第八章:细菌和病毒的遗传学分析
第八章 微生物遗传学笔记

杂交育种的优点:①由于杂交育种选用了已知性状的供体菌和受体菌作为亲本,故在方向性和自觉性方面,均比诱变育种前进了一大步。②利用杂交育种可以消除某一菌株在经过长期诱变处理后所出现的产量上升缓慢的现象
杂交育种的缺点:杂交育种的方法较复杂,目前还没有得到普遍的推广和使用,尤其在原核生物的领域中,应用转化、转导或接合等重组技术来培育可应用于生产实践上的高产菌株的例子还不多见。
2.转导:通过完全缺陷或部分缺陷噬菌体的媒介,把供体细胞的DNA小片段携带到受体细胞中,通过交换与整合,使后者获得前者部分遗传形状的现象。获得新遗传形状的受体细胞称为转导子(transductant)
3.接合(conjugation):供体菌通过性菌毛传递不同长度的单链DNA给受体菌,在后者细胞中发生交换、整合,从而使后者获得供体菌的遗传性状的现象。获得新性状的受体细胞称为接合子。
移码突变(frame-shift mutation)指诱变剂使DNA分子中的一个或少数几个核苷酸的增添(插入)或缺失,从而使该部位后面的全部遗传密码发生转录和转译错误的一类突变。
染色体畸变(chromosomal aberration)某些理化因子,如X射线等的辐射及烷化剂、亚硝酸等,除了能引起点突变外,还会引起DNA的大损伤——染色体畸变,包括以下两个方面:染色体结构上的缺失、重复、易位和倒位染色体数目的变化。
6.降解性(代谢)质粒
如假单胞菌属中发现。它们的降解性质粒可为一系列能降解复杂物质的酶编码,从而能利用一般细菌所难以分解的物质做碳源。这些质粒以其所分解的底物命名。
7.隐秘质粒:不显示任何表型效应,只能通过物理的方法检测的质粒。如酵母菌的2um质粒。
二.转座因子
插入(IS)序列、转座子(Tn)、特殊病毒(Mu噬菌体)
遗传学第二版课后答案章

幻灯片 1习题参考答案第四章第五章幻灯片 2第四章孟德尔式遗传分析2. 在小鼠中,等位基因 A 引起黄色皮毛,纯合时不致死。
等位基因 R 可以单独引起黑色皮毛。
当 A 和 R 在一起时,引起灰色皮毛;当 a 和 r 在一起时,引起白色皮毛。
一个灰色的雄鼠和一个黄色雌鼠交配,F1 表型如下:3/8 黄色小鼠, 3/8 灰色小鼠, 1/8 黑色小鼠, 1/8 白色小鼠。
请写出亲本的基因型。
A_R_A_rrAaRrAarraaR_aarrA_rrA_R_幻灯片 3第四章孟德尔式遗传分析3. 果蝇中野生型眼色的色素的产生必需显性等位基因 A。
第二个独立的显性基因 P 使得色素呈紫色,但它处于隐性地位时眼色仍为红色。
不产生色素的个体的眼睛呈白色。
两个纯系杂交,结果如下:AAXpXp aaXPYAXP AXp aXP aXp AXp AAXPXp 紫AAXpXp 红AaXPXp 紫AaXpXp 红AY AAXPY 紫AAXpY 红AaXPY 紫AaXpY 红aXp AaXPXp 紫AaXpXp 红aaXPXp 白aaXpXp 白aY AaXPY 紫AaXpY 红aaXPY 白aaXpY 白AaXPXp AaXpY解释它的遗传模式,并写出亲本、F1 和F2 的基因型。
A/a 位于常染色体上,P/p 位于X染色体上;基因型aa 的个体眼睛呈白色,基因型A_XP_ 的个体眼睛呈紫色,基因型A_XpXp、A_XpY 的个体眼睛呈红色。
幻灯片 4第四章孟德尔式遗传分析4. 一条真实遗传的棕色狗和一条真实遗传的白色狗交配,所有F1 的表型都是白色的。
F1 自交得到的 F2 中有 118 条白色狗、32 条黑色狗和 10 条棕色狗。
给出这一结果的遗传学解释。
分析: 子二代分离为 12:3:1,可看作9:3:3:1 的衍生,白色与有色(黑 + 棕)之比 3:1 ,而在有色内部,黑与棕之比也是 3:1,表明遗传很有可能涉及有两对基因之差。
微生物学 第八章 微生物遗传

细菌如此之小,它们不会携带过多的额外DNA。在进 化过程中,Rho可能使得基因被紧凑地‘打包’起来,从 而反过来促进了细菌的快速生长。”
二、啤酒酵母的基因组
1996年,由欧洲、美国、加拿大和日本共96个实验室 的633位科学家的艰苦努力完成了全基因组的测序工作, 这是第一个完成测序的真核生物基因组。
质粒通常以共价闭合环状(covalently closed circle,简称 CCC)的超螺旋双链DNA分子存在于细胞中.
从细胞中分离的质粒大多是三种构型,即CCC型、OC型 (open circular form)和L型(linear form).
二、质粒的主要类型
1. 致育因子(Fertility factor,F因子) 2. 抗性因子(Resistance factor,R因子) 3. Col质粒 4. 毒性质粒(virulence plasmid) 5. 代谢质粒(Metabolic plasmid) 6. 隐秘质粒(cryptic plasmid)
少数基因突变不影响生命的生存;适应复杂多变的环境。 酵母比细菌和病毒“进步”且“富有”,而细菌和病毒更 “聪明”。
第三节 质粒和转座因子
质粒(plasቤተ መጻሕፍቲ ባይዱid) 独立于染色体外,能进行自主复制的细胞 质遗传因子,主要存在于各种微生物细胞中;
转座因子(transposable element) 位于染色体或质粒上的一 段能改变自身位置的DNA序列,广泛分布于原核和真核细胞 中。
拟核上结合有类组蛋白蛋白质和少量RNA分子,使其 压缩成一种手脚架形的(scaffold)致密结构 。
大肠杆菌及其它原核细胞就是以这种拟核形式在细胞 中执行着诸如复制、重组、转录、 翻译以及复杂的调节 过程。
遗传学第八章 核外遗传分析课件

2、 性比(sex-ratio,SR)因子
◇SR因子是胞质中的一种原生动物,在雌蝇 和雄蝇中都能发现,但对发育中的雄性幼 虫是致死的,所以后代中雌蝇比例远大于 雄蝇比例。
◇将SR雌蝇的卵细胞质注入正常雌蝇可诱导 SR现象。
◇有证据表明,产生雄性致死毒素的可能是原 生动物内的病毒。
基因型与表型的关系
细胞质基因 正常(N) 不育(S)
核基因型
RfRf(可育) Rfrf(可育) rfrf(不育) N(RfRf)可育 N(Rfrf)可育 N(rfrf)可育 S(RfRf)可育 S(Rfrf)可育 S(rfrf)不育
遗传学 第八章 核外遗传分析
(二)可能的遗传机制 1、线粒体与雄性不育的关系 2、叶绿体与雄性不育的关系
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
• KSS综合征(Keams-Sayre Syndrome)是多 系统线粒体病,主要症状为眼肌麻痹和色素性视 网膜炎。患者骨骼肌细胞mtDNA有2.0kb7.0kb的缺失。 遗传学 第八章 核外遗传分析
五、叶绿体遗传及其分子基础
(一)衣藻的叶绿体遗传
◇ 衣藻细胞中只有一个叶绿体,约含50个 拷贝的环状ds-DNA分子。 ◇ 不同交配型(mt+,mt-)的单倍体衣藻 杂交,形成短暂2n时期,进行减数分裂。 ◇ 虽然杂交双方融合时为合子提供等量细 胞质,但叶绿体只由mt+方传递,表现单亲 遗传。
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
(二)叶绿体遗传的分子基础 1、叶绿体基因组
大小:环状双链DNA分子。大小120-190kb。 其基因序列中不含5-甲基胞嘧啶。
◆ cpDNA编码约100种蛋白质和RNAs,包 括45个编码RNA的基因,27个编码与基因表达 有关的蛋白的基因,18个编码类囊体膜的蛋白基 因和10个与电子传递功能有关的基因。
《微生物学》主要知识点-08第八章微生物的遗传

第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。
遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。
变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
基因型(ge no type某一生物个体所含有的全部基因的总和。
表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。
饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。
8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。
1944年O.T.Avery等人进一步研究得出DNA是遗传因子。
S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。
3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。
8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。
细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。
基因组通常是指全部一套基因。
由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。
《遗传学》教学日历

实验四果蝇的连锁交换和基因定位(综合实验)
4
9
11.17.
第七章染色体变异(续)
3
10
11.24.
第八章细菌和病毒的遗传
3
实验五染色体结构和数目的变异
4
11
12.1.
第九章遗传物质的分子基础
3
12
12.8.
第十章基因表达与调控
3
实验六植物染色体的核型分析(综合实验)
4
13
12.15.
第十一章基因工程和基因组学
2015~2016学年秋冬学期《遗传学》教学日历
周
次
日
期
讲课
其他教学环节
执行
情况
教学大纲章节名称
课内时数
课外时数
实验、上机、实习、习题及
其它教学实践环节
课内时数
课外时数
1
9.15.
第一章绪论
3
2
9.22.数分裂的观察及永久片制作
4
3
9.29.
第三章孟德尔遗传
3
4
10.13.
第三章孟德尔遗传(续)
第四章连锁遗传规律和性连锁
3
实验二姐妹染色单体差别染色的方法(综合实验)
4
5
10.20.
第四章连锁遗传规律和性连锁(续)
第五章数量性状遗传
3
6
10.27.
第五章数量性状遗传(续)
3
实验三果蝇的形态鉴别和伴性遗传(综合实验)
4
7
11.3.
第六章基因突变
3
8
11.10.
第七章染色体变异
3
14
12.22.
第十二章细胞质遗传
第八章微生物遗传

2. 噬菌体感染实验
1952年,A.D. Hershey &M. Chase 利用噬菌体感染实验 证明DNA是噬菌体的 遗传物质基础。
3. 植物病毒重建实验
1956年,H. Fraenkel-Conrat 用含RNA的烟草花叶病 毒(TMV)与霍氏车前花叶病毒(HMV)进行著名的植 物病毒重建实验,证明RNA是病毒的遗传物质。
– 特点:群体几乎所有个体发生同样变化,性状变化 幅度小,且不稳定、不可遗传。
• 野生型(wild type) :从自然界中分离到的微生
物菌株,称野生型菌株,简称野生型。
• 突变型:野生型菌株经突变后形成的带有新性状
的菌株,称突变株,或突变体、突变型。
第一节 微生物遗传的物质基础
什么是遗传的物质基础?
1)动物试验
2)细菌培养试验
3)S型菌的无细胞抽提液试验
活R菌 + S型菌的无细胞抽提液 培养皿培养大量R菌和少量S菌 说明在死的S型细菌体内可能存在某种具有遗传转化能力的物质,可 以进入R型菌细胞,使R性菌株获得表达S型荚膜性状的遗传物质。
第一证据确定DNA是遗传的物质基础
• 1944年, O.T. Avery等从热死S型菌株提 纯了几种可能的转化因子进行体外转化。
➢ 毒性区(Vir) ➢ 接合转移区(con) ➢ 复制启始区 ➢ T-DNA区
T-DNA区 毒性区(Vir)
接合转移区(con)
复制启始区
5) Ri质粒
6)
与再生根形成有关的质粒
• 与Ti 质粒相似,有Ri质粒转化的根部不形成 根瘤,仅生出可再生新植株的毛状根。
• 在基因工程中,Ri 质粒作为外源基因的载体。
或数字表示,如lacZ
《遗传学》朱军版习题及答案

《遗传学(第三版)》朱军主编课后习题与答案目录第一章绪论 (1)第二章遗传的细胞学基础 (2)第三章遗传物质的分子基础 (6)第四章孟德尔遗传 (9)第五章连锁遗传和性连锁 (12)第六章染色体变异 (15)第七章细菌和病毒的遗传 (21)第八章基因表达与调控 (27)第九章基因工程和基因组学 (31)第十章基因突变 (34)第十一章细胞质遗传 (35)第十二章遗传与发育 (38)第十三章数量性状的遗传 (39)第十四章群体遗传与进化 (44)第一章绪论1.解释下列名词:遗传学、遗传、变异。
答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。
2.简述遗传学研究的对象和研究的任务。
答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。
遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。
3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。
遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。
同时经过人工选择,才育成适合人类需要的不同品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大因素。
4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接将F因子通过接合管传递给受体菌
F因子整合到细菌染色体后通过接合管传递给受体菌
5.低频重组与高频重组
低频重组(low frequency recombination): F+与F-的杂交中,F因子的转移频率很高,
但供受体细菌染色体的重组频率却很低,约为 10-6,因此F+品系称为低频重组品系(菌株)。
相同
不同
都能和F-进行杂交产 产生的重组子频率不
生重组后代;
同;10-4,10-7
杂交时都要通过接合 F+×F-后代பைடு நூலகம்为F+,
管和受体菌相连接;
而Hfr×F-后代绝大多
用高剂量链霉素处理 数为F- ;
后都不影响杂交,说明 F+ 经吖啶橙处理后
它们都是作为一种供体。 会变成F-,Hfr经吖啶
橙处理后仍为Hfr。
原点(origin):(复制区)
(pairing region):( )
区配 对 区 重 组
Hfr细菌(高频重组菌株)
细菌含有F因子,并且F因子通过交换整合到主 染色体上,这样的细菌叫Hfr细菌。 Hfr的主染色体进入F-中的频率高,比F+×F-高 1000倍。
F+、F-和Hfr菌株
4.供体将F因子传递给受体的过程
18
25
用不同的Hfr菌株进行中断杂交实验所作出的大肠 杆菌基因连锁图,其基因向F-细胞转移的顺序大 不相同。
重组作图
当转移时间间隔在两分钟之内, 如已知lac与ade 紧密连锁,距离约为1分钟,中断杂交作图就不可靠, 须用传统的重组作图(recombination mapping)
接合重组作图的特点:(与减数分裂生物的区别)
莱德伯格解决方法: 采用了大肠杆菌(Escherichia coli)K12菌株的两个 营养缺陷型品系:
品系A met- bio- thi+ leu+ thr+ 品系B met+ bio+ thi- leu- thr-
接合现象
质疑:细菌的杂交实验获得重组子可能原因:
细菌的杂交实验获得的重组子可能是转化的结 果。 培养基中含有某些代谢产物,混合后这些产物 互相补充了对方的不足而得以在基本培养基上生 长。
6.部分二倍体: 当Hfr菌的部分染色体进入F-细胞后,F-细胞中 就成为部分二倍体(partial diploid)或部分合子 (merozygote)。
外基因子
内基因子
7.细菌重组的特点
供体DNA片段 受体细胞染色体
细胞死亡
只有偶数次的交换才 能保持细菌染色体的 完整性,产生有活性 的重组子。
A Str
B
A
B Str
基本培养基 +str
出现原养型菌落
不出现原养型菌落
大肠杆菌的两种类型
Hayes(1952)研究表明:
大肠杆菌两种不同菌株(品系)接合过程中遗 传物质的转移是单向的; 从而认为大肠杆菌存在两种类型:雌性与雄 性,分别作为接合过程中遗传物质的受体与供 体。
3.致育因子(fertility factor,F)
偶数次交换得到的重 组子只有一种类型, 相反重组子是一个线 状片段,不能复制, 随着细胞分裂而丢失
8.中断杂交与重组作图
雅科(Jacob,F)和沃尔曼 (Wollman,E.)在五十年 代设计了一个著名的中断杂交试验(interrupted mating experiment)。 他们采用的菌株基因型为: Hfr: thr+ leu+ azis tons lac+ gal+ strs F–: thr– leu– azir tonr lac– gal- strr
便于研究基因的作用; 可作为研究高等生物的简单模型;
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔 特姆( Tatum )在1946大肠杆菌杂交试验中发现 的。
a+b- × a-b+
a+b+ 问题:得到的重组子a+b+的频率很低(10-7)和 回复突变频率相近(10-6),两者难以区别。
遗 传 学 院数 理 与 生 物 工 程 学
第七章细菌和病毒的遗传学分析
细菌和病毒在遗传研究中的优越性
细菌的遗传分析* 噬菌体的遗传分析
一 细菌和病毒在遗传研究中的优越性
繁殖世代所需时间短; 易于管理和进行化学分析; 遗传物质较简单,便于用作研究基因结构、 功能及调控机制的材料。 便于研究基因的突变;
中断杂交的过程
上述事实说明,Hfr菌株的基因是按一定的线性顺序 依次进入F–菌株的,染色体从原点以直线方式进入F– 细胞。基因位点离原点愈近,进入F–细胞愈早,反之 则晚。
根据中断杂交的实验,用Hfr基因在F–细胞中出现的 时间为标准,可以作出大肠杆菌的遗传连锁图。
gal
8 8.5 9 11
1950年戴维斯(Davis)设计了一种U型管实验, 证实了A和B菌株之间确实是发生了杂交。
结论:
原养型不是转化或互养产生的; 两菌株细胞的直接接触是产生原养型菌株的前 提。
2.海斯(W.Hayes)的实验(1952)
海斯在重复莱德伯格和泰特姆的细菌杂交实验之前, 分别用高剂量的链霉素来处理A菌株和B菌株。
(1)不用亲本类型 (2)两对基因间的交换频率,必须在形成部分二倍 体的条件下,计算重组率。 (3)部分二倍体如果不发生重组,无法鉴别。 (4)接合重组不产生相反的重组类型
Hfr: lac+ade+strs X F-: lac-ade-strr
混合60min
MM+str
F-:ade+strr 1000 影印EMB
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合 后将供体染色体的一部分或全部传递给F-受体,当 供体和受体的等位基因带有不同的遗传标记时,可 观察到它们之间发生重组,频率可达到10-2以上, 称为高频重组品系(菌株)
Hfr和F+的异同
细菌染色体外的一个决定细菌雄性性别的共价环 状DNA分子,称为致育因子 (fertility factor),又称 为F因子或F质粒。
携带F因子的菌株称为供 体菌或雄性,用F+表示。
未携带F因子的菌株为受 体菌或雌性,用F-表示。
F因子结构
致育基因(fertility gene): (接合转移区)