北理工《概率论与数理统计》课程学习资料(一)791

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》分布函数能够完整地描述随机变量的统计特性,但在某些实际问题中,不需要全面考查随机变量的变化,只需知道它的随机变量的某些数字特征也就够了.评定某企业的经营能力时,只要知道该企业例如:年平均赢利水平研究水稻品种优劣时,我们关心的是稻穗的平均粒数及平均重量考察一射手的水平,既要看他的平均环数是否高,还要看他弹着点的范围是否小,即数据的波动是否小.由上面的例子看到,平均盈利水平、平均粒数、平均环数、数据的波动大小等,都是与随机变量有关的某个数值,能清晰地描述随机变量在某些方面的重要特征,这些数字特征在理论和实践上都具有重要意义.另一方面,对于一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,其中的参数恰好就是某些数字特征,因此,只要知道了这些数字特征,就能完全确定其具体的分布.第四章随机变量的数字特征4.1随机变量的平均取值——数学期望4.2随机变量取值平均偏离平均值的情况——方差4.3 描述两个随机变量之间的某种关系的数——协方差与相关系数4.1 数学期望一离散型随机变量的数学期望二连续型随机变量的数学期望三常见分布的数学期望四随机变量函数的数学期望五数学期望的性质六、数学期望的应用一离散型随机变量的数学期望引例射击问题设某射击手在同样的条件下,瞄准靶子相继射击90次,(命中的环数是一个随机变量).射中次数记录如下命中环数Y0 1 2 3 4 5命中次数n k 2 13 15 10 20 30频率n k/n2/90 13/90 15/90 10/90 20/90 30/90试问:该射手每次射击平均命中靶多少环?解:平均命中环数这是以频率为权的加权平均命中环数Y0 1 2 3 4 5命中次数n k2 13 15 10 20 30频率n k /n 2/90 13/90 15/90 10/90 20/90 30/900211321531042053090×+×+×+×+×+×=21315102030012345909090909090=×+×+×+×+×+×50k k n k n =⋅∑ 3.37.==射中靶的总环数射击次数平均射中环数频率随机波动随机波动“平均射中环数”的稳定值?=由频率的稳定性知:当n 很大时:频率n k /n 稳定于概率p k 稳定于50k k n k n =⋅∑50k k k p =⋅∑50k k n k n =⋅∑“平均射中环数”等于射中环数的可能值与其概率之积的累加定义1 设X 是离散型随机变量,它的概率分布是:P {X =x k }=p k , k =1,2,…如果绝对收敛,则称它为X 的数学期望或均值.记为E (X ), 即如果发散,则称X 的数学期望不存在.1k k k x p ∞=∑1()k k k E X x p ∞==∑1||k k k x p∞=∑注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.注1:随机变量X 的数学期望完全是由它的概率分布确定的,而不应受X 的可能取值的排列次序的影响,因此要求绝对收敛1k k k xp ∞=<+∞∑11111(1)1ln 2234212n n−+−++−→− 1111111(2)1ln 22436852−−+−−+→注2.E (X )是一个实数,而非随机变量,它是一种以概率为权的加权平均,与一般的算术平均值不同,它从本质上体现了随机变量X 取可能值的真正的平均值,也称均值.当随机变量X 取各个可能值是等概率分布时,X 的期望值与算术平均值相等.假设X 1P80 85 90 1/4 1/4 1/21()800.25850.25+900.586.25E X =×+××=X 2P80 85 901/3 1/3 1/32()85.E X =注3.数学期望E(X)完全由随机变量X的概率分布确定,若X服从某一分布,也称E(X)是这一分布的数学期望.乙射手甲射手例1.甲、乙两个射击手,他们射击的分布律如下表所示,问:甲和乙谁的技术更好?击中环数8 9 10概率0.3 0.1 0.6击中环数8 9 10概率0.2 0.5 0.3单从分布列看不出好坏,解:设甲,乙两个射击手击中的环数分别为X 1,X 2E (X 1)=8×0.3+9×0.1+10×0.6=9.3(环)E (X 2)=8×0.2+9×0.5+10×0.3=9.1(环)例2.1654年职业赌徒德.梅尔向法国数学家帕斯卡提出一个使他苦恼很久的分赌本问题:甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平局.他们约定,谁先赢三局,则得到全部100法郎的赌本.当甲赢了2局,乙赢了1局时,因故要中止赌博.现问这100法郎如何分才算公平?解:假如比赛继续进行下去,直到结束为止. 则需要2局.这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.设:X、Y分别表示甲和乙得到的赌金数. 则分布律分别为:X0 100 P1/4 3/4Y0 100 P3/4 1/4这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.E(X)=0×1/4+100×3/4=75E(Y)=0×3/4+100×1/4=25即甲、乙应该按照3:1的比例分配全部的赌本.例3.确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否做此项投资?解:设X 为此项投资的利润,则存入银行的利息:故应该选择该项投资.(注:投资有风险,投资须谨慎)X 8 −2P0.3 0.7此项投资的平均利润为:E (X )=8×0.3+(−2)×0.7=1(万元)10×0.05=0.5(万元)设X 是连续型随机变量,密度函数为f (x ).问题:如何寻找一个体现随机变量平均值的量.将X 离散化.二、连续型随机变量的数学期望在数轴上取等分点:…x −2<x −1<x 0<x 1<x 2<…x k +1−x k =∆x ,k =0,±1,….,并设x k 都是f (x )的连续点.则小区间[x i ,x i+1)阴影面积近似为f (x i )∆x i1()i x x f x dx+=∫()i f x x≈∆P {x i <X ≤x i +1}定义一个离散型随机变量X *如下:其数学期望存在,且绝对收敛时,P {X *=x i }=P {x i ≤X <x i +1} ≈f (x i )∆x对于X *,当当分点越来越密,即∆x →0时,可以认为X *=x i 当且仅当x i ≤X <x i +1(*)i i ix P X x =∑(*){*}i i iE X x P X x ==∑()i i ix f x x ≈∆∑0=lim ()i i x ix f x x ∆→∆∑则其分布律为E (X *) →E (X ) *0=lim x EX EX ∆→即有:+()xf x dx∞−∞=∫定义2:设X 是连续型随机变量,其密度函数为f (x ),如果绝对收敛,则称的值为X 的数学期望,如果积分发散,则称随机变量X 的数学期望不存在.+()xf x dx ∞−∞∫+||()x f x dx∞−∞∫即+()()E X xf x dx∞−∞=∫+()xf x dx ∞−∞∫记为E (X ).注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.三、常见分布的数学期望1.0−1分布设随机变量X服从参数为p的0−1分布,求EX.解:X的分布律为X0 1P1−p p则:E(X)=0×P{X=0}+1×P{X=1}=P{X=1}=p概率是数学期望的特例(第五章)2.二项分布X 的分布律为P {X =k }=C n k p k (1−p )n−k ,k =0,1,…,n .解:设随机变量X ~b (n ,p ),求EX .0{}nk EX kP X k ==∑0(1)n k k n k n k kC p p −=−∑1!(1)!()!n k n kk n k p p k n k −=−−∑1(1)(1)1(1)!(1)(1)!()!nk n k k n np p p k n k −−−−=−−−−∑11(1)1(1)n l k l ln ln l np Cp p −=−−−−=−∑1[(1)]n np p p −=+−np=抛掷一枚均匀硬币100次,能期望得到多少次正面3.泊松分布则解:X 的分布律为设随机变量X ~π(λ),求EX .{},0,1,2,!kP X k e k k λλ−=== 00(){}!k k k e E X kP X k k k λλ−∞∞=====∑∑11(1)!k k ek λλλ−∞−==−∑1!ii k i e i λλλ∞=−−=∑=e e λλλλ−=1!k k e k k λλ−∞==∑泊松分布的参数是λ4.几何分布解:X 的分布律为P {X =k }=q k −1p ,k =1,2,….p+q =1设随机变量X 服从参数为p 的几何分布,求EX .111(){}k k k E X kP Xk k pq∞∞−=====⋅∑∑11k k p k q∞−=⋅∑1=()kk p q ∞=′∑1=()k k p q ∞=′∑()1q p q′=−211(1)p q p=−重复掷一颗骰子平均掷多少次才能第一次出现6点设X ~U (a , b ),求E (X ).解:X 的概率密度为:X 的数学期望为:数学期望位于区间(a ,b )的中点.5.均匀分布1()0a xb f x b a<<=− 其它()()2bax a b E X xf x dx dx b a +∞−∞+===−∫∫设X 服从指数分布,求E (X ).分部积分法6.指数分布当概率密度表示为:对应的数学期望为θ.,0()0,x e x f x x λλ− >=≤ 0xxedx λλ+∞−=∫()()E X xf x dx +∞−∞=∫1λ=1,0()0,0xe xf x x θθ− > = ≤解:X 的概率密度为:设X ~N (μ,σ2),求E (X ).解:X 的概率密度为被积函数为奇函数,故此项积分为0.7.正态分布22()21()2x f x eµσπσ−−=()()E X xf x dx +∞−∞=∫22()212x xedxµσπσ−+∞−−∞=∫221()2x t t t edtµσσµπ−=+∞−−∞+∫ 2222122t t tedt edt σµππ+∞+∞−−−∞−∞+∫∫µ=N (0,1)的密度函数积分为1.注意:不是所有的随机变量都有数学期望例如:Cauchy 分布的密度函数为但发散故其数学期望不存在.21(),(1)f x x x π=−∞<<+∞+2||||()(1)x x f x dx dx x π+∞+∞−∞−∞=+∫∫四随机变量函数的数学期望设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.例4.某商店对某种家用电器的销售采用先使用后付款的方式,记该种电器的使用寿命为X (以年计),规定:X ≤1,一台付款1500元;1<X ≤2,一台付款2000元2<X ≤3,一台付款2500元;X >3,一台付款3000元设X 服从指数分布,且平均寿命为10年,求该商店一台电器的平均收费.解:设该商店一台电器的收费为Y .要求E (Y )X 的分布函数为:1101,()0,0x e x F x x − −>=≤设该商店一台电器的收费为YX ≤1,一台付款1500元1 <X ≤2,一台付款2000元2 <X ≤3,一台付款2500元X >3,一台付款3000元1101,0()0,0x ex F x x − −>=≤P {Y =1500}=P {X ≤1}=F (1)=1−e −0.1=0.0952P {Y =2000}=P {1<X ≤2}=F (2)−F (1)=0.0861P {Y =2500}=P {2<X ≤3}=F (3)−F (2)=0.0779P {Y =3000}=P {X >3}=1−F (3)=0.7408设X 服从指数分布,且平均寿命为10年.Y 的分布律为所以该商店一台电器的平均收费,即Y 的数学期望为Y 1500 2000 2500 3000P0.0952 0.0861 0.0779 0.7408()15000.095220000.086125000.0779 30000.74082732.15E Y =×+×+×+×=使用上述方法必须先求出g(X)的分布,有时这一步骤是比较复杂的.那么是否可以不先求g(X)的分布,而只根据X的分布求E[g(X)]呢?例5.设离散型随机变量X 的概率分布如下表所示,求:Z=X 2的期望.X−11P214141E (Z )= g (0)×0.5+g (-1)×0.25+g (1)×0.25解:=0.5注:这里的.)(2x x g =(1)当X 为离散型随机变量时,分布律为P {X = x k }=p k ,k =1,2,⋯(2)当X 为连续型随机变量时,概率密度函数为f (x ).定理:设Y 是随机变量X 的函数,Y =g (X )(g 是连续函数)若级数绝对收敛,则有若积分绝对收敛,则有1()[()]()kkk E Y E g X g x p∞===∑()[()]()()E Y E g X g x f x dx+∞==∫1()k k k g x p ∞=∑()()g x f x dx+∞−∞∫该公式的重要性在于:当求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的期望带来很大方便.k k k g x p X E Y E g X g x f x dx X 1(),()[()]()(),∞=+∞−∞== ∑∫离散型连续型例6.设随机变量X~b(n, p),Y=e aX,求E(Y).解:因为X的分布律为所以有{}(1), 0,1,...,k k n knP X k C p p k n−==−= ()E Y=(1)nak k k n knke C p p−=−∑()(1)nk a k n knkC e p p−=−∑[(1)]a npe p=+−={}nakke P X k==∑例7.设X ~U [0,π],Y=sinX ,求E (Y ).解:因为X 的概率密度为所以有1,0()0,x f x ππ≤≤ =其他()sin ()E Y xf x dx +∞−∞=∫01sin x dx ππ⋅∫2π=定理:设Z 是随机变量X 和Y 的函数,Z =g (X,Y )(g 是连续函数),Z 是一维随机变量(1)若(X,Y )是二维离散型随机变量,概率分布为(2)若(X,Y )是二维连续型随机变量,概率密度为f (x, y ),则有这里假定上两式右边的积分或级数都绝对收敛11()[(,)](,)ijijj i E Z E g X Y g x y p∞∞====∑∑()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫{,},,1,2,i j ij P X x Y y p i j ====则有几个常用的公式()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫(,)EX xf x y dxdy+∞+∞−∞−∞=∫∫(,)EY yf x y dxdy+∞+∞−∞−∞=∫∫22()(,)E Y y f x y dxdy+∞+∞−∞−∞=∫∫22()(,)E X x f x y dxdy+∞+∞−∞−∞=∫∫()(,)E XY xyf x y dxdy+∞+∞−∞−∞=∫∫例8.设二维随机变量(X ,Y )的密度函数为求E (X ),E (Y ),E (X +Y ),E (XY ).解:21(13),02,01,(,)40,x y x y f x y +<<<< =其它()(,)E X xf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4x xdx y dy =⋅+∫∫43=()(,)E Y yf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4xdx y y dy +∫∫58=数学期望的性质注意:X ,Y 相互独立()()(,)E X Y x y f x y dxdy+∞+∞−∞−∞+=+∫∫(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞−∞−∞−∞−∞+∫∫∫∫()()E X E Y +45473824=+=()(,)E XY xyf x y dxdy +∞+∞−∞−∞=∫∫2120011(13)22x xdx y y dy=⋅⋅+∫∫455386=⋅=()()E X E Y ⋅设X =(X 1,…, X n )为离散型随机向量,概率分布为≥ 1nnj j j j n P X =x ,,x =p ,j ,,j .11{()}1Z = g (X 1,…, X n ),若级数绝对收敛,则.<∞∑ nnnj j j j j j g x ,,x p 111()=∑ nnnn j j j jj j E Z =E g X ,,X g x ,,x p 1111()(())()设X =(X 1,…, X n )为连续型随机向量,联合密度函数为 n f x x 1(,,)Z = g (X 1,…, X n ),若积分绝对收敛,则+∞+∞−∞−∞∫∫n n ng x x f x x x x 111(,,)(,,)d d n E Z E g X X 1()=((,,))+∞+∞−∞−∞=∫∫n n ng x x f x x x x 111(,,)(,,)d d五数学期望的性质1.设C 是常数,则E (C )=C 4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X )3.E (X +Y )=E (X )+E (Y )注意:由E (XY )=E (X )E (Y )不一定能推出X ,Y 独立推广(诸X i 相互独立时)推广11[]()nni i i i i i E C X C E X ===∑∑11[]()n ni i i i E X E X ===∏∏性质4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定相互独立.反例XY p ij -1 0 1-10181818181818181810p • j838382p i•838382X Y P-1 0 1828284EX EY ==0;E XY ()=0;=E XY EX EY ()但P X Y 1{=-1,=-1}=8≠=P X P Y 23{=-1}{=-1}8××=30+2103-3+5=92X XY Y X XY Y E(3+2-+5)=3E()+2E()-E()+E(5)性质2和3×××EX EY =310+2-3+5性质4例9.设X ~N (10,4),Y ~U [1,5],且X 与Y 相互独立,求E (3X +2XY -Y +5).解:由已知,有E (X )=10, E (Y )=3.例10: 设X 1 , X 2…,X n 相互独立且都服从B (1, p ),求Z = X 1 + X 2+…+X n 的数学期望E (Z ).解:注: 由二项分布的可加性易知Z = X 1 + X 2+…+X n ~B (n, p ).EZ = E (X 1 + X 2+…+X n )= E (X 1 ) +E ( X 2)+…+E (X n )= p +p +…+p =n p求二项分布的数学期望的又一种方法.例11.(超几何分布的数学期望)设一批同类型的产品共有N 件,其中次品有M 件.今从中任取n (假定n ≤N −M )件,记这n 件中所含的次品数为X ,求E (X ).则有所以解: 引入X =X 1+X 2+…+X n且易知抽签模型,概率与试验次数无关例10和例11:将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.1,,1,2,,0,i i X i n i ==第件是次品第件不是次品iMP X N{1}==1()ni i EX E X ==∑ni i P X 1{1}==∑1ni M N ==∑nM N =为普查某种疾病,N 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验N 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例13.六、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.。

概率论与数理统计学习知识资料心得与分享与分享之第一章

概率论与数理统计学习知识资料心得与分享与分享之第一章

第一章概率论的基本概念确定性现象:在一定条件下必然发生的现象随机现象:在个别试验中其结果呈现出不确定性,有统计规律性的现象随机试验:具有下述三个在大量重复试验中其结果又具特点的试验:1. 可以在相同的条件下重复地进行2. 每次试验的可能结果不止一个,且能事先明确试验的所有可能结果3. 进行一次试验之前不能确定哪一个结果会出现样本空间:将随机试验E 的所有可能出现的结果组成的集合称为E 的样本空间,记为S 样本点:样本空间的元素,即E 的每个结果,称为样本点样本空间的元素是由试验的目的所确定的。

随机事件:一般,我们称试验E的样本空间S的子集为E的随机事件,简称事件在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。

基本事件:由一个样本点组成的单点集,称为基本事件。

必然事件:样本空间S包含所有的样本点,它是S自身的子集,在每次试验中它总是发生的,称为必然事件。

不可能事件:空集不包含任何样本点,它也作为样本空间的子集,在每次试验中,称为不可能事件。

事件间的关系与运算:设试验E的样本空间为S,而A,B, A k(k=1,2,…)是S的子集。

1. 若A B ,则称事件B包含事件A,这指的是事件A发生必然导致事件B发生。

若A B且B A,即A=B则称事件A与事件B相等。

2. 事件A B x | x A或x B称为事件A与事件B的和事件。

当且仅当A,B 中至少有一个发生时,事件A B 发生。

类似地,称U A k为事件几小2,…,A n的和事件;称U A k为可列个事件A,A,… k 1 k 1的和事件。

3. 事件A B={x | x A且x B}称为事件A与事件B的积事件。

当且仅当A,B同时发生时,事件A B 发生。

A B 记作AB。

类似地,称| A k为n个事件AiA,…,A n的积事件;称| A k为可列个事件k 1 k 1AA,…的积事件。

4. 事件A B {x I x A且x B}称为事件A与事件B的差事件。

概率论与数理统计知识点

概率论与数理统计知识点

概率论与数理统计知识点概率论与数理统计是一门研究随机现象及其规律的学科,它在众多领域都有着广泛的应用,如自然科学、工程技术、社会科学、经济金融等。

下面就让我们一起来了解一下这门学科的一些重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

比如掷骰子出现的点数,明天是否下雨等。

而概率则是用来衡量随机事件发生可能性大小的数值。

概率的计算方法有多种。

古典概型是一种常见的情形,假设某个试验有 n 个等可能的结果,而事件 A 包含其中的 m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

还有几何概型,比如在一个区间内随机取一个点,计算这个点落在某个特定子区间的概率。

条件概率也是一个重要概念。

如果已知事件 B 发生的条件下,事件A 发生的概率,称为条件概率,记作 P(A|B)。

二、随机变量及其分布随机变量是用来表示随机现象结果的变量。

它可以是离散型的,比如掷骰子的点数;也可以是连续型的,比如某地区一天的气温。

常见的离散型随机变量分布有二项分布和泊松分布。

二项分布适用于 n 次独立重复试验中成功的次数,比如抛硬币正面朝上的次数。

泊松分布则常用于描述在一定时间或空间内稀有事件发生的次数。

连续型随机变量的分布通常用概率密度函数来描述,常见的有正态分布。

正态分布在自然界和社会现象中非常常见,很多测量数据都近似服从正态分布。

三、多维随机变量及其分布当考虑多个随机变量时,就有了多维随机变量。

比如同时考虑一个学生的数学和语文成绩。

联合分布函数可以描述多维随机变量的概率分布情况。

边缘分布则是从多维随机变量中单独取出某个变量的分布。

条件分布是在已知某个变量取值的条件下,另一个变量的分布。

四、随机变量的数字特征期望是随机变量取值的平均值,它反映了随机变量取值的平均水平。

方差则衡量了随机变量取值相对于期望的分散程度。

协方差和相关系数用于描述两个随机变量之间的线性关系程度。

五、大数定律和中心极限定理大数定律表明,在大量重复试验中,随机事件发生的频率接近于其概率。

《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

同时,也为一些后续课程的学习提供必要的基础。

三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。

非常全面的《概率论与数理统计》复习材料

非常全面的《概率论与数理统计》复习材料

《概率论与数理统计》复习大纲第一章随机事件与概率事件与集合论的对应关系表古典概型古典概型的前提是Ω={ω1, ω2,ω3,…, ωn,}, n为有限正整数,且每个样本点ωi出现的可能性相等。

例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。

[解]:每个球有4种放入法,3个球共有43种放入法,所以|Ω|=43=64。

(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。

[解]:p1=4C93=121, p2=C31C51+C32C93=314P(A)=A包含样本总个数样本点总数=|A||Ω|几何概型前提是如果在某一区域Ω任取一点,而所取的点落在Ω中任意两个度量相等的子区域的可能性是一样的。

若A⊂Ω,则P(A)=A的度量Ω的度量例1把长度为a的棒任意折成三段,求它们可以构成一个三角形的概率。

[解]:设折得的三段长度分别为x,y和a-x-y,那么,样本空间,S={(x,y)|0≤x≤a,0≤y≤a,0≤a-x-y≤a}。

而随机事件A:”三段构成三角形”相应的区域G应满足两边之和大于第三边的原则,得到联立方程组,⎩⎪⎨⎪⎧a-x-y<x+yx<a-x-y+yy<a-x-y+x解得0<x<a2, 0<y<a2,a2<x+y<a 。

即G={(x,y)| 0<x<a2, 0<y<a2,a2<x+y<a }由图中计算面积之比,可得到相应的几何概率P(A)=1/4。

北京理工大学《概率论与数理统计》课件-第4章

北京理工大学《概率论与数理统计》课件-第4章

解:X 的分布函数为依题意,当x <0时,当0≤x ≤2时,当x >2时,F (x )=P (X ≤x )F (x )=P (X ≤x )=0F (x )=P (X ≤x )=P (X <0)+P (0≤X ≤x )=0+kx 2=kx 2F (x )=P (X ≤x )=1例1.一个靶子是半径为2米的圆盘,设击中靶上任一同心圆盘上的点的概率与该盘的面积成正比,并设射击都能中靶.以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.当0≤x ≤2时,F (x )=P (X ≤x )=kx 2另外依题意F (2)=P (X ≤2)=k.22=1所以k 14=x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩10.80.60.40.2-0.2-2-101234解得说明,存在一个非负可积函数f (x ),使得下式成立易知x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩x x F x f x ,02()()20⎧≤≤⎪'==⎨⎪⎩其他()()xF x f t dt-∞=⎰1.定义:设随机变量X 的分布函数为F (x ),如果存在一个非负可积函数f (x ),使对任意的实数x ,均有则称X 是连续型随机变量(Continuous Random Variable ),称f (x )是X 的概率密度函数,简称概率密度(Probability Density Function ).()()xF x f t dt-∞=⎰连续型随机变量X的分布函数F(x)和概率密度f(x)统称为X的概率分布,简称X的分布.易知此时分布函数F(x)是连续函数,即连续型随机变量的分布是连续函数.2.概率密度函数的性质(1)f (x ) ≥ 0(2)这两条性质是判定一个函数f (x )是否为某r.v.X 的概率密度函数的充要条件.f (x )xo 面积为1+()1f x dx ∞-∞=⎰(3)P (a <X ≤b )=F (b )-F (a )如 f (x )xo a b (4)()()GP X G f x dx∈=⎰()()b a f x dx f x dx -∞-∞=-⎰⎰()baf x dx =⎰()()a P X a f x dx+∞>=⎰(5)在f (x )的连续点x 处,有f (x )=F '(x )(6)设x 为f (x )的连续点,当∆x 较小,则有P (x< X ≤x+∆x )故X 的密度f (x )在x 这一点的值,恰好是X 落在区间(x ,x +∆x ]上的概率与区间长度∆x 之比.它反映了X 在x 附近单位长区间上取值的概率.x xx f t dt f x x()()+∆=≈⎰∆连续型随机变量密度函数的性质与离散型随机变量分布律的性质非常相似,但是,密度函数不是概率!(7)P (X =x 0)=F (x 0)-F (x 0-0)P (a <X ≤b )=P (a ≤X ≤b )=P (a <X <b )=P (a ≤X <b )密度函数f (x )在某点处a 的函数值f (a ),并不等于X 取值为a 的概率.但是,这个值f (a )越大,则X 在a 附近取值的概率f (a )∆x 就越大.也可以说,在某点密度曲线的函数值反映了概率集中在该点附近的程度,即X 在该点附近取值的密集程度.=0()ba f x dx=⎰=F (b )-F (a )若X 为连续型随机变量,概率密度f (x )唯一确定了分布函数F (x );若随机变量X 的分布函数F (x )满足:(1)F (x )连续;(2)存在x 1<x 2<…<x n (n ≥0),除这些点外,F (x )可导,且导函数F '(x )连续;令F x F x f x F x (),()()0,()''⎧=⎨'⎩当存在当不存在则f (x )必是X 的概率密度.例2.设随机变量X 的概率密度为求(1)常数k 的值;(2)X 的分布函数;(3)P (1<X <7/2).解:(1)由解得kx x f x x x ,03()2/2,340,≤<⎧⎪=-≤≤⎨⎪⎩其他+1()f x dx ∞-∞=⎰3403(2)2x kxdx dx =+-⎰⎰k 16=k 9124=+解:(2)当x <0时,当0≤x <3时,当3≤x <4时,020()()0612x x t x F x f t dt dt dt -∞-∞==+=⎰⎰⎰03203()()0(2)32624x xt t x F x f t dt dt dt dt x -∞-∞==++-=-+-⎰⎰⎰⎰()()0x F x f t dt -∞==⎰求(2)X 的分布函数;()()xF x f t dt-∞=⎰6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他当x ≥4时,所以()()1xF x f t dt -∞==⎰x x x F x x x x x 220,0/12,03()32/4,341,4<⎧⎪≤<⎪=⎨-+-≤<⎪⎪≥⎩求(2)X 的分布函数;6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他P X F F 7741(1)()(1)2248<<=-=72723113741(1)()(2)26248x x P X f x dx dx dx <<==+-=⎰⎰⎰求(3)P (1<X <7/2)解:(3)6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他在上例中,当x ∉[0,4]时,f (x )=0,所以P (X ∉[0,4])=0,为了方便,我们说X 只在[0,4]上取值.g x a x b f x ()0,()0,>≤≤⎧=⎨⎩其他我们就说X 只在[a , b ]上取值.一般地,若随机变量X 的概率密度f (x )是如下分段函数:6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他例3.设连续型随机变量X 的分布函数为求(1)常数C 值;(2)X 取值于(0.3,0.7)内的概率;(3)X 的密度函数.解:(1)应用连续型随机变量X 的分布函数的连续性,有所以C =1x F x Cx x x 20,0(),011,1<⎧⎪=≤<⎨⎪≥⎩x F F x C11(1)lim ()→-===x x f x F x 2,01()()0,<<⎧'==⎨⎩其他解:20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩(2)P (0.3<X <0.7)=F (0.7)−F (0.3)=0.72−0.32=0.4求(2)P (0.3<X <0.7);(3)X 的密度函数.(3)随机变量的分类:离散型随机变量连续型随机变量.非离散型随机变量非连续非离散型随机变量.(1)若随机变量X 的概率密度为1.均匀分布(Uniform Distribution )则称X 在[a , b ]上服从均匀分布,记为X~U [a , b ]1,()0,a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其他[,]1a b I b a =-[,][,]1,[,]()0,[,]a b a b x a b I I x x a b ∈⎧==⎨∉⎩区间[a ,b ]上的示性函数类似地,我们可以定义区间[a , b )、(a , b ]和(a , b )上的均匀分布一般地,设D 是数轴上一些不相交的区间之和,若X 的概率密度为x D f x D x D 1()0⎧∈⎪=⎨⎪∉⎩,的长度,则称X 在D 上服从均匀分布.若X ~U [a , b ],X 的分布函数为对于满足a ≤c <d ≤b 的任意的c 、d ,有0(),1,x a x a F x a x bb a<⎧⎪-⎪=≤≤⎨-⎪⎪⎩,其他()d c P c X d b a-<≤=-例1.设公共汽车站从上午7时起每隔15分钟来一班车,如果某乘客到达此站的时间是7:00到7:30之间的均匀随机变量.试求该乘客候车时间不超过5分钟的概率.解:设该乘客于7时X 到达此站,则X 服从[0, 30]上的均匀分布令B ={候车时间不超过5分钟}1530102511130303dx dx =+=⎰⎰()(1015)(2530)P B P X P X =≤≤+≤≤1030()300x f x ⎧≤≤⎪=⎨⎪⎩其它2.指数分布(Exponential Distribution )若随机变量X 的概率密度为其中常数λ>0,则称X 服从参数为λ的指数分布.,0()0,0x e x f x x λλ-⎧>=⎨≤⎩易求得X 的分布函数为1,0()0,0x e x F x x λ-⎧->=⎨≤⎩指数分布的另一种等价定义定义:设连续型随机变量X 的概率密度为1,0()0,0x e x f x x θθ-⎧>⎪=⎨⎪≤⎩其中θ>0为常数,则称X 服从参数为θ的指数分布.服从指数分布的随机变量X 具有以下性质:事实上无记忆性或无后效性(|)()P X s t X s P X t >+>=>(,)(|)()P X s t X s P X s t X s P X s >+>>+>=>()()P X s t P X s >+=>1()1()F s t F s -+=-()s t t s e e e λλλ-+--==1()()F t P X t =-=>1,0()0,0x e x F x x λ-⎧->=⎨≤⎩即对于任意s , t >0,有如果X 表示某仪器的工作寿命,无后效性的解释是:当仪器工作了s 小时后再能继续工作t 小时的概率等于该仪器刚开始就能工作t 小时的概率.说明该仪器的使用寿命不随使用时间的增加发生变化,或说仪器是“永葆青春”的.(|)()P X s t X s P X t >+>=>一般来说,电子元件等具备这种性质,它们本身的老化是可以忽略不计的,造成损坏的原因是意外的高电压等等.3.正态分布(Normal Distribution )若随机变量X 的概率密度为其中μ, σ均为常数,且σ>0,则称X 服从参数为μ和σ的正态分布.记作X ~N (μ, σ2)正态分布最初由高斯(Gauss )在研究偏差理论时发现,又叫高斯分布.22()21(),2x f x e x μσσπ--=-∞<<∞X 的分布函数为22()21()2t xF x e dtμσσπ---∞=⎰N (10, 32)0-50.10.20.30.40.50.60.70.80.910510152025正态分布N(μ,σ2)密度函数图形的特点f(x)μa.正态分布的密度曲线是一条关于μ对称的钟形曲线.f(μ+c)=f(μ−c )特点是“两头小,中间大,左右对称”.b .μ决定了图形的中心位置,称为位置参数;σ决定了图形中峰的陡峭程度,称为形状参数或者刻度参数μ2μ1μ3x f (x )f (x )0xc .在x =μ处达到最大值:1()2f μπσ=d .曲线f (x )向左右伸展时,越来越贴近x 轴,即f (x )以x 轴为渐近线.当x →±∞时,f (x )→0e .x=μ±σ为f (x )的两个拐点的横坐标.说明X 落在μ附件的概率最大,或者说X 的取值在μ附件最密集.22()21(),2x f x e x μσσπ--=-∞<<∞μf (x )年降雨量、同龄人身高、在正常条件下各种产品的质量指标——如零件的尺寸;纤维的强度和张力、农作物的产量,小麦的穗长、株高、测量误差、射击目标的水平或垂直偏差、信号噪声等等,都服从或近似服从正态分布.标准正态分布(Standard Normal Distribution )μ=0,σ=1的正态分布称为标准正态分布.其密度函数和分布函数常用φ(x )和Ф(x )表示:)(x Φ)(x ϕ221(),2x x e x ϕπ-=-∞<<∞221()2t x x e dt π--∞Φ=⎰注意:Φ(0)=0.5,Φ(-x )=1-Φ(x )若X ~N (0, 1),对任意的实数x 1,x 2(x 1< x 2),有人们已编制了Φ(x )的函数表,可供查用.P (X≤x 1)=Φ(x 1)P (X>x 1)=1-Φ(x 1)P (x 1≤X≤x 2)=Φ(x 2)-Φ(x 1)221()2x t x e dt π--∞Φ=⎰−x x Φ(x )x4-40.40.2正态分布的计算()x μσ-=Φ对任意的实数x 1,x 2(x 1< x 2),有211221()()()()()x x P x X x F x F x μμσσ--<≤=-=Φ-Φ222()()22()22x t xu F x e dt e du μσμσπσπ-----∞-∞==⎰⎰111()()()x P X x F x μσ-≤==Φ111()1()1()x P X x F x μσ->=-=-Φ例2.设X ~N (μ,σ2),求P (|X −μ|<k σ)的值,k =1, 2, 3.解:当k =1时当k =2时当k =3时(||)()P X k P k X k μσμσμσ-<=-<<+()()F k F k μσμσ=+--()()k k μσμμσμσσ+---=Φ-Φ()()k k =Φ-Φ-()[1()]2()1k k k =Φ--Φ=Φ-(||)2(1)10.6826P X μσ-<=Φ-=(||2)2(2)10.9544P X μσ-<=Φ-=(||3)2(3)10.9974P X μσ-<=Φ-=质量控制中的3σ原则设在正常生产的情况下,某零件的尺寸X服从正态分布N(μ,σ2),为了在生产过程中随时检查有无系统性误差出现,人们画了一个质量控制图.每隔一定时间,对产品尺寸进行检查,测量的产品的尺寸应落在上、下控制线之内.如果超出控制线,则很有可能是生产出现了异常情况,应该暂停生产进行检查.当然也可能虚报,但虚报的可能性比较小.214y x=π因此,需要求某些随机变量的函数的分布.在某些实际问题中,我们所关心的随机变量不能直接测量得到,而它却是某个能够直接测量的随机变量的函数.例如,考察一批圆轴的截面面积Y ,我们能够直接测量的是直径X ,且当直径X 取x 值时,截面面积Y 的取值为一般地,设X、Y是两个随机变量,y=g(x)是一个已知函数,如果当X取值x时,Y取值为g(x),则称Y是随机变量X的函数,记为Y=g(X).问题是:如何由已知的随机变量X的概率分布去求它的函数Y=g(X)的概率分布.解:求Y =(X –1)2的分布律.Y 所有可能的取值为0,1,4,而且(0)(1)0.1P Y P X ====(1)(0)(2)0.7P Y P X P X ===+==(4)(1)0.2P Y P X ===-=例1.设随机变量X 的分布律为X −10 1 2P0.20.3 0.1 0.4一、离散型随机变量X 的函数Y =g (X )的分布所以,Y 的分布律为Y0 1 4P0.10.7 0.2X−1 0 1 2 Y= (X–1)24101 P0.20.3 0.1 0.4所以,Y 的分布律为Y0 1 4P0.10.7 0.2一般地,若X 的分布律为则Y =g (X )的分布律为如果g (x k )中有一些值是相等的,则它们是Y 可能取的同一个值.此时,在Y 的分布律中,只需列出一个,然后把对应于这些相同值的概率相加,作为Y 取这个可能值的概率.X x 1 x 2 … x k …Pp 1 p 2 … p k…Y g (x 1) g (x 2)… g (x k ) …Pp 1 p 2 … p k…二、连续型随机变量X 的函数Y =g (X )的分布例2.设随机变量X 的概率密度为令求Y 的分布.解:2,01()0,x x f x <<⎧=⎨⎩其他1,1/20,1/2X Y X ≤⎧=⎨>⎩(1)P Y =(1/2)P X =≤1/2124xdx ==⎰所以Y 的分布为13(0)1(1)144P Y P Y ==-==-=Y0 1P 3/4 1/4例3.设连续型随机变量X 的概率密度函数为求Y =2X +8的概率密度.解:设X 和Y 的分布函数分别为F X (x )和F Y (y ).F Y (y )=P (Y≤y )=P (2X +8≤y )于是Y 的密度函数/8,04()0,X x x f x <<⎧=⎨⎩其它88()()22X y y P X F --=≤=()81()()22Y Y X dF y y f y f dy -==⋅故当8<y <16时,当y ≤8或y ≥16时,81()()22Y X y f y f -=⋅/8,04()0,X x x f x <<⎧=⎨⎩其它88()216X y y f --=8()02X y f -=8,816()320,Y y y f y -⎧<<⎪=⎨⎪⎩其它方法:1.先求Y=g(X)分布函数F(y);Y2.求分布函数F Y (y)的导数,即为密度函数f Y(y).关键步骤:F(y)=P(Y≤y)=P(g(X)≤y)=P(X∈D)Y。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北理工《概率论与数理统计》拓展资源(一)
概率论probability theory
研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的。

在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。

随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。

每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。

又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。

大数定律及中心极限定理就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。

例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。

随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。

概率论的起源与赌博问题有关。

16世纪,意大利的学者吉罗拉莫•卡尔达诺(Girolamo Cardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。

17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。

按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。

后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。

当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。

然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,,这个问题的解决直接推动了概率论的产生。

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。

使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。

随后 a.de 棣莫弗和p.s.拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。

拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。

19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。

20
世纪初受物理学的刺激,人们开始研究随机过程。

这方面a•n•柯尔莫哥洛夫、n.维纳、a•a•马尔可夫、a•r•辛钦、p•莱维及w•费勒等人作了杰出的贡献。

如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。

20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。

在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。

他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。

概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。

随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。

现在,概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

相关文档
最新文档