数据结构实用教程C语言版

合集下载

《数据结构》教程c语言版

《数据结构》教程c语言版

《数据结构》第五版清华大学自动化系李宛洲2004年5月目录第一章数据结构--概念与基本类型 (6)1.1概述 (6)1.1.1数据结构应用对象 (6)1.1.2学习数据结构的基础 (7)1.1.2.1 C语言中的结构体 (7)1.1.2.2 C语言的指针在数据结构中的关联作用 (8)1.1.2.3 C语言的共用体(union)数据类型 (12)1.1.3数据结构定义 (15)1.2线性表 (17)1.2.1 顺序表 (18)1.2.2 链表 (20)1.2.2.1链表的基本结构及概念 (20)1.2.2.2单链表设计 (22)1.2.2.3单链表操作效率 (29)1.2.2.4双链表设计 (30)1.2.2.5链表深入学习 (32)1.2.2.6稀疏矩阵的三元组与十字链表 (36)1.2.3 堆栈 (41)1.2.3.1堆栈结构 (41)1.2.3.2基本操作 (42)1.2.3.3堆栈与递归 (44)1.2.3.4递归与分治算法 (45)1.2.3.5递归与递推 (49)1.2.3.6栈应用 (52)1.2.4 队列 (57)1.2.4.1队列结构 (57)1.2.3.2队列应用 (59)1.3非线性数据结构--树 (64)1.3.1 概念与术语 (64)1.3.1.1引入非线性数据结构的目的 (64)1.3.1.2树的定义与术语 (65)1.3.1.3树的内部节点与叶子节点存储结构问题 (66)1.3.2 二叉树 (66)1.3.2.1二叉树基本概念 (66)1.3.2.2完全二叉树的顺序存储结构 (68)1.3.2.3二叉树遍历 (69)1.3.2.4二叉树唯一性问题 (71)1.3.3 二叉排序树 (72)1.3.3.1基本概念 (72)1.3.3.2程序设计 (73)1.3.4 穿线二叉树 (79)1.3.4.1二叉树的中序线索化 (80)1.3.4.2中序遍历线索化的二叉树 (81)1.3.5 堆 (82)1.3.5.1建堆过程 (83)1.3.5.2在堆中插入节点 (85)1.3.6 哈夫曼树 (86)1.3.6.1最佳检索树 (86)1.3.6.2哈夫曼树结构与算法 (88)1.3.6.3 哈夫曼树应用 (90)1.3.6.4哈夫曼树程序设计 (92)1.3.7 空间数据结构----二叉树深入学习导读 (95)1.3.7.1k-d树概念 (96)1.3.7.2k-d树程序设计初步 (97)1.4非线性数据结构--图 (100)1.4.1图的基本概念 (100)1.4.2图形结构的物理存储方式 (103)1.4.2.1相邻矩阵 (103)1.4.2.2图的邻接表示 (104)1.4.2.3图的多重邻接表示 (106)1.4.3图形结构的遍历 (107)1.4.4无向连通图的最小生成树(minimum-cost spanning tree:MST) (110)1.4.5有向图的最短路径 (113)1.4.5.1单源最短路径(single-source shortest paths) (113)1.4.5.2每对顶点间最短路经(all-pairs shortest paths) (116)1.4.6拓扑排序 (117)第二章检索 (123)2.1顺序检索 (123)2.2对半检索 (124)2.2.1 对半检索与二叉平衡树 (124)2.2.2对半检索思想在链式存储结构中的应用---跳跃表 (127)2.3分块检索 (133)2.4哈希检索 (134)2.4.1哈希函数 (135)2.4.2闭地址散列 (136)2.4.2.1线性探测法和基本聚集问题 (136)2.4.2.2删除操作造成检索链的中断问题 (138)2.4.2.3随机探测法 (139)2.4.2.4平方探测法 (140)2.4.2.5二次聚集问题与双散列探测方法 (141)2.4.3开地址散列 (142)2.4.4哈希表检索效率 (142)第三章排序 (145)3.1交换排序方法 (145)3.1.1直接插入排序 (145)3.1.2冒泡排序 (147)3.1.3 选择排序 (148)3.1.4 树型选择排序 (149)3.2S HELL排序 (150)3.3快速排序 (152)3.4堆排序 (154)3.5归并排序 (156)3.6数据结构小结 (159)3.6.1 数据结构的基本概念 (159)3.6.2 数据结构分类 (159)3.6.2.1数据结构中的指针问题 (160)3.6.2.2线性表的效率问题 (161)3.6.2.3二叉树 (161)3.6.3排序与检索 (161)3.7算法分析的基本概念 (162)3.7.1基本概念 (162)3.7.2上限分析 (164)3.7.3下限分析 (164)3.7.4空间代价与时间代价转换 (165)第6章高级数据结构内容--索引技术 (167)6.1基本概念 (167)6.2线性索引 (168)6.2.1 线性索引 (168)6.2.2 倒排表 (169)6.32-3树 (170)6.3.1 2-3树定义 (172)6.3.2 2-3树节点插入 (173)6.4B+树 (178)6.4.1 B+树定义 (178)6.4.2 B+树插入与删除 (180)6.4.3 B+树实验设计 (182)第一章数据结构--概念与基本类型1.1概述1.1.1数据结构应用对象计算机应用可以分为两大类,一类是科学计算和工业控制,另一类是商业数据处理。

数据结构(C语言版)

数据结构(C语言版)

比较
Prim算法适用于稠密图, Kruskal算法适用于稀疏图;
两者时间复杂度相近,但 Kruskal算法需额外处理并查
集数据结构。
最短路径算法设计思想及实现方法比较
1 2
Dijkstra算法
从源点出发,每次找到距离源点最近的顶点并更 新距离值,直至所有顶点距离确定。适用于不含 负权边的图。
Floyd算法
特殊二叉树
满二叉树、完全二叉树等。
二叉树的遍历与线索化
二叉树的遍历
前序遍历、中序遍历、后序遍历和层 次遍历是二叉树的四种基本遍历方法 。
线索化二叉树
为了方便查找二叉树节点的前驱和后 继,可以对二叉树进行线索化处理, 即在节点的空指针域中存放指向前驱 或后继的指针。
树和森林的遍历与转换
树的遍历
01
串的顺序存储结构
01
02
03
串的顺序存储结构是用 一组地址连续的存储单 元来存储串中的字符序
列的。
按照预定义的大小,为 每个定义的串变量分配 一个固定长度的存储区 ,一般是用定长数组来
定义。
串值的存储:将实际串 长度值保存在数组的0下 标位置,串的字符序列 依次存放在从1开始的数
组元素中。
串的链式存储结构
03
比较
DFS空间复杂度较低,适用于递 归实现;BFS可找到最短路径, 适用于非递归实现。
最小生成树算法设计思想及实现方法比较
Prim算法
从某一顶点开始,每次选择当 前生成树与外界最近的边加入 生成树中,直至所有顶点加入

Kruskal算法
按边权值从小到大排序,依次 选择边加入生成树中,保证不
形成环路。
数据结构(C语言版)

数据结构实用教程(C语言版)

数据结构实用教程(C语言版)

返回到本节目录
1.1.3 数据的存储结构
1. 顺序存储结构 顺序存储结构:借助元素在存储器中的相对位 置来表示数据元素间的逻辑关系。 【例1.4】对于表1-1提出的学生信息登记表 进行存储,假定每个元素占用50个存储单元, 数据从1000号单元开始由低地址向高地址 存放,对应的顺序存储结构如表1-3所示。
2. 链式存储结构 链式存储结构:借助指示元素存储地址的指针 表示数据元素间的逻辑关系。 【例1.5】对于表1-1学生信息登记表进行链 式存储时,在每个数据元素后方附加一个指 向“下一个结点地址”的指针字段,用于存 放后继数据元素的存储地址,每个数据元素 的地址是随机的,可以不连续。对应的链式 存储结构见表1-4所示。
返回到本节目录
1.1.2 数据的逻辑结构
(3)树型结构 结构中的数据元素之间存在着“一对多”的关 系。 【例1.2】人机对弈 人与计算机进行对弈的部分图如图1-2为所示。
图1-2 人机对弈图
返回到本节目录
1.1.2 数据的逻辑结构
特点: 图中将每一个棋盘看作一个数据元素,则数据 元素之间的关系要比表1-1要复杂许多。 图中数据元素之间是一对多关系,即一个数据 元素向上和一个数据元素相连(称为双亲结 点),向下和多个数据元素相连(称为孩子 结点)。我们将这种关系称为“树型结构”。 4)图形结构或网状结构 结构中的任意数据元素之间都可以有关系,元 素之间存在着“多对多”的关系。
返回到本节目录
1.2.1 算法的概念
4.算法的描述 为了表示一个算法,可以用多种不同的方法, 常用的有自然语言、传统流程图、结构化流 程图、N-S流程图等表示。本书采用C的描 述语言实现对各种数据结构及算法的操作描 述,算法是以函数形式描述,描述如下:

数据结构(C语言版)第1章 绪论

数据结构(C语言版)第1章  绪论
数据结构(Data Structures) 数据结构
(C语言版 语言版) 语言版
主讲教师: 吴让仲 主讲教师:
Instructor: WU, RANGZHONG E-mail: wurangzhong@
1/68
教材 (Text Book) 数据结构(C语言版 数据结构 语言版) 语言版
17/68
逻辑结构的分类
数据的逻辑结构是本质,可以分为: 数据的逻辑结构是本质,可以分为: 线性结构和 线性结构和非线性结构 也可以分为 集合 结构中的数据元素除了同属于一种类型外,别无 结构中的数据元素除了同属于一种类型外, 其它关系. 其它关系. 线性结构 结构中的数据元素之间存在一对一的关系. 结构中的数据元素之间存在一对一的关系. 树型结构 结构中的数据元素之间存在一对多的关系. 结构中的数据元素之间存在一对多的关系. 图状结构或网状结构 结构中的数据元素之间存在多对 多的关系. 多的关系.
数据结构发展简史
作为独立课程国外1968年开始设立. 作为独立课程国外1968年开始设立. 1968年开始设立 1968年美国KNUTH教授开创了数据结构的最初 1968年美国KNUTH教授开创了数据结构的最初 年美国KNUTH 体系. 体系. 计算机专业的专业基础课. 计算机专业的专业基础课. 非计算机专业的主要选修课. 非计算机专业的主要选修课.
25/68
数据结构课程的内容
数据结构是介于数学,计算机硬件和计算机软 数据结构是介于数学,计算机硬件和 数学 件之间的一门计算机科学与技术专业的核心课 是编译原理,操作系统,数据库, 程,是编译原理,操作系统,数据库,人工智 能等课程的基础.同时,数据结构技术也广泛 能等课程的基础.同时, 应用于信息科学,系统工程, 应用于信息科学,系统工程,应用数学以及各 信息科学 种工程技术领域. 种工程技术领域. 数据结构课程的先修课程有高级语言程序设计 和离散数学. 和离散数学

数据结构 (C语言版) (第二版)(目录)

数据结构 (C语言版) (第二版)(目录)

数据结构(C语言版)(第二版)(目录)第1章导论
1 算法和数据结构
2 什么是数据结构
3 符号,引理,定理与证明
4 说明文篇
5 C语言和程序设计
6 总结
第2章算法分析
1 算法的衡量标准
2 时间和空间复杂度分析
3 运行时复杂度分析
4 递归分析
第3章线性表
1 一维数组
2 线性表
3 顺序表
4 链表
5 循环链表
6 树表
7 双向链表
第4章栈
1 栈的定义
2 栈的抽象数据类型
3 栈的基本操作
4 栈的应用——后缀表达式的求算
第7章树
1 树的定义
2 树的抽象数据类型
3 树的存储
4 树的遍历
5 二叉树
6 二叉排序树(搜索树)
7 平衡二叉树
8 哈夫曼树
9 图的存储
第8章查找
1 静态查找
2 哈希表
3 动态单值查找
第10章数据结构综合应用
1 树的遍历
2 贪心法
3 回溯法
4 分析与评价
附录 A C语言库
1 算法入口及时区函数
2 内存处理函数
3 字符串处理函数
4 文件处理函数
附录 B 内存分配方式。

数据结构使用C语言版朱战立丛书版本排序

数据结构使用C语言版朱战立丛书版本排序

{ span = d[m];
//取本次的增量值
for<k = 0; k < span; k++> //共span个小组
{
//组内是直接插入排序,区别是每次不是增1而是增
span
for<i = k; i < n-span; i = i+span>
{ temp = a[i+span];
j = i;
while<j > -1 && temp.key < a[j].key>
优点:实现简单
缺点:每趟只能确定一个元素,表长为n时需要n-1趟
算法如下:
void SelectSort<DataType a[], int n>
{
int i, j, small;
DataType temp;
for<i = 0; i < n-1; i++>
{ small = i;
//设第i个数据元素关键字
(a)初始最大堆 40
32
9
5
10
40 32 9 5 10 50 76 88 (d)交换顶点50后 9
5
76
50
40
5
10
9
32
76 50 40 5 10 9 32 88 (b)交换顶点88后 32
10
9
5
32 10 9 5 40 50 76 88 (e)交换顶点40后
5
9 5 10 32 40 50 76 88
{ a[j+span] = a[j];
j = j-span;
65

数据结构c语言版课后习题答案

数据结构c语言版课后习题答案

数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。

C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。

对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。

数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。

它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。

实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。

答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。

- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。

- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。

- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。

2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。

二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。

答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。

- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。

- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。

- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。

3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。

它提供了快速的数据访问能力,但需要处理哈希冲突。

答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。

- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。

- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。

- 删除操作:找到键对应的哈希桶,删除相应的键值对。

4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。

数据结构(C语言版本)

数据结构(C语言版本)
同一个逻辑结构可以有不同的内部存储结构;反之,数据的存 储结构一定要映像数据之间的逻辑关系。
数据结构的形式定义:数据结构是一个二元组 data_structure=(D,S)
其中:D是数据元素的有限集,S是D上关系的有限集。
2023/11/3
例1 一种结构 lineority=(K,R) K={k1,k2,kHale Waihona Puke ,k4,k5,k6,k7} R={r}
• 众所周知,二十世纪四十年代,电子数字计算机问世的直接原因是解
决弹道学的计算问题。早期,电子计算机的应用范围,几乎只局限于 科学和工程的计算,其处理的对象是纯数值性的信息,通常,人们把 这类问题称为数值计算。
• 近三十年来,电子计算机的发展异常迅猛,这不仅表现在计算机本身
运算速度不断提高、信息存储量日益扩大、价格逐步下降,更重要的 是计算机广泛地应用于情报检索、企业管理、系统工程等方面,已远 远超出了科技计算的范围,而渗透到人类社会活动的一切领域。与此 相应,计算机的处理对象也从简单的纯数值性信息发展到非数值性的 和具有一定结构的信息。
4.存储结构
• 数据在计算机中的存储表示称为数据的存储结构。 • 在表1-1所示的表格数据在计算机中可以有多种存储表示,例如,
可以表示成数组,存放在内存中;也可以表示成文件,存放在磁 盘上,等等。
2023/11/3
5.数据处理
• 数据处理是指对数据进行查找、插入、删除、合并、排序、统计
以及简单计算等的操作过程。在早期,计算机主要用于科学和工 程计算,进入八十年代以后,计算机主要用于数据处理。据有关 统计资料表明,现在计算机用于数据处理的时间比例达到80%以 上,随着时间的推移和计算机应用的进一步普及,计算机用于数 据处理的时间比例必将进一步增大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 概论
本章主要介绍以下内容: ➢数据结构中涉及的相关概念 ➢数据结构研究的主要内容 ➢算法的概念、描述方法以及评价标准
本章目录
1
1.1 什么是数据结构
2
1.2 算法和算法分析
35
1.3本5.章5 小哈结夫曼树
结束
1.1 什么是数据结构
❖1.1.1 基本概念及术语 ❖1.1.2 数据的逻辑结构 ❖1.1.3 数据的存储结构 ❖1.1.4 抽象数据类型
集合上的一组操作的总称。 如在高级语言中,整型类型的取值范围为:-
32768~+32767,运算符集合为加、减、乘、 除、取模,即+、-、*、/、%。
返回到本节目录
1.1.1 基本概念及术语
5.数据类型(Data Type) 高级语言中的数据类型分为两大类: (1)原子类型 其值是不可分解的。如C语言中的标准类型
进行存储,假定每个元素占用50个存储单元, 数据从1000号单元开始由低地址向高地址 存放,对应的顺序存储结构如表1-3所示。
返回到本节目录
1.1.3 数据的存储结构
顺序存储结构的主要特点: ❖ 可实现对各数据元素的随机访问。这是因为
点,与它相邻且在它前面的结点(称为直接前驱) 最多只有一个;与表中任一结点相邻且在其后的结 点(称为直接后继)也最多只有一个。我们将这种 关系称为“线性结构”。
返回到本节目录
1.1.2 数据的逻辑结构
(3)树型结构 结构中的数据元素之间存在着“一对多”的关
系。 【例1.2】人机对弈 人与计算机进行对弈的部分图如图1-2为所示。
数据的逻辑结构和存储结构的关系是:存储结 构是逻辑关系的映像与元素本身映像,是数 据结构的实现;逻辑结构是数据结构的抽象。
返回到本节目录
1.1.3 数据的存储结构
1. 顺序存储结构 顺序存储结构:借助元素在存储器中的相对位
置来表示数据元素间的逻辑关系。 【例1.4】对于表1-1提出的学生信息登记表
返回到本节目录
1.1.2 数据的逻辑结构
(【例1.3】制定教学计划 在制定教学计划时,需要考虑各门课程的开设
顺序。有些课程需要先导先修课程,有些课 程则不需要,而有些课程又是其他课程的先 导先修课程。比如,计算机专业课程的开设 情况如表1-2所示。
返回到本节目录
1.1.2 数据的逻辑结构
教学计划的关系图如图1-3所示。
C3
C8
C1
C9
C4
C6
C2
C7
C5
特点:
图1-3 教学计划关系图
图中数据元素存在着多对多的任意关系。一个 结点可能有多个直接前驱和直接后继。
返回到本节目录
1.1.3 数据的存储结构
数据在计算机中的存储表示称为数据的存储结 构,也称为物理结构。数据的存储结构是逻 辑结构在计算机存储器中的实现。本书将介 绍常用的两种基本的存储结构:顺序存储结 构和链式存储结构。
返回到本节目录
1.1.1 基本概念及术语
数据结构定义:按某种逻辑关系组织起来的一批数据, 按一定的映像方式把它存放在计算机存储器中,并 在这些数据上定义了一个运算的集合,就叫做数据 结构。
简言之,数据结构={ 逻辑结构+存储结构+运算集 合 }。
4.数据类型(Data Type) 数据类型是一组性质相同的值集合以及定义在这个值
图1-2 人机对弈图
返回到本节目录
1.1.2 数据的逻辑结构
特点: 图中将每一个棋盘看作一个数据元素,则数据
元素之间的关系要比表1-1要复杂许多。 图中数据元素之间是一对多关系,即一个数据
元素向上和一个数据元素相连(称为双亲结 点),向下和多个数据元素相连(称为孩子 结点)。我们将这种关系称为“树型结构”。 4)图形结构或网状结构 结构中的任意数据元素之间都可以有关系,元 素之间存在着“多对多”的关系。
的关系外,别无其他关系,这是一种最简单 的数据结构。 (2)线性结构 结构中的数据元素之间存在着“一对一”的关 系。 【例1.1】学籍档案管理 假设一个学籍档案管理系统应包含如表1-1所 示的学生信息。
返回到本节目录
1.1.2 数据的逻辑结构
特点: 表中的每一行是一个数据元素(或记录、结点),它
由学号、姓名、性别及出生年月等数据项组成。 表中数据元素之间是一种先后关系,对于表中任一结
返回到本节目录
1.1.2 数据的逻辑结构
2.数据的逻辑结构的分类 根据数据元素之间的逻辑关系的不同特性,分
为下线性结构 (c)树型结构 (d)图形结构 图1-1 数据结构的四种基本逻辑结构
返回到本节目录
1.1.2 数据的逻辑结构
(1)集合 结构中的数据元素之间除了“同属于一个集合”
返回到本节目录
1.1.1 基本概念及术语
3.数据结构(Data Structure) 是相互之间存在一种或多种特定关系的数据元
素的集合。这些数据元素不是孤立存在的, 而是有着某种关系,这种关系称为结构。 数据结构一般包括以下三个方面内容: (1)数据元素之间的逻辑关系,也称数据的 逻辑结构。 (2)数据元素及其关系在计算机存储器内的 表示,称为数据的存储结构。 (3)数据的运算,即对数据施加的操作。
(整型、实型、字符型)。 (2)结构类型 其值是由若干成分按某种结构组成的,因此是
可以分解的。如C语言中的的构造类型(结 构体、共用体、枚举等类型)。
返回到本节目录
1.1.2 数据的逻辑结构
1.定义 数据的逻辑结构是指数据元素之间逻辑关系描
述。可以用一个二元组表示,其形式化描述 为: Data_Structure=(D,R) 其中D是数据元素的有限集合,R是D上关系 的有限集合。数据的逻辑结构是从逻辑关系 上描述数据,与数据的存储无关,是独立于 计算机的。
返返回回到到本总节目目录录
1.1.1 基本概念及术语
在系统的学习数据结构知识之前,先了解一些相 关概念和术语。
1.数据(Data)
指所有能输入到计算机中并被计算机程序处理的 符号的总称。例如,整数、实数、字符、图像、 声音等都是数据。
2.数据元素(Data Element)
数据元素(也称为结点)是数据的基本单位,在 计算机程序中通常作为一个整体进行考虑和处 理。一个数据元素可以由若干个数据项组成。 数据项是数据处理中不可分割的最小单位。
相关文档
最新文档