流体力学chapter42
《大学物理》第一章 流体力学

R2 , r增大,v减小,r
R, v
0
流体力学
34
大学
四 泊肃叶公式
物理
2)求 Q
取面积元如图,则
dQ v(r) dS v(r)2 rdr
p1
F
S1
p2 S2
L
例1-2 注射器示意图
流体力学
20
大学
三 举例
物理
解:设针管为细流管,
在S1、S2两截面处应用 伯努利方程
F
S1 p1
p2 S2
p1
1 2
12
p2
1 2
22
L
Q
p1
p0
F S1
,
p2 p0 ,
S11 S22
p0
F S1
1
2
S22 S12
22
p0
1 2
2 2
解得 2
2FS1
物理
所有流体在流动时具有黏滞性,因此会有能量的 损耗。当能量损耗必须计时,将其作黏滞流体处理。
层流:当流体流速较小时,保 持分层流动,各流层之间只作 相对滑动,彼此不相混合。流 体的这种运动称为层流。 湍流:当黏滞流体流速较大时,容易产生径向流 动(垂直于管轴方向的速度分量),各流层相互 掺合,整个流体作无规则运动,称为湍流。
求 血液的雷诺数。
解由
R vd
得
R
103
45102 2 3.5 103
102
2649
人体大动脉血管内的血流为湍流。正常情况下,除心瓣膜附 近外,循环系统的其他部位不会有湍流。层流是平静的,没 有音响的。湍流有涡旋和震动,出现噪音。因此,在循环中 听到异常的噪音就应注意是什么原因引起的。
(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
大学物理流体力学精品PPT课件

那么 v1 2gh
这时出口处水流速度与自由落体速度相等。
15
文丘里流量计 (测量管道中液体体积流量)
h
如左图所示。当理想流体在管道中作
定常流动时,由伯努利方程
SA SB
由连续性原理
PA
1 2
v
2 A
PB
1 2
v
2 B
Q S Av A S B vB 又 PB PA gh
起初,人们认为表面光滑的球飞行阻力 小,因此当时用皮革制球。
最早的高尔夫球(皮革已龟裂)
20世纪建立流体力学边界层理论后才解开。
光滑的球
表面有凹坑的球
§2-4.液体的表面现象
在液体与气体的分界面处厚度等于分子有效作用 半径的那层液体称为液体的表面。
S
表示增大液体单位表面积所增加的表面能
2、表面张力系数的基本性质 (1)不同液体的表面张力系数不同,密度小、容易蒸发的 液体表面张力系数小。 (2)同一种液体的表面张力系数与温度有关,温度越高, 表面张力系数越小。 (3)液体表面张力系数与相邻物质的性质有关。 (4)表面张力系数与液体中的杂质有关。
表面张力系数的测定
拉脱法 拉脱法测量液体表面张力系数的实验仪器——焦利秤。
水膜的对金属框的作用力为
f 2 L
当拉起的水膜处于即将破裂的状 态时,两个表面近似在竖直平面内, 此时用焦利秤对金属框的作用力:
Fmfgm2 g L
则液体表面的张力系数: F mg
2L
液滴测定法 将质量为 m 的待测液体吸入移液管
1 2
v2
PA
PB
gh
v 2gh
3.飞机机翼周围的空气是如何流动的
(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体力学C-名词解释

Chapter 1 Fluid statics 流体静力学1. 连续介质假定(Continuum assumption):The real fluid is considered as no-gap continuousmedia, called the basic assumption of continuity of fluid, or the continuum hypothesis of fluid. 流体是由连续分布的流体质点(fluid particle)所组成,彼此间无间隙。
它是流体力学中最基本的假定,1755年由欧拉提出。
在连续性假设之下,表征流体状态的宏观物理量在空间和时间上都是连续分布的,都可以作为空间和时间的函数。
2. 流体质点(Fluid particle ): A fluid element that is small enough with enough moles to makesure that the macroscopic mean density has definite value is defined as a Fluid Particle. 宏观上足够小,微观上足够大。
3. 流体的粘性(Viscosity ): is an internal property of a fluid that offers resistance to sheardeformation. It describes a fluid's internal resistance to flow and may be thought as a measure of fluid friction. 流体在运动状态下抵抗剪切变形的性质,称为黏性或粘滞性。
它表示流体的内部流动阻力,也可当做一个流体摩擦力量。
The viscosity of a gas increases with temperature, the viscosity of a liquid decreases with temperature. 4. 牛顿内摩擦定律(Newton’s law of viscosity ):5. The dynamic viscosity (动力黏度)is also called absolute viscosity (绝对黏度). The kinematicviscosity (运动黏度)is the ratio of dynamic viscosity to density.6. Compressibility (压缩性):As the temperature is constant, the magnitude ofcompressibility is expressed by coefficient of volume compressibility (体积压缩系数) к , a relative variation rate (相对变化率) of volume per unit pressure.The bulk modulus of elasticity (体积弹性模量) E is the reciprocal of coefficient of volumecompressibility к.7. 流体的膨胀性(expansibility; dilatability):The coefficient of cubical expansion (体积热膨胀系数) αt is the relative variation rate of volume per unit temperature change.8. 表面张力Surface tension : A property resulting from the attractive forces betweenmolecules. σ-----单位长度所受拉力9. 表面力 Surface force ——is the force exerted on the contact surface by the contacted fluidor other body. Its value is proportional to contact area. 作用在所研究流体外表面上与表du dzτμ=μνρ=面积大小成正比的力。
(完整版)流体力学

(完整版)流体力学第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
第一章流体力学基本概念

分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
流体力学能量方程

THANKS FOR WATCHING
感谢您的观看
流体力学能量方程
日期:
contents
目录
• 引言 • 流体的基本属性 • 流体的能量方程 • 能量方程的应用 • 案例分析 • 结论
CHAPTER
引言
流体力学的重Βιβλιοθήκη 性流体力学是物理学的一个重要分支,它研究流体(液体和气体)的运动规律、热 力学性质以及它们与固体的相互作用。流体力学在工程、环境、生物医学等领域 有着广泛的应用。
总能量方程是流体力学中描述流体总 能量变化的方程。它包括了流体的内 能、动能和势能,反映了流体在运动 过程中各种能量之间的转换和平衡。
机械能方程
描述流体机械能(动能、势能)的守恒方程。
机械能方程是流体力学中描述流体机械能守恒的方程。它反映了流体在运动过程中动能和势能之间的转换和平衡,是流体动 力学的基本方程之一。
CHAPTER
结论
流体力学能量方程的意义
描述流体运动过程中能量的转换和传递
流体力学能量方程描述了流体在运动过程中动能、势能和内能之间的转换和传递关系, 是理解和预测流体运动规律的重要工具。
指导工程设计和优化
流体力学能量方程在许多工程领域中都有广泛应用,如航空航天、船舶、能源和环境等 。通过合理设计和优化流体系统,可以降低能耗和提高效率。
环境科学的应用
环境科学涉及到许多领域,如大气科学、水 文学、生态学等。通过使用流体力学能量方 程,科学家可以更好地理解环境系统中能量 的转化和传递过程,从而更好地保护和改善 环境。
CHAPTER
案例分析
河流流动的能量方程应用
总结词
描述河流流动中能量方程的应用。
详细描述
河流流动过程中,能量方程可以帮助我们理 解水流在不同地形、高度和阻力的影响下的 变化。通过能量方程,我们可以计算出水流 的速度、水头损失以及水流的动能和势能之 间的转换。这些信息对于水利工程、水文分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F(z) U a ei θ + μ e- i θ a
(U a + μ ) cos θ +i (Ua - μ ) sin θ
a
a
圆表面的流函数 Ψ = (U a - μ) sin θ a
显见,只要选 μ = Ua2 ,则在圆表面上 0
。流动图谱见附图。
可见看出圆R=a把流场分为两部分:由于流体不可能穿越一条流线流动,可以
R a 的区域形成的流场即是速度为U的均匀
来流绕流 R=a 的圆柱流动。
4.7 圆柱的无环量绕流
达朗贝尔佯谬
均匀来流绕流圆柱的速度场对 x 轴和 y 轴都是对称的, 因此压强分布对 x 轴和 y 轴也是对称的,于是圆柱所 受流体作用力的合力为零,即圆柱不但不承受与气流 垂直的升力,也不承受沿流动方向的阻力。
4πUa Γ
2
+
根号前取“一”
4Ua / 0, R 0
意味着驻点在圆内,这是不可能的。
根号前取“+”
号
R=
Γ
1+
a 4πUa
1
-
4πUa Γ
2
R/a>1, 驻点在圆柱面外正下方。
1 4Ua
4.8 有环量圆柱绕流
升力和阻力
有环量绕流速度场对 y 轴对称,压强场也对 y 轴对称,因此在 x 轴方向圆柱所受表面力合力为零。
4.6 偶极子流动
F(z) μ z
显然 z = 0 处是上述函数的奇点。
4.6 偶极子流动
偶极子是一对无限接近的非常强的点源和非常强的点汇
F(
z)
m 2π
ln
z
+
ε
m 2π
ln(z
-
ε) =
m 2π
ln
z+ε z-ε
=
m 2π
ln
+ -
ε
z ε
z
0 ε <<1
z
=
m 2π
ln
+
ε z
+
ε z
= (uR - i uθ ) e-i θ
uR
=
-
μ R2
cos θ
uθ
=
-
μ R2
sin
θ
4.6 偶极子流动
流场中流线的方向可依据点源、点汇的位置来确定,也可
根据 uR ,uθ 方向而定。
上述流动称偶极子流动,处于流场中心的奇点称偶极子。
4.6 偶极子流动
强度为μ,位于点 z 0的偶极子的复位势: F(z) μ z - z0
ÑC F(z) dz = 2 π i ( R1 + R2 +...+ Rn )
式中 R1 是 F(z) 在点 z1 的留数,R2 是 F(z) 在点 z 2 的留数,等等。
4.10 作用在圆柱上的力和力矩
作用在圆柱上的力
2 C0
2 C0
Ñ = ρ 2
-
v2
)dy
+i
uvdy
+
1 2
(u 2
-
v2
)dx
与动量定理求出的柱体受力X,Y的表达式相比得,
Ñ X - iY = i ρ W 2dz 2 C0
上式中X,Y是作用在柱体重心的力,方向分别沿 x 与 y 轴正向;C0 是包围柱体的任意曲面;W为复速度。
再利用伯努利方程求出柱体表面压强分布,作积分求出表面力合 力与合力矩。
•复变函数方法 布拉修斯公式
Ñ X -Yi = i ρ W 2dz 2 C0
Ñ M
=
-
ρ 2
Re
C0
z
W
2dz
而曲线积分则可利用留数定理求出。
4.9 布拉修斯公式
柱体受力分析
设定常均匀来流绕流任意形 状的柱体,周围流体对柱体 的作用力可简化为作用在柱 体重心的力X、Y 以及力矩 M(取xoy坐标原点在柱体 质心)。
V
ρurdV
ÑCS ρurδQ
=
t
V
ρurdV
+
蜒 ρurur
S
nrdS
=
S
ρur Q
写成分量形式,
Fx = ÑCS ρuδQ Fy = ÑCS ρvδQ
应用动量定理于上述控制体,
4.9 布拉修斯公式
nr
蜒 x方向, -X - pdy = uρ(udy - vdx)
C0
C0
蜒 y方向, -Y + pdx = vρ(udy - vdx)
4.9 布拉修斯公式
nr
动量矩定理
r M
=
ÑCS
rr
ur
ρ
δQ
对我们研究的控制体,只需要考虑z方向分量方程,
Y nr
M
X
udy
Ci
vdx
pdy
Co
pdx
-M
蜒+ (xpdx+ C0
ypdy) =
C0
ρvx(udy
- vdx)-
ρuy(udy
- vdx)
方程左边第一项是柱体对流体的反力矩, 第二项是C0 外的流体作用在C0上的压力对坐标原点(柱体重心)的矩。 方程右边则是单位时间净流出控制面的流体动量矩,方括号内两项分别
表示动量 ρvδQ, ρuδQ 对坐标原点的矩。由于没有流体通过柱体
表面Ci,积分只在C0上进行。
利用伯努利方程 p = c - 1 ρ u2 - v2 消去上式内的压强项,并考虑到
2
蜒 cdx cdy 0
C0
C0
,力矩M可表示为,
Ñ M [ (u2 v2) (x dx y dy) 2 u v (x dy y dx) ] 2 C0
nr
Y
M
Ci
nr
X udy
vdx
pdy
Co
dl
pdx
取任意形状封闭曲面C0 包围柱体,柱体表面为Ci。以C0 ,Ci 间 的空间为控制体,控制体内的流体受到C0 外流体的压强p的作 用,同时受到柱体的反作用力 -X,-Y,以及反力矩-M的 作用。
4.9 布拉修斯公式
动量定理
r F r F
=
D Dt
4.7 圆柱的无环量绕流
用一个半径为a的圆柱状薄金属壳垂直于均匀流插入 流场并与圆R=a的流线相重合,将不会对圆内的偶 极子流动和圆外的均匀来流形成干扰。移去金属壳 内的偶极子流体,填充以固体材料形成一个固体圆 柱,圆外的流动将保持不变,也就是说速度为U的均 匀来流和强度为 μ = Ua2 的偶极子流动叠加后在
由于环量的存在,流场对 x 轴不再对称,在圆柱上表面顺时针 的环流和无环量的绕流方向相同,因此速度增加,而在下表面 则方向相反,速度减少。根据伯努利方程上表面压强减小,下 表面压强增大,于是产生向上的合力,称升力。
4.9 布拉修斯公式
求圆柱受力和力矩的方法
•压强积分方法 从复位势求出柱体表面速度分布;
C0
C0
Y nr
M
X
Ci
udy vdx
Ci 是一条流线,没有流体穿过
蜒
CS
Ci
蜒
C0
C0
通过C0上的微分面积的体积流量 δQ = udy - vdx
Co
pdy
dl
微元面在x和y方向受到的压力则分别为:-p dy,p dx
pdx
伯努利方程 p = c - ρ u2 +v2 2
代入 x 和 y 方向的动量方程,并考虑到
a2 iΓ F(z) U (z + )+ ln z +c
z 2π
z = aeiθ
F(z) U (aei θ + ae-i θ )+ i Γ ln(aei θ )+c = 2U cos θ - Γ θ + i Γ ln a +c
2π
2π 2π
令
c = - iΓ lna 2π
,则在圆柱面Ψ=0 。于是,
1 4Ua
一个驻点, 3 2 。 相当于3,4象限的两个驻点,当Γ增大时,相互靠近最
终汇合在圆柱面的最低点。
4.8 有环量圆柱绕流
圆柱面外的驻点
Γ继续增加,
4Ua
1,
驻点就不可能保持在圆柱面上,而是进入流体中。
驻点方程
U(1 -
a2 R2
)cos θ
=
0
U(1+
a2 R2
)sin θ
=
蜒 cdx cdy 0 ,得
C0
C0
Ñ X = ρ
C0
uvdx
-
u2 - v2
dy
Ñ Y = -ρ
C0
uvdy
+
u2 - v2
dx
Fx = ÑCS ρuδQ Fy = ÑCS ρvδQ
布拉修斯公式
4.9 布拉修斯公式
若已知复速度W(z) , 则
蜒 i ρ W 2dz = i ρ u - i v2 dx+i dy
θ
-
a2 R2
e-i θ ) +
iΓ 2πR
e-i
θ
=
U
(1
-
a2 R2
)
cos
θ
+
i
U
(1+
a2 R2
)
sin
θ
+
Γ 2πR
e-i
θ
uR
=
U
(1 -
a2 R2
)
cos θ
uθ
=
-U
(1+