优秀学案—认识一元一次方程
七年级数学《认识一元一次方程》导学案

5.1 认识一元一次方程学习目标:1.在对实际问题情境的分析过程中感受方程模型的意义.2.借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法.3.使学生在分析实际问题情境的活动中体会数学与现实的密切联系.环节一:阅读章前图请一位同学阅读章前图中关于“丟番图”的故事.(大约1分钟)丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平.坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》(The Greek Anthology)第126 题内容2:回答以下3个问题.(大约4分钟)(1)你能找到题中的等量关系,列出方程吗?(2)你对方程有什么认识?(3)列方程解决实际问题的关键是什么?环节二:情境引入课本130页到131页的填空(1)如果设小彬的年龄为x 岁,那么“乘2 再减5”就是________,因此可以得到方程________.(2)小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约5 cm,大约几周后树苗长高到1 m?如果设x 周后树苗长高到1 m,那么可以得到方程________.(3)甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每小时比原计划多行走1 km,因此提前12 min 到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km,可以得到方程________.(4)根据第六次全国人口普查统计数据,截至2010 年11 月1 日0 时,全国每10 万人中具有大学文化程度的人数为8 930 人,与2000 年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000 年第五次全国人口普查时每10 万人中约有x 人具有大学文化程度,那么可以得到方程___________.m,长和宽之差为25 m,这个操场的长与(5)某长方形操场的面积是5 8502宽分别是多少米?如果设这个操场的宽为x m,那么长为(x+25)m.由此可得到方程_______.环节三:归纳一元一次方程的定义,了解一元一次方程的解的含义(1) 由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流.(2) 方程2x −5=21,40+5x =100,(1+147.30%)x =8 930有什么共同点?书中给具有这样特点的方程下了定义:在一个方程中,只含有一个未知数,且未知数的次数都是 1,这样的方程叫做一元一次方程.判断下列各式是不是一元一次方程,是的打“√”,不是的打“×”.(1) −2+5=3 ( )(2)3x −1=0 ( )(3) y =3 ( )(4) x +y =2 ( )方程的解的含义:使方程左、右两边的值相等的未知数的值,叫做方程的解. 完成教材第131页随堂练习第2题.x = 2 是下列方程的解吗?(1)3x +(10−x )=20 (2)2x 2+6=7x.环节四:达标检测内容1:完成教材第131页随堂练习第1题.根据题意,列出方程:(1)在一卷公元前 1600 年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于 19.你能求出问题中的“它”吗?(5)2510x x -+= ( ) (6)10xy -= ( ) (7)2 m n - ( ) (8)2πS r = ( )(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3 分,平一场得1 分,负一场得0 分.甲队与乙队一共比赛了10 场,甲队保持了不败记录,一共得了22 分.甲队胜了多少场?平了多少场?内容2:达标练习(1)如果5x m−2=8是一元一次方程,那么m = .(2)下列各式中,是方程的是(只填序号)①2x=1;②5−4=1;③7m−n+1;④3(x+y)=4.(3)下列各式中,是一元一次方程的是(只填序号)①x−3y=1;②x2+2x+3=0;③x=7;④x2−y=0.(4)若a的20%加上100等于x,则可列出方程 .本节课你的收获,你的疑惑有哪些?作业与拓展学习设计1.习题5.1.2.思考:还记得小华和小彬猜年龄的问题吗?你能帮小彬解开那个年龄之谜吗?你能解方程5x=3x +4吗?。
认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念3、积累活动经验。
二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。
已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
一元一次方程教案

一元一次方程教案一元一次方程教案1教学目标1.使学生正确认识含有字母系数的一元一次方程.2.使学生掌握含有字母系数的一元一次方程的解法.3.使学生会进行简单的公式变形.4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣.教学重点:(1)含有字母系数的一元一次方程的解法.(2)公式变形.教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系.(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形.教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号.(2)移项——未知项移到等号一边常数项移到等号另一边.注意:移项要变号.(3)合并同类项——提未知数.(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程.(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数.引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项.(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程.2.含有字母系数的一元一次方程的解法教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:ax=b(a≠0).由学生讨论这个解法的思路对不对,解的`过程对不对?在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系.含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零.3.讲解例题例1 解方程ax+b2=bx+a2(a≠b).解:移项,得 ax-bx=a2-b2,合并同类项,得(a-b)x=a2-b2.∵a≠b,∴a-b≠0.x=a+b.注意:1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数.2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).3.方例2、解方程分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.解:b(x-b)=2ab-a(x-a)(a+b≠0).bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母.)ba+ax=a2+2ab+b2(a+b)x=(a+b)2.∵a+b≠0,∴x=a+b.(四)课堂练习解下列方程:教材P.90.练习题1—4.补充练习:5.a2(x+b)=b2(x+a)(a2≠b2).解:a2x+a2b=b2x+ab2(a2-b2)x=ab(b-a).∵a2≠b2,∴a2-b2≠0解:2x(a-3)-(a+2)(a-3)=x(a+2)(a-b)x=(a+2)(a-3).∵a≠8,∴a-8≠0(五)小结1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系.2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同.但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零.六、布置作业教材P.93.A组1—6;B组1、注意:A组第6题要给些提示.七、板书设计探究活动a=bc 型数量关系问题引入:问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。
认识一元一次方程导学案

认识一元一次方程【学习目标】1.了解一元一次方程的定义;2.会列简单方程解决实际问题。
【学习方法】自主探究与合作交流相结合。
【学习重难点】重点:一元一次方程的概念。
难点:列一元一次方程。
【学习过程】模块一预习反馈一、学习准备1.等式的概念:含有的式子,叫做等式。
2.代数式的概念:用把或连接而成的式子叫做代数式,单独的也是代数式。
3.方程的概念:含有的等式叫做方程。
4.使方程左右两边的值相等的,叫做方程的解。
5.一元一次方程的概念:在一个方程中,只含有,并且这样的方程叫一元一次方程。
(1)阅读教材:《认识一元一次方程》二、教材精读7.理解一元一次方程和方程的解的概念(1)情景剧:小明在公园里认识了新朋友小彬小明:小彬,我能猜出你的年龄。
小彬:不信。
小明:你的年龄乘2减5得数是多少?小彬:21小明:你今年13岁。
小彬心里嘀咕:他怎么知道我的年龄是13岁的呢?如果设小彬的年龄为X岁,那么“乘2再减5”就是,所以得到等式 。
归纳:在小学我们已经知道,像这样含有未知数的等式叫做 。
在一个方程中,只含有 ,并且这样的方程叫一元一次方程。
使方程左右两边的值相等的 ,叫做方程的解。
补充:方程分类(2)x=1是( )(A )方程的解 (B )方程 (C )解方程 (4)代数式分析:我们知道,表示相等关系的式子叫做等式,所以首先可以肯定“x=1”是一个等式,所以它不是代数式。
使方程左右两边相等的未知数的值,叫做方程的解,即方程的解是指一个具体的数。
求方程的解的过程叫做解方程。
实践练习:练习1:已知关于X 的方程2X+a=0的解是X=2,则a 的值为 ( )(A )1个 (B )2个 (C )3个 (D )4个注意:理解定义时一定要注意:()()⎪⎩⎪⎨⎧=+011如:一元一次方程分母不含未知数整式方程x 如:分母含有未知数分式方程方程()()()()()()()()385127326012350324-33128427231__的是________,其中是一元一次方程程的是_______练习2、下列各式是方2>=+≠+=--=-=+=-x x x x x n m x x ;;;;;;;(1)一元一次方程是特殊的等式,它不是代数式,也不是不等式,也不是分式。
《一元一次方程》的优秀教案(精选9篇)

《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案优秀7篇

一元一次方程教案优秀7篇元一次方程教案篇一一、背景与意义分析本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。
方程有悠久的历史,它随着实践需要而产生,被广泛应用。
从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。
从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。
以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。
分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。
在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。
本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。
这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。
算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。
列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的`突破。
正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
二、学习与导学目标1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。
2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。
5.1_认识一元一次方程导学案

瓜坡镇中学七年级数学教学案认识一元一次方程学习目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义;2、通过观察,归纳一元一次方程的概念;3、激情投入,高效学习。
【新课学习】一、新课学习1、回忆方程的定义:叫方程。
2、阅读课本130页的五个问题,根据题意可得出五个方程为:○1○2○3○4○52 .以上方程那些是你所熟悉的方程?与同伴交流,列举出来3. 这些方程有那些共同特点?把你看到的相同点写出来由此可知:一元一次方程。
这里的“元”是指“次”指的是4、牛刀小试判断下列各式是不是一元一次方程,是的打“√”,不是的打“×”。
方法小结① 含有 个未知数; ②且未知数的指数是 。
特别需要注意的地方:1、分母不能够含2、 之后再判断5、方程的解的定义:(1) x =5是下列方程的解吗?(1)x -3=2 (2)2x -6=1判断是否为方程的解的方法步骤:1、 ;2、 ;3、(2) 下列方程中,解为-2的是( )【随堂练习】1 、P.131 随堂练习第1、2题。
2、已知是 关于x 一元一次方程,则a 的值为 3、 是关于x 一元一次方程,则m 的值为 4、如果 是关于x 一元一次方程,那么 a = 5、 6、某商店一套夏装的进价为200元,按标价的八折销售,可获利72元,则该服装的标价为多少元?(列方程式)【学习小结】谈谈这节课的收获【巩固练习】1.下列式子中,一元一次方程的是( )A 、B 、C 、D 、 2、 方程 的解(填“是”或“不是”)3.方程 是关于x 的已元一次方程,则 =4.小明买苹果和梨共5千克,用去17元,其中苹果每千克4元,梨每千克3元,问苹果核梨各买了多少千克? 0581=+-a x 0621=--m x 8)1(=-ax a 12=-y x 53-x 1073=+8)(3)(3=--+y x y x 2-=x 832=-x 63)2(32=+-+b x x a b a -。
一元一次方程教案(4篇)

一元一次方程教案〔4篇〕元一次方程教案篇一一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、学问与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:〔1〕通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进展猜测、推断。
〔2〕运用所学过的数学学问进展分析,演练、合作探究,体会数学学问在社会活动中的运用,提高应用学问的力气和社会实践力气。
3、情感态度与价值观:通过数学活动,激发学生学习数学兴趣,增加自信念,进一步进展学生合作沟通的意识和力气,体会数学与现实的联系,培育学生求真的科学态度。
三、重难点与关键1、重点:经受探究具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点3、关键:明确问题中的量与未知量间的关系,查找等量关系。
四、教具预备:投影仪,每人一根质地均匀的直尺,一些一样的棋了和一个支架。
五、教学过程:(一)活动1一种商品售价为2.2元件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品n件,争论下面问题:这个人买了n件商品需要多少元?教师活动:〔1〕把学生每四人分成一组,进展合作学习,并参入学生中一起探究。
〔2〕教师对学生在发表解法时存在的问题加以指正。
学生活动:〔1〕分组后对活动一的问题开放争论,探究解决问题的方法。
〔2〕学生派代表上黑板板演,并发表解法。
解:2.2nn1002.2100+2(n-100)n100问题转换:一种商品售价为2.2元/件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品共花了n元,争论下面的问题:〔1〕这个人买这种商品多少件?〔2〕假设这个人买这种商品的件数恰是0.48n,那么n的值是多少?教师活动:同上学生活动:同上解:(1)n220100+n220〔2〕=0.48nn=0100+=0.48nn=500(二)活动2:本活动课前布置学生做好活动前的预备工作:1、预备一根质地均匀的直尺,一些一样的棋子和一个支架。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 认识一元一次方程
学 案
学习目标:1、在对实际问题情境的分析过程中感受方程模型的意义;
2、借助类比、归纳的方式概括一元一次方程的概念,并在概括
的过程中体验归纳方法;
3、使学生在分析实际问题情境的活动中体会数学与现实的密切
联系.
学习重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结
所列方程的共同特点,归纳出一元一次方程的概念.
学习难点:由特殊的几个方程的共同特点归纳一元一次方程的概念.
一、学习准备:
1. 方程的概念:含有_______的______叫做方程.
2. 判断下列式子中,哪些是方程?
12251=+x )(, 26-723=x x )(, 13-43=)(,
54+x )(,7235>-y x )(,46=x )(,14327=-y
x )( 是方程的是:__________(填序号);
你的发现:方程一定是_______,但等式________是方程.
二、解读教材:
(一)一元一次方程的理解
1、阅读教材130—131页的文字和图,并完成下列填空:
(1)小颖种了一棵树苗,开始树苗高为40cm ,栽种后树苗每周大约长高5cm ,大约几周后树苗长高到1m ?
根据已知条件列出等量关系: ; 解:设x 周后树苗长高到1m ,那么得到的方程为:___________________.
(2)甲、乙两地相距22km ,张叔叔从甲地出发到乙地,每时比原计划多行走1km ,因此提前12min 到达乙地,张叔叔原计划每小时行走多少千米?
如果设张叔叔原计划每时行走x km ,可以得到方程: .
(3)根据第六次全国人口普查统计数据显示,全国每10万人中具有大学文化程度的人数为8930人,与第五次全国普查相比增长了147.30℅.那么第五次全国普查时每10万人中约有多少人具有大学文化程度?
如果设第五次全国普查时每10万人中约有x 人具有大学文化程度,那么可得到方程 .
(4)某长方形操场的面积是5850m 2,长和宽之差为25m,这个操场的长和宽分别是多少米? 根据已知条件列出等量关系: ;
如果设这个操场的宽为x 米,那么长为 米,由此可以得方程为 。
议一议:方程2x -5=21,40+5x =100,x (1+147.30%)=8930有哪些共同特征?
归纳总结:
在一个方程中,只含有_________,并且含未知数的次数为______的
练习一:下列方程中,哪些是一元一次方程?
2511=x )( 0532=-y x )( 5.55.332=+x x )( 32214=+x x )( 05=m )( y y =-746)( 7232722=-+x x x )(
)
,(8为常数)(b a b ax =
是一元一次方程的是:____________(填序号)
练习二:已知关于0211=+-k x x 的方程是一元一次方程,则k =_______.
已知关于0211=+-k
x k x )的方程(是一元一次方程,则k=______.
(二)方程的解
概念:使方程____________的未知数的值,叫做方程的解。
例:34)1(32+=-+=x x x 是方程的解吗?
解:把2x =代入方程
左边=3×( +1)-4
=3× -4
=
右边= +3
=
左边 右边
所以,2x = (是/不是)方程的解.
练习:判断22257x x x =+=是不是方程的解.
三、课堂小结:
本节课你有什么收获?
四、拓展延伸:
1、已知下列方程:
43)5(;43)4(;163)3(;12.0)2(;1212=+=-+===-y x x x n n z x x )(, 其中一元一次方程的有_______个.
2、若2=x 是下列某个方程的解,则这个方程是( )
A. 321-=+x x
B. 012-3=+x x
C. 1213+=-x x
D. 223-=x x
3、如果关于x 的方程0121=+-a x 是一元一次方程,那么代数式a a 22+-的值为_______.
4、已知关于021=+k
x x 的方程是一元一次方程,则k =______.
5、关于x 的方程()8)2(422=+--x m x m 是一元一次方程,则m =_________.。