理科)试卷第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{||1|1}A x x =+≥,{|1}B x x =≥-,则 R ()A B ⋂=ð( ) A .[1,0]-B .[1,0)-C .(2,1)--D .(2,1]--2.设(1)()2i x yi +-=,其中x ,y 是实数,i 为虚数单位,则x y +=( ) A .1B .2C .3D .23.已知λ∈R ,向量(3,)a λ=r ,(1,2)b λ=-r ,则“3λ=”是“a b r r∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图, 当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则8335用算筹可表示为( ) A .B .C .D .5.已知实数,执行如右图所示的程序框图,则输出的x 不大于63的概率为( )A .310 B .13 C .35D .236.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( )A .8B .4C .1D .27.某几何体的三视图如图所示,则该几何体的体积为( )A .88π3+B .168π3+ C .816π3+D .1616π3+8.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若tan 21tan A c B b +=,则A =( ) A .30︒B .45︒C .60︒D .120︒9.已知1x >,1y >,且lg x ,14,lg y 成等比数列,则xy 有( ) A .最小值10B .最小值10C .最大值10D .最大值1010.已知双曲线22122:1(0,0)x y C a b a b -=>>,圆22223:+204C x y ax a -+=,若双曲线1C 的一条渐近线与圆2C 有两个不同的交点,则双曲线1C 的离心率的范围是( )A .23(1,)3B .23(,)3+∞ C .(1,2) D .(2,)+∞ A .3B .5C .2D .2第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知变量x ,y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于x 的线性回归方程为ˆ 1.31yx =-,则m =________. x1 2 3 4 y0.11.8m412.设随机变量2~(,)N ξμσ,且(3)(0.2P P ξξ<-=>1)=,则(1)P ξ-<<1=________.13.已知函数2,2,()(1),2xx f x f x x ⎧<⎪=⎨-≥⎪⎩,则2(log 7)f =________.14.已知π2 09cos m xdx =⎰,则1()m x x-展开式中常数项为________.15.已知函数23()123x x f x x =+-+,23()123x x g x x =-+-,设函数()(4)(3)F x f x g x =-+g ,且函数()F x 的零点均在区间[,](,,)a b a b a b <∈Z 内,则b a -的最小值为________.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,且121n n a S +=+,*n ∈N . (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令32log n n c a =,21n n n b c c +=g ,记数列{}n b 的前n 项和为n T ,若对任意*n ∈N ,n T λ<恒成立,求实数λ的取值范围. 18.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为3的菱形,60ABC ∠=︒,PA ⊥平面ABCD ,3PA =,.等可能的.现在有4个人要购买机器人.(Ⅰ)在会场展览台上,展出方已放好了A ,B ,C ,D 四种型号的机器人各一台,现把他们排成一排表演节目,求A 型与B 型相邻且C 型与D 型不相邻的概率;(Ⅱ)设这4个人购买的机器人的型号种数为ξ,求ξ的分布列和数学期望. 20.(本小题满分13分)已知函数21()2f x x ax =+,()e x g x =,a ∈R 且0a ≠,e 2.718...=,e 为自然对数的底数. (Ⅰ)求函数()()()h x f x g x =g 在[1,1]-上极值点的个数;(Ⅱ)令函数()()()p x f x g x '=g ,若[1,3]a ∀∈,函数()p x 在区间[e ,)a b a +-+∞上均为增函数,求证:3e 7b ≥-.21.(本小题满分14分)已知椭圆222:1(1)x y a aΓ+=>的左焦点为1F ,右顶点为1A ,上顶点为1B ,过1F 、1A 、1B 三点的圆P 的圆坐标为. (Ⅰ)求椭圆的方程;(Ⅱ)若直线:(,,0)l y km m k m k =+≠为常数与椭圆Γ交于不同的两点M 和N .(ⅰ)当直线l 过(1,0)E ,且20EM EN +=u u u u r u u u r r时,求直线l 的方程;。
2017年高考山东理科数学试题及答案(word版)

2017年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年山东,理1,5分】设函数24x y -=的定义域为A ,函数)1ln(x y -=的定义域为B ,则A B I ( )(A )()1,2 (B )](1,2 (C )()2,1- (D )[2,1)- (2)【2017年山东,理2,5分】已知R a ∈,i 是虚数单位,若3i z a =+,4z z ⋅=,则a =( ) (A )1或1- (B )7或7- (C )3- (D )3 (3)【2017年山东,理3,5分】已知命题p :0x ∀>,ln(1)0x +>;命题q :若a b >,则22a b >,下列命题为真命题的是( ) (A )p q ∧ (B )p q ∧ (C )p q ∧ (D )p q ∧(4)【2017年山东,理4,5分】已知x 、y 满足约束条件3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y =+的最大值是( )(A )0 (B )2 (C )5 (D )6 (5)【2017年山东,理5,5分】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y bx a =+,已知101225i i x ==∑,1011600i i y ==∑,4b =,该班某学生的脚长为24,据此估计其身高为( )(A )160 (B )163 (C )166 (D )170 (6)【2017年山东,理6,5分】执行两次如图所示的程序框图,若第一次输入的x 值为7,第二次输入的x 值为9,则第一次、第二次输出的a 值分别为( )(A )0,0 (B )1,1 (C )0,1 (D )1,0 (7)【2017年山东,理7,5分】若0a b >>,且1ab =,则下列不等式成立的是( )(A )21log ()2a b a a b b +<<+ (B )21log ()2a b a b a b<+<+(C )21log ()2a ba ab b +<+< (D )21log ()2a b a b a b +<+<(8)【2017年山东,理8,5分】从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是( )(A )518 (B )49 (C )59(D )79(9)【2017年山东,理9,5分】在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )(A )2a b = (B )2b a = (C )2A B = (D )2B A =(10)【2017年山东,理10,5分】已知当[]0,1x ∈时,函数2(1)y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是( )(A )(])0,123,⎡+∞⎣U (B )(][)0,13,+∞U (C )()0,223,⎤⎡+∞⎦⎣U (D )([)0,23,⎤+∞⎦U第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2017年山东,理11,5分】已知(13)n x +的展开式中含有2x 的系数是54,则n = .(12)【2017年山东,理12,5分】已知1e u r、2e u u r 是互相垂直的单位向量,若123e e -u r u u r 与12e e λ+u r u u r的夹角为60︒,则实数λ的值是 .(13)【2017年山东,理13,5分】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .(14)【2017年山东,理14,5分】在平面直角坐标系xOy 中,双曲线22221x y a b-=(0a >,0b >)的右支与焦点为F 的抛物线22x py =(0p >)交于A 、B 两点,若4AF BF OF +=,则该双曲线的渐近线方程 为 .(15)【2017年山东,理15,5分】若函数()x e f x ( 2.71828e =L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质。
2017高考模拟试卷理数及答案

高三(2017届)数学模拟试题(理科)第Ⅰ卷(共60分)一、选择题:(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设集合A={x|x 2﹣2x ﹣3<0},B={x|y=lnx},则A ∩B=( )A (0,3)B (0,2)C (0,1)D (1,2) 2. 复数z=i 2(1+i)的虚部为( )A. 1B. iC. -1D. - i{}n a 中,4a 与14a 的等比中项为22,则27211log log a a +的值 为( )A .4B .3C .2D .1 4.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 5.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0, |φ|<2π)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(3πx -6π B.f (x )=5sin(6πx -6π)C.f (x )=5sin(3πx +6π) D. f (x )=5sin(6πx +6π)6.如右图所示的程序框图,若输出的88S =,则判断框内应填入的条件是( )A .3?k >B .4?k >C .5?k >D .6?k >7. 设323log ,log 3,log 2a b c π===,则( )A.a b c >>B.a cb >>C.b ac >> D. b c a >>8.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )x -5y O 5 2 5A .433 B .533 C .23 D .833x y 、满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-1,则实数m =( )A .6B .5C .4D .3 10.函数()2sin f x x x =+的部分图象可能是( )11. 已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为A .95 B. 75 C. 58 D. 6512、已知定义在R 上的可导函数f(x)的导函数为/()f x ,满足/()f x <()f x ,且()(2)f x f x -=+,(2)1f =,则不等式()x f x e <的解集为( )A. ()2,-+∞B. (0,+∞)C.(1, +∞)D.(2, +∞)第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4个小题,每小题5分,共20分). 13. (4y x 的展开式中33x y 的系数为 。
2017届山东省聊城一中高三高考适应性测试(一) 理科数学试题及答案 精品

聊城一中2017届高考适应性考试数学(理科)测试一第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.若复数z 满足45iz i =-(i 为虚数单位),则z 的共轭复数z 为 A. 54i - B. 54i -+ C. 54i + D. 54i --2.已知集合203x M xx -⎧⎫=<⎨⎬+⎩⎭,集合{}23N x x =-≤<,则M N ⋂为A. ()2,3-B. (]3,2--C. [)2,2-D. (]3,3-3.已知a ,b ,c ,d 为实数,且d c >,则“a b >”是“a c b d +>+”的 A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分散直方图,其中产品净重的范围是[]96,106,样本数据分组为[)[)[)[)[)96,98,98,100,100,102,102,104104,106.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是A.90B.75C.60D.455.已知平行四边形ABCD 中,AC 为一条对角线,若()()2,4,1,3,AB AC AD BD ==⋅=u u u r u u u r u u u r u u u r 则A. 8-B. 6-C.6D.86.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为中学联盟网A. 1K >B. 2K >C. 3K >D. 4K >7. 一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF-BCE 内自由飞翔,由它飞入几何体F-AMCD 内的概率为A. 34B. 23C. 13D. 128.函数()[)cos 0f x x x =-+∞在,内A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点9.已知双曲线()22122:100y x C a b a b-=>>,的离心率为2,若抛物线()22:20C y px p =>的焦点到双曲线1C 的渐近线的距离是2,则抛物线2C 的方程是A. 28y x =B. 2163y x =C. 283y x =D. 216y x =10.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有一个小球,且每个盒子里的小球个数都不相同,则不同的放法有( )种A.15B.18C.19D.21二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上. 11.设()0sin cos a x x dx π=+⎰,则二项式6⎛⎝的展开式的常数项是_________.12. 设曲线()()1*11n y x n N +=∈在点,处的切线与x 轴的交点的横坐标为12399,lg n n n x a x a a a a =+++⋅⋅⋅+令,则的值为_________.13.若将函数sin 2y x =的图象向右平移()0ϕϕ>个单位,得到的图象关于直线6x π=对称,则ϕ的最小值为_________.14. 设,x y 满足约束条件()36020,0,00,0x y x y a b x y --≤⎧⎪-+≥>>⎨⎪≥≥⎩若z=ax+by 的最大值为12,则1123a b+的最小值为________. 15.若对任意(),,x A y B A B R ∈∈⊆、有唯一确定的(),f x y 与之对应,称(),f x y 为关于x 、y 的二元函数.现定义满足下列性质的二元函数(),f x y 为关于实数x 、y 的广义“距离”:(1)非负性:(),0f x y ≥,当且仅当0x y ==时取等号; (2)对称性:()(),,f x y f y x =;(3)三角形不等式:()()(),,,f x y f x z f z y ≤+对任意的实数z 均成立. 今给出四个二元函数:①()22,;f x y x y =+②()()2,f x y x y =-③(),f x y =()(),sin f x y x y =-.能够成为关于的x 、y 的广义“距离”的函数的所有序号是___________. 三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c 。
2017届山东省高考模拟(一)数学试卷及答案

2017年春季高考第一次模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第I 卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在小答题卡上。
2.每小题选出答案后,用铅笔把小答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其它答案,不能答在试题卷上。
一、单项选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.满足{1}⊂≠A ⊆{1,2,3,4} 的集合有( )A 、5个B 、6个C 、7个D 、8个 2、若点(,9)a 在函数3x y =的图象上,则tan 6πa 的值为( )A.0B.3. 一元二次不等式220xx -++>的解集是( )A 、{}/12x x x <->或B 、{}/12x x -<<C 、{}/21x x x <->或 D.{}/21x x -<< 4.函数()22lg 12y xx =-+-的定义域是 A.()(),11,-∞-+∞ B.()1,1- C.()(),11,2-∞- D.()()(),11,22,-∞-+∞5、若直线x-y+m=0与圆x 2+y 2=2相切(m >0),则m=( ) A.2 B. -2 C. 2 D. ±26、下列说法正确的是( )A.a>b 是ac 2>bc 2的充要条件 。
B.b 2=ac 是a 、b 、c 成等比数列的充要条件。
C.1sin 2α=是30α=的充要条件。
D. ,m n m α∥⊥则n α⊥7、公差不为零的等差数列}{n a 的前n 项和为n S 。
2017年高考山东理科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一(tǒngyī)考试(山东(shān dōnɡ)卷)数学(shùxué)(理科(lǐkē))第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的.(1)【2017年山东,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D)【答案】D【解析】由得,由得,,故选D.(2)【2017年山东,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D)【答案】A【解析】由得,所以,故选A.(3)【2017年山东,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是()(A)(B)(C)(D)【答案】B【解析】由时有意义,知p是真命题,由可知q是假命题,即p,均是真命题,故选B.(4)【2017年山东,理4,5分】已知、满足约束条件,则的最大值是()(A)0 (B)2 (C)5 (D)6【答案】C【解析】由画出可行域及直线如图所示,平移20x y+=发现,当其经过直线与的交点时,2=+最大为z x y,故选C.(5)【2017年山东,理5,5分】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为()(A)160 (B)163 (C)166 (D)170【答案】C【解析】,故选C.(6)【2017年山东(shān dōnɡ),理6,5分】执行(zhíxíng)两次如图所示的程序框图,若第一次输入的x值为7,第二次输入(shūrù)的x值为9,则第一次、第二次输出(shūchū)的值分别(fēnbié)为()(A)0,0 (B)1,1 (C)0,1 (D)1,0【答案】D【解析】第一次;第二次,故选D.(7)【2017年山东,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D)【答案】B【解析】,故选B.(8)【2017年山东,理8,5分】从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()(A)(B)(C)(D)【答案】C【解析】,故选C.(9)【2017年山东,理9,5分】在中,角A、B、的对边分别为a、、,若ABC∆为锐角三角形,且满足,则下列等式成立的是()(A)(B)(C)(D)【答案】A【解析】所以,故选A.(10)【2017年山东,理10,5分】已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是()(A)(B)(C)(D)【答案】B【解析】当时,,2=+单调递=-单调递减,且,y x m(1)y mx增,且,此时有且仅有一个交点;当时,,2=-在y mx(1)上单调递增,所以要有且仅有一个交点,需,故选B.第II卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2017年山东,理11,5分】已知的展开式中含有的系数是54,则.【答案】4【解析】,令得:,解得.(12)【2017年山东,理12,5分】已知、是互相垂直的单位向量,若与的夹角为,则实数的值是 . 【答案(dá àn)】【解析(jiě xī)】,,,,解得:.(13)【2017年山东(shān dōnɡ),理13,5分】由一个(yī ɡè)长方体和两个圆柱体构成(gòuchéng)的几何体的三视图如图,则该几何体的体积为 . 【答案】【解析】该几何体的体积为.(14)【2017年山东,理14,5分】在平面直角坐标系中,双曲线(,)的右支与焦点为的抛物线()交于A 、B 两点,若,则该双曲线的渐近线方程为 .【答案】【解析】,因为,所以渐近线方程为22y x =±. (15)【2017年山东,理15,5分】若函数(是自然对数的底数)在的定义域上单调递增,则称函数()f x 具有M 性质。
山东省13市2017届高三最新考试数学理试题分类汇编:数列 Word版含答案

山东省13市2017届高三最新考试数学理试题分类汇编数列2017.03一、选择、填空题1、(聊城市2017届高三高考模拟(一))已知数列{}n a 为等差数列,且1251,5,8a a a ≥≤≥,设数列{}n a 的前n 项和为S ,15S 的最大值为M ,最小值为m ,则M m + ( ) A .500 B .600 C. 700 D .8002、(青岛市2017年高三统一质量检测)已知1x >,1y >,且lg x ,14,lg y 成等比数列,则xy 有A .最小值10 BC .最大值10D二、解答题QQ 请到学科网下载,不要放到群1、(滨州市2017届高三下学期一模考试) 已知数列{}n a 满足22,,2,n n n a n a n N a n +++⎧⎪=∈⎨⎪⎩为奇数为偶数,且121,2a a ==.(1)求数列{}n a 的通项公式;(2)令1(1),n n n n b a a n N ++=-∈,求数列{}n b 的前n 项和n S .2、(德州市2017届高三第一次模拟考试)已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n N +∈,21n b n =-,且12a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1nn n n na cb -=,n T 为数列{}nc 的前n 项和,求n T .3、(菏泽市2017年高考一模)在数列{a n }中,a 1=1,=+(n ∈N*).(1)求数列{a n }的通项公式;(2)设b n =1+a(n ∈N*),求数列{2nb n }的前n 项和S n .4、(济宁市2017届高三第一次模拟(3月))已知数列{}n a 的前n 项和为n S ,且满足()22n n S a n N *=-∈,数列{}n b 为等差数列,且满足2183,b a b a ==.(I)求数列{}n a ,{}n b 的通项公式; (II)令()111n n n c a +=--,关于k 的不等式()40971100,k c k k N *≥≤≤∈的解集为M ,求所有()k k a b k M +∈的和S .5、(聊城市2017届高三高考模拟(一))设,n n S T 分别是数列{}n a 和{}n b 的前n 项和,已知对于任意*n N ∈,都有323n n a S =+,数列{}n b 是等差数列,且51025,19T b ==. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设()1n nn a b c n n =+,数列{}n c 的前n 项和为R ,求使n R >2017成立的n 的取值范围.6、(临沂市2017届高三2月份教学质量检测(一模))已知数列{}n a 的前n 项和为n S ,且()21n n S a n n N *=+-∈.(I)求数列{}n a 的通项公式;(II)定义[]x x x =+,其中[]x 为实数x 的整数部分,x 为x 的小数部分,且01x ≤<,记1n n n na a c S +=,求数列{}n c 的前n 项和n T .7、(青岛市2017年高三统一质量检测)已知数列{}n a 的前n 项和为n S ,11a =,且121n n a S +=+,N n *∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令32log n n c a =,21n n n b c c +=⋅ ,记数列{}n b 的前n 项和为n T ,若对任意N n *∈,n T λ<恒成立,求实数λ的取值范围.8、(日照市2017届高三下学期第一次模拟)已知数列{}n a 满足1111,14n na a a +==-,其中n N +∈.(I)设221n n b a =-,求证:数列{}n b 是等差数列,并求出数列{}n a 的通项公式;(II)设41n n a c n =+,数列{}2n n c c +的前n 项和为n T ,是否存在正整数m ,使得11n m m T c c +<对于n N +∈恒成立,若存在,求出m 的最小值,若不存在,请说明理由.9、(泰安市2017届高三第一轮复习质量检测(一模))若数列{}n a 是公差为2的等差数列,数列{}n b 满足1211,2n n n n b b a b b nb +==+=且 (I)求数列{}{}n n a b 、的通项公式; (Ⅱ)设数列{}n c 满足11n n n a c b ++=,数列{}n c 的前n 项和为n T ,若不等式()1nn T λ-<12n n -+对一切n N *∈都成立,求实数λ的取值范围.10、(潍坊市2017届高三下学期第一次模拟) 已知数列{}n a 是等差数列,其前n 项和为n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聊城一中2017届高考适应性考试数学(理科)
测试一
第I 卷(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.
1.若复数z 满足45iz i =-(i 为虚数单位),则z 的共轭复数z 为 A. 54i - B. 54i -+ C. 54i + D. 54i --
2.已知集合203
x M x
x -⎧⎫=<⎨⎬+⎩⎭
,集合{}23N x x =-≤<,则M N ⋂为 A. ()2,3- B. (]3,2-- C. [)2,2- D. (]3,3-
3.已知a ,b ,c ,d 为实数,且d c >,则“a b >”是“a c b d +>+”的 A.充分而不必要条件 B.必要而不
充分条件
C.充要条件
D.既不充分也不必要条件
4.某工厂对一批产品进行了抽样检测,右图
是根据抽样检测后的产品净重(单位:克)数据绘制的频率分散直方图,其中产品净重的范围是[]96,106,样本数据分组为
[)[)[)[)[)
96,98,98,100,100,102,102,104104,106.已知样
本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是
A.90
B.75
C.60
D.45
5.已知平行四边形ABCD 中,AC 为一条对角线,若
()()2,4,1,3,AB AC AD BD ==⋅= 则
A. 8-
B. 6-
C.6
D.8
6.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为中学联盟网
A. 1K >
B. 2K >
C. 3K >
D. 4K >
7. 一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几
何体ADF-BCE 内自由飞翔,由它飞入几何体F-AMCD 内的概率为
A. 34
B. 23
C. 13
D. 12
8.函数()[)cos 0f x x =+∞在,
内 A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点
9.已知双曲线()22
122:100y x C a b a b
-=>>,的离心率为2,若抛物线
()22:20C y px p =>的焦点到双曲线1C 的渐近线的距离是2,则抛物线2C 的方程是
A. 28y x =
B. 2y x =
C. 2y x =
D. 216y x =
10.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有一个小球,且每个盒子里的小球个数都不相同,则不同的放法有( )种
A.15
B.18
C.19
D.21
二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上. 11.设()0
sin cos a x x dx π
=+⎰
,则二项式6
⎛
⎝
的展开式的常数项是_________.
12. 设曲线()()1*11n y x n N +=∈在点,处的切线与x 轴的交点的横坐标为
12399,lg n n n x a x a a a a =+++⋅⋅⋅+令,则的值为_________.
13.若将函数sin 2y x =的图象向右平移()0ϕϕ>个单位,得到的图象关于直线6
x π
=对称,则ϕ的最小值为_________.
14. 设,x y 满足约束条件()360
20,0,00,0x y x y a b x y --≤⎧⎪
-+≥>>⎨⎪≥≥⎩
若z=ax+by 的最大值为12,
则
11
23a b
+的最小值为________. 15.若对任意(),,x A y B A B R ∈∈⊆、有唯一确定的(),f x y 与之对应,称
(),f x y 为关于x 、y 的二元函数.现定义满足下列性质的二元函数()
,f x y 为关于实数x 、y 的广义“距离”:
(1)非负性:(),0f x y ≥,当且仅当0x y ==时取等号; (2)对称性:()(),,f x y f y x =;
(3)三角形不等式:()()(),,,f x y f x z f z y ≤+对任意的实数z 均成立. 今给出四个二元函数:①()22,;f x y x y =+②()()2
,f x y x y =-③
(
),f x y =()(),sin f x y x y =-.
能够成为关于的x 、y 的广义“距离”的函数的所有序号是___________. 三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.
16.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c 。
已知5
sin 13
B =,且a ,b ,c 成等比数列. (1)11
tan tan A C
+求
的值; (2)若cos 12,ac B a c =+求的值。
17.已知等边三角形的边长为3,点D ,E 分别在边AB,AC 上,且满足
11
,2
AD CE ADE DE DE DB EA ==∆∆将沿折叠到A 的位置,使平面1A DE ⊥平面BCDE ,连接11,A B AC 。
(1)证明:1A D ⊥平面BCDE ;(2)在线段BC 上是否存在点P ,使得PA 1与平面1A BD 所成的角为60°?若存在,求出PB 的长;若不存在,说明理由。
18.某品牌电视机代理销售商根据近年销售和利润情况得出某种型号电视机的利润情况有如下规律:每台电视机的最终销售利润与其无故障使用时间T (单位:年)有关.若1T ≤,则每台销售利润为0元;若13T <≤,
则每台销售利润为100元;若T >3,则每台销售利润为200元.设每台该种电视机的无故障使用时间1,13,3T T T ≤<≤>这三种情况发生的概率
分别为12312,,,,P P P P P 又知是方程2
231060,x x a P P -+==且.
(1)求123,,,P P P 的值;
(2)ξ记表示销售两台这种电视机的销售利润总和,求出ξ的分布列和数学期望。
19.用部分自然数构造如图的数表:用
()(),ij a i j i i j N +≥∈表示第行第j 个数,使得
1.i a aij i ==每行中的其他各数分别等于其“肩膀”上
的两个数之和。
设第()n n N +∈行中的各数之和为n b . (1)写出12341,,,n n b b b b b b +,并写出与的递推关系(不要求证明);
(2)令{}2n n n c b c =+,证明是等比数列,并求出{}n b 的通项公式; (3)数列{}n b 中是否存在不同的三项(),,,,p q r b b b p q r N +∈恰好成等差数列?若存在,求出p ,q ,r 的关系;若不存在,说明理由。
20.已知函数()ln f x mx x =+,其中m 为常数,e 为自然对数的底数。
(1)当()1m f x =-时,求的最大值;
(2)若()(]0f x e 在区间,上的最大值为3-,求m 的值; (3)当m=-1时,g(x)=11
2
nx x +,试证明函数y=()f x 的图像恒在函数y=g(x)的图像的上方。
21.设椭圆22
22:1x y C a b
+=的左右焦点分别为12,=x-1F F y ,直线过椭圆的焦点
2F 且与椭圆交于P,Q 两点,若1F PQ ∆周长为
(1)求椭圆的方程;
(2)圆221C x y y kx m C ''+==+:直线与圆相切且与椭圆C 交于不同的两点
A,B ,O 为坐标原点。
若23
34
OA OB λλ⋅=≤≤ ,且,求△OAB 的取值范围.。