青岛版初中七年级数学下册期中考试试题和答案
初中数学青岛版七年级下期中数学试卷(附答案)

期中数学试卷一、选择题1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2B.0C.2D.36.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25°B.28°C.30°D.32°7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30°B.45°C.60°D.120°9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5B.6C.7D.810.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a二、填空题11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是克.13.若x n﹣1•x n+5=x10,则n﹣2=.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD=.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若(2x+5)(4x﹣10)=8x2+px+q,则p=,q=.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.三、解答题19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.20.解方程组(1)(2).21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?参考答案一、选择题1.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.2.【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴,解得:,故选:B.3.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选:B.4.【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.5.【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y3+ky2﹣2y2中不含y2项,∴k﹣2=0,解得:k=2.故选:C.6.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选:B.7.【解答】解:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,.故选:C.8.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.9.【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5.故选:A.10.【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选:B.二、填空题11.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.12.【解答】解:0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.13.【解答】解:由x n﹣1•x n+5=x10,得x2n+4=x10,即2n+4=10,解得n=3.n﹣2=3﹣2=,故答案为:.14.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.15.【解答】解:由m,m满足|m﹣2|+(n﹣2015)2=0,得m﹣2=0,n﹣2015=0.解得m=2,n=2015.m﹣1+n0=+1=,故答案为:.16.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.17.【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣5018.【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.故答案为:320元;180元三、解答题19.【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣5时,原式=20+1=21.20.【解答】解:(1),①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.21.【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5m=2,5n=3,∴原式=(5m)3÷(5n)2=.22.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.23.【解答】解:设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.24.【解答】解:垂直.理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.25.【解答】解:原式=6x2+4x+3kx+2k﹣6x2﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.26.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.。
青岛版七年级数学第二学期期中考试试题(含答案)

第二学期期中质量检测七年级数学试题(时间:120分钟 分数:120分)注意事项:1、本试卷分为第Ⅰ卷(选择题和填空题),第Ⅱ卷(解答题)两部分。
2、请考生将第Ⅰ卷的答案填写在第Ⅱ卷相应的横线上。
3、考试结束,只交第Ⅱ卷。
第I 卷一、选择题(本题共10小题,每小题3分,共30分)下面各题给出的四个选项中, 只有一项是正确的,请将正确选项的代号填写在第Ⅱ卷相应的横线上.1、下列四个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的( )A B C D2、在方程组⎩⎨⎧+==-1z 3y 1y x 2,⎩⎨⎧=-=1x y 32x ,⎩⎨⎧=-=+5y x 30y x ,⎩⎨⎧=+=3y 2x 1xy ,⎪⎩⎪⎨⎧=+=+1y x 1y 1x 1中,是二元一次方程组的有()个。
A. 2B. 3C. 4D. 53、下列运算正确的是()A. 623x 15x 5x 3=⋅B. ()32x y 8x y 2y 4-=-⋅B. ()532x 12x 4x 3-=⋅- D. ()()523a 54a 3a 2-=-⋅- 4、如图,∠1和∠2是内错角的是( )A B C D5、一个角的度数比它的余角的度数大20°,则这个角的度数为( )A. 20°B. 35°C. 45°D. 55°6、如图,∠AOB=120°,OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的角平分线,下列叙述正确的是( )A. ∠DOE 的度数不能确定B.∠AOD=21∠EOC C.∠AOD+∠BOE=60° D.∠BOE=2∠COD7、若将一副三角板按如图所示的方式放置,∠C 为45°角,∠D 为30°角,则下列结论不正确的是()A. ∠1=∠3B. 如果∠2=30°,则有AC ∥DEC. 如果∠2=30°,则有BC ∥ADD. 如果∠2=30°,必有∠4=∠C8、计算()2019201852.0⨯-的结果是()A. -1B. -5C. 1D.59、如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A. ∠1+∠2+∠3=360°B. ∠1+ ∠2-∠3=180°C.∠1-∠2+∠3=180°D. ∠1+ ∠2+∠3=180°7题图10、《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相等),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A. ()()⎩⎨⎧=+-+=13y x 8x y 10y 9x 11 B. ⎩⎨⎧=++=+y 1113x 9y x 8x y 10 C. ()()⎩⎨⎧=+-+=13x y 10y x 8y 11x 9 D. ()()⎩⎨⎧=+-+=13y x 8x y 10y 11x 9 二、填空题(本题共8小题,每小题4分,共32分)请将答案填在第Ⅱ卷相应的横线上。
青岛版七年级下册数学期中考试题(附答案)

青岛版七年级下册数学期中考试题(附答案)学校:___________姓名: ___________班级: ___________考号: ___________评卷人得分一、选择题(题型注释)1.已知, 如图, 在△ABC中, OB和OC分别平分∠ABC和∠ACB, 过O作DE∥BC, 分别交AB.AC于点D.E, 若BD+CE=5, 则线段DE的长为( )A. 5B. 6C. 7D. 82.下列各图中, ∠1与∠2是对顶角的是()3.下列推理中, 错误的是()A. ∵AB=CD, CD=EF, ∴AB=EFB. ∵∠α=∠β, ∠β=∠γ, ∴∠α=∠γC. ∵a∥b, b∥c, ∴a∥cD. ∵AB⊥EF, EF⊥CD, ∴AB⊥CD4.如图, 已知AC⊥AB, ∠1=30°, 则∠2的度数是().A. 40°B. 50°C. 60°D. 70°5.某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨. 现计划用15天完成加工任务, 该公司应按排几天精加工, 几天粗加工?设安排天精加工, 天粗加工. 为解决这个问题, 所列方程组正确的是()A............ B...C.15166140x yx y+=⎧⎨+=⎩D.15616140x yx y+=⎧⎨+=⎩6.若方程组的解中与的值相等, 则为()A. 4 B. 3 C. 2 D. 17.如图, , 的度数比的度数的两倍少, 设和的度数分别为, , 那么下面可以求出这两个角的度数的方程组是()A.B.得分二、填空题, 这个角等于______度.9.已知在△ABC 中, AC=3, BC=4, AB=5, 点P 是AB 上 (不与A.B 重合), 过P 作PE ⊥AC, PF ⊥BC, 垂足分别是E 、F, 连结EF, M 为EF 的中点, 则CM 的最小值为 .10.已知是二元一次方程mx+y=3的解, 则m 的值是__.11.方程+=5是二元一次方程, 则m=____, n=_____.12.某铁路桥长1750m, 现有一列火车从桥上通过, 测得该火车从开始上桥到完全过桥共用了80s, 整列火车完全在桥上的时间共60s ;设火车的速度为xm/s, 火车的长度为ym, 根据题意三、解答题 15.如图, 已知AB ∥CD, BE 平分∠ABC, DE 平分∠ADC, ∠BAD =80°, 试求:(1)∠EDC 的度数;(2)若∠BCD =n °, 试求∠BED 的度数。
(word版)七年级数学下学期期中试卷(含解析)青岛版1

2021-2021学年山东省泰安市肥城市七年级〔下〕期中数学试卷一、选择题:本大题共15小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.1.以下四个角中,最有可能与70°角互补的是〔〕A. B. C.D.2.以下运算正确的选项是〔〕A.a3﹣a2=a B.a2?a3=a6C.〔2a3〕2=4a6D.a3+a2=a53.如图,AB∥CD,那么图中与∠1互补的角有〔〕A.2个B.3个C.4个D.5个4.〔﹣10〕?〔﹣×102〕?〔×105〕等于〔〕A.×108B.﹣×107C.×107D.﹣×1085.如图,BC⊥AE于点C,CD∥AB,∠B=55°,那么∠1等于〔〕A.35°B.45°C.55°D.65°6.以下方程组中,是二元一次方程组的是〔〕A. B.C. D.7.以下图形中,由∠1=∠2能得到AB∥CD的是〔〕A. B. C.D.18.老打算气球装扮学校“六一〞儿童活会,气球的种有笑和心两种,两种气球的价格不同,但同一种气球的价格相同,由于会布置需要,以一束〔4个气球〕位,第一、二束气球的价格如所示,第三束气球的价格〔〕A.19 B.18 C.16 D.159.如,直AB∥CD,∠A=70°,∠C=40°,∠E等于〔〕A.30°B.40°C.60°D.70°10.假设一多式除以2x23,得到的商式7x 4,余式5x+2,此多式何?〔〕A.14x38x226x+14B.14x38x226x 10C.10x3+4x28x 10 D.10x3+4x2+22x 1011.将一副直角三角尺如放置,假设∠AOD=20°,∠BOC的大小〔〕A.140°B.160°C.170°D.150°12.x a=3,x b=5,x3a﹣2b=〔〕A.52B.C.D.13.如,假设AB∥CD,∠1+∠2+∠3的〔〕A.90°B.180°C.210°D.270°14.当x=1,代数式ax33bx+4的是7,当x=1,个代数式的是〔〕A.7B.3C.1D.715.于某种菌来,一个菌,1分分裂2个,再1分,又分分裂2个,既共分裂4个,⋯,照的分裂速度,假设一个菌分裂成一小瓶恰好需要12小,同的菌,同的分裂速度,同的小瓶,如果开始瓶内装有2个菌,恰好分裂成一小瓶需要〔〕A.15分B.30分C.58分D.59分二、填空:本大共5小,只要求填写最后果.16.根据世界易〔WTO〕秘初步数据,到2021年中国物出口美元,超美国成世界第一物易大国,将个数据用科学数法可以______美元.17.如,直a∥b,点B在直b上,且AB⊥BC,∠1=55°,∠2的度数______.18.将87°18′54″化度的形式______°.19.如,大正方形的面1,很明,中的将正方形一分二,所以左的方形的面,同右方形中的横将方形又一分二,所以右下角正方形的面,⋯由此,可以推算出的果______.20.关于x,y的二元一次方程的解互相反数,k的是______.三、解答:本大共6小,解答写出必要的文字明、明程或演算步.21.算〔化〕以下各式:〔1〕〔1〕2021〔π〕0+〔〕﹣2;〔2〕〔3x5y〕;3〕〔2b3a〕〔3a2b〕+〔2a3b〕2.22.解以下方程3〔1〕;〔2〕.23.先化简,再求值:〔x+y〕〔x﹣y〕﹣〔4x3y﹣8xy3〕÷2xy,其中x=﹣1,y=.24.:如图,AD∥BE,∠1=∠2,那么∠A=∠E吗?请说明理由.25.完成下面的证明:,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB〔〕∴∠1=∠3______又∵HG∥CD〔〕∴∠2=∠4∵AB∥CD〔〕∴∠BEF+______=180°______又∵EG平分∠BEF〔〕∴∠1=∠______又∵FG平分∠EFD〔〕∴∠2=∠______∴∠1+∠2=〔______〕∴∠1+∠2=90°∴∠3+∠4=90°______即∠EGF=90°.26.某校举办八年级学生数学素养大赛,比赛共设四个工程:七巧板拼图,趣题巧解,数学应用,魔方复原,每个工程得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况〔单位:分〕七巧板拼趣题巧解数学应用魔方复4图原甲66898668乙66608068丙6680906820〔1〕比赛后,甲猜想七巧板拼图,趣题巧解,数学应用,魔方复原这四个工程得分分别按2110%,40%,20%,30%折算记入总分,根据猜想,求出甲的总分;222〕本次大赛组委会最后决定,总分为80分以上〔包含80分〕的学生获一等奖,现得悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是23分,问甲能否获得这次比赛的一等奖?52021-2021学年山东省泰安市肥城市七年级〔下〕期中数学试卷参考答案与试题解析一、选择题:本大题共15小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.1.以下四个角中,最有可能与70°角互补的是〔〕A.B.C.D.【考点】余角和补角.【分析】根据互补的两个角的和等于180°求出70°角的补角,然后结合各选项即可选择.【解答】解:70°角的补角=180°﹣70°=110°,是钝角,结合各选项,只有D选项是钝角,所以,最有可能与70°角互补的是D选项的角.应选D.2.以下运算正确的选项是〔〕A.a3﹣a2=aB.a2?a3=a6C.〔2a3〕2=4a6D.a3+a2=a5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用幂的乘方运算法那么以及积的乘方运算法那么,结合合并同类项法那么求出答案.【解答】解:A、a3﹣a2,无法计算,故此选项错误;235B、a?a=a,故此选项错误;326C、〔2a〕=4a,正确;32D、a+a,无法计算,故此选项错误;3.如图, AB∥CD,那么图中与∠1互补的角有〔〕A.2个B.3个C.4个D.5个【考点】平行线的性质;余角和补角.【分析】由AB∥CD,根据两直线平行,同旁内角互补,即可得∠1+∠AEF=180°,由邻补角的定义,即可得∠1+∠EFD=180°,那么可求得答案.【解答】解:∵AB∥CD,∴∠1+∠AEF=180°,∵∠1+∠EFD=180°.∴图中与∠1互补的角有2个.应选A.4.〔﹣10〕?〔﹣×102〕?〔×105〕等于〔〕6A.×108B.﹣×107C.×107D.﹣×108【考点】单项式乘单项式;科学记数法—表示较大的数.【分析】直接利用单项式乘以单项式运算法那么求出答案.25【解答】解:〔﹣10〕?〔﹣×10〕?〔×10〕×107.应选:C.5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,那么∠1等于〔〕A.35°B.45°C.55°D.65°【考点】平行线的性质;直角三角形的性质.【分析】利用“直角三角形的两个锐角互余〞的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.应选:A.6.以下方程组中,是二元一次方程组的是〔〕A.B.C.D.【考点】二元一次方程组的定义.【分析】二元一次方程满足的条件:为整式方程;含有2个未知数;未知数的项的次数是1;两个二元一次方程组合成二元一次方程组.【解答】解:A、第一个方程的最高次项的次数为2,不符合二元一次方程组的定义;B、第二个方程不是整式方程,不符合二元一次方程组的定义;C、符合二元一次方程组的定义;D、第一个方程的最高次项的次数为2,不符合二元一次方程组的定义.应选C.7.以下图形中,由∠1=∠2能得到AB∥CD的是〔〕7A.B.C.D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如下图:∵∠1=∠2〔〕,∴AB∥CD〔内错角相等,两直线平行〕,应选B8.陈老师打算购置气球装扮学校“六一〞儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购置时以一束〔4个气球〕为单位,第一、二束气球的价格如下图,那么第三束气球的价格为〔〕A.19B.18C.16D.15【考点】二元一次方程组的应用.【分析】设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.【解答】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,那么2x+2y=16.应选C.89.如图,直线AB∥CD,∠A=70°,∠C=40°,那么∠E等于〔〕A.30°B.40°C.60°D.70°【考点】三角形的外角性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.应选:A.10.假设一多项式除以2x2﹣3,得到的商式为7x﹣4,余式为﹣5x+2,那么此多项式为何?〔〕A.14x3﹣8x2﹣26x+14B.14x3﹣8x2﹣26x﹣10C.﹣10x3+4x2﹣8x﹣10D.﹣10x3+4x2+22x﹣10【考点】整式的除法.【分析】根据题意列出关系式,计算即可得到结果.【解答】解:根据题意得:〔2x2﹣3〕〔7x﹣4〕+〔﹣5x+2〕=14x3﹣8x2﹣21x+12﹣5x+2=14x38x2﹣26x+14.应选A11.将一副直角三角尺如图放置,假设∠AOD=20°,那么∠BOC的大小为〔〕A.140°B.160°C.170°D.150°【考点】直角三角形的性质.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.应选:B.912.x a=3,x b=5,那么x3a﹣2b=〔〕A.52B.C.D.【考点】同底数幂的除法.【分析】直接利用幂的乘方运算法那么以及同底数幂的除法运算法那么求出答案.a b3a﹣2b a3b2∴x=〔x〕÷〔x〕=27÷25=.13.如图,假设A B∥CD,那么∠1+∠2+∠3的值为〔〕A.90°B.180°C.210°D.270°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠F,由对顶角的性质得到∠2=∠FED,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠F,∵∠2=∠FED,∴∠1+∠2+∠3=∠F+∠FED+∠3=180°,应选B.14.当x=1时,代数式ax3﹣3bx+4的值是7,那么当x=﹣1时,这个代数式的值是〔〕A.7B.3C.1D.﹣710【考点】代数式求.【分析】把x=1代入代数式求出a、b的关系式,再把x= 1代入行算即可得解.【解答】解:x=1, ax33bx+4= a 3b+4=7,解得a 3b=3,当x= 1,ax33bx+4=a+3b+4= 3+4=1.故:C.15.于某种菌来,一个菌,1分分裂2个,再1分,又分分裂2个,既共分裂4个,⋯,照的分裂速度,假设一个菌分裂成一小瓶恰好需要1小,同的菌,同的分裂速度,同的小瓶,如果开始瓶内装有2个菌,恰好分裂成一小瓶需要〔〕A.15分B.30分C.58分D.59分【考点】有理数的乘方.【分析】根据意1分分裂成2个,2分分裂成4个,n分分裂成2n个,一个菌1小的繁殖充瓶子,假设开始就放2个菌只59分就能充瓶子.【解答】解:一个菌1分分裂成2个,2分分裂成4个,n分分裂成2n个,一个菌1小的繁殖能使瓶子充.如果开始就在瓶子里放入2个菌,繁殖的速度比原来快一分.故菌充瓶子所需要的59分.故:D.二、填空:本大共5小,只要求填写最后果.16.根据世界易〔WTO〕秘初步数据,到2021年中国物出口美元,超美国成世界第一物易大国,将个数据用科学数法可以×1012美元.【考点】科学数法—表示大的数.【分析】科学数法的表示形式a×10n的形式,其中1≤|a|<10,n整数.确定n的,要看把原数成a,小数点移了多少位,n的与小数点移的位数相同.当原数>1,n是正数;当原数的<1,n是数.【解答】解:将用科学数法表示:×1012.故答案:×1012.17.如,直a∥b,点B在直b上,且AB⊥BC,∠1=55°,∠2的度数35°.【考点】平行的性.【分析】根据平行的性求得∠3的度数,即可求得∠2的度数.【解答】解:∵a∥b,11∴∠3=∠1=55°,∴∠2=180°90°55°=35°.故答案是:35°.18.将87°18′54″化度的形式°.【考点】度分秒的算.【分析】根据小位化大位除以率,可得答案.【解答】解:87°18′54″化度的形式,故答案:.19.如,大正方形的面1,很明,中的将正方形一分二,所以左的方形的面,同右方形中的横将方形又一分二,所以右下角正方形的面,⋯由此,可以推算出的果.【考点】律型:形的化.【分析】仔察形的化,所有面的和等于位1减去最后一的面即可.【解答】解:=1=,故答案:.20.关于x,y的二元一次方程的解互相反数,k的是1.【考点】二元一次方程的解.【分析】将方程用k表示出x,y,根据方程的解互相反数,得到关于k的方程,即可求出k的.12【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.三、解答题:本大题共6小题,解容许写出必要的文字说明、证明过程或演算步骤.21.计算〔化简〕以下各式:〔1〕〔﹣1〕2021﹣〔﹣π〕0+〔〕﹣2;〔2〕〔﹣3x5y〕;3〕〔2b﹣3a〕〔﹣3a﹣2b〕+〔2a﹣3b〕2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】〔1〕原式利用乘方的意义,零指数幂、负整数指数幂法那么计算即可得到结果;2〕原式先利用幂的乘方与积的乘方运算法那么计算,再利用单项式乘以多项式,单项式乘以单项式法那么计算,即可得到结果;3〕原式利用平方差公式,完全平方公式化简,去括号合并即可得到结果.【解答】解:〔1〕原式=1﹣1+4=4;2〕原式=﹣x6y3+6x7y4﹣2x12y7;3〕原式=﹣4b2+9a2﹣12ab+4a2+9b2=13a2﹣12ab+5b2.22.解以下方程组〔1〕;〔2〕.【考点】解二元一次方程组.【分析】〔1〕方程组整理后,利用加减消元法求出解即可;〔2〕方程组整理后,利用加减消元法求出解即可.【解答】解:〔1〕方程组整理得:,①×3+②×2得:17x=102,即x=6,把x=6代入①得:y=24,那么方程组的解为;13〔2〕方程组整理得:,①﹣②×5得:14y=14,即y=1,把y=1代入②得:x=2,那么方程组的解为.23.先化简,再求值:〔x+y〕〔x﹣y〕﹣〔4x3y﹣8xy3〕÷2xy,其中x=﹣1,y=.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式,多项式除以单项式法那么计算,合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2﹣2x2+4y2=﹣x2+3y2,当x=﹣1,y=时,原式=﹣1+=﹣.24.:如图,AD∥BE,∠1=∠2,那么∠A=∠E吗?请说明理由.【考点】平行线的判定与性质.【分析】首先根据条件AD∥BE,可证出∠A=∠3,再证明DE∥CB,根据平行线的性质可得∠E=∠3,最后根据等量代换可以得到∠A=∠E.【解答】解:相等,理由:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥BC,∴∠E=∠3,∴∠A=∠E.25.完成下面的证明:,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB〔〕∴∠1=∠3两直线平行、内错角相等又∵HG∥CD〔〕∴∠2=∠4∵AB∥CD〔〕∴∠BEF+∠EFD=180°两直线平行、同旁内角互补又∵EG平分∠BEF〔〕14∴∠1=∠∠BEF又∵FG平分∠EFD〔〕∴∠2=∠∠EFD∴∠1+∠2=〔∠BEF+∠EFD〕∴∠1+∠2=90°∴∠3+∠4=90°等量代换即∠EGF=90°.【考点】平行线的性质.【分析】此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD 得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.【解答】解:∵HG∥AB〔〕∴∠1=∠3〔两直线平行、内错角相等〕又∵HG∥CD〔〕∴∠2=∠4∵AB∥CD〔〕∴∠BEF+∠EFD=180°〔两直线平行、同旁内角互补〕又∵EG平分∠BEF,FG平分∠EFD∴∠1=∠BEF,2=∠EFD,∴∠1+∠2=〔∠BEF+∠EFD〕,∴∠1+∠2=90°∴∠3+∠4=90°〔等量代换〕,即∠EGF=90°.故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.26.某校举办八年级学生数学素养大赛,比赛共设四个工程:七巧板拼图,趣题巧解,数学应用,魔方复原,每个工程得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况〔单位:分〕七巧板拼趣题巧解数学应用魔方复图原甲6689866815乙66608068丙66809068〔1〕比赛后,甲猜想七巧板拼图,趣题巧解,数学应用,魔方复原这四个工程得分分别按10%,40%,20%,30%折算记入总分,根据猜想,求出甲的总分;2〕本次大赛组委会最后决定,总分为80分以上〔包含80分〕的学生获一等奖,现得悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是分,问甲能否获得这次比赛的一等奖?【考点】二元一次方程组的应用;加权平均数.【分析】〔1〕根据求加权平均数的方法就可以直接求出甲的总分;〔2〕设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.【解答】解:〔1〕由题意,得甲的总分为:66×10%+89×40%+86×20%+68×〔分〕;2〕设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×>80,∴甲能获一等奖.16。
青岛版七年级下册数学期中测试卷

期中测试卷一、选择题1.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有( )A.5个B.4个C.3个D.2个答案:A2.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是( )A.a∥dB.b⊥dC.a⊥dD.b∥c答案:C3.下列各式计算正确的是( )A.(a2)4=(a4)2B.2x3·5x2=10x6C.(-c)8÷(-c)6=-c2D.(ab3)2=ab6答案:A4.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠P等于( )A.50°B.60°C.80°D.90°答案:D5.已知∠A=123°,则∠A的补角的余角为( )A.57°B.52°C.90°D.33°答案:D6.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC 的度数分别为x,y,那么下面可以求出这两个角的度数的方程组是( )A.9015x yx yB.90215x yx yC.90152x yx yD.290215 xx y答案:B7.如图,∠DOB为直角,∠COA也是直角,则( )A.∠1=∠2B.∠3=12(∠1+∠2)C.∠1=∠3D.∠2=∠3答案:C8.已知x=2,y=1是方程kx-y=3的解,那么k的值为( )A.2B.-2C.1D.-1答案:A9.计算:(58)2 016×(-1.6) 2 017÷(-1) 2 015=( )A. 58B.-58C.85D.-85答案:C10.给出下列说法:①两条直线被第三条直线所截,同位角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③相等的两个角是对顶角;④从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有( )A.0个B.1个C.2个D.3个答案:B11.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A.∠1+∠2B.∠2-∠1C.180°-∠1+∠2D.180°-∠2+∠1答案:D12.甲、乙两人按3∶2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得( )A.2123x yy xB.2332x yx yC.2332x yy xD.23 23x yx y答案:C二、填空题13.计算:37°28′+44°49′= .答案:82°17′14.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为 .答案:415.如图,AB∥CD,直线EF分别交AB,CD于E,F,EG平分∠BEF,若∠1=72°,则∠2= .答案:54°16.方程2x n-3-y 3m+n-2+3=0是二元一次方程,则m= .答案:-1317.已知2,1x y是方程组31,5ax y x by的解,则a-b= .答案:-118.如图,△ABC 中,∠C=90°,∠BAD=13∠BAE ,∠ABD=13ABF ,则∠D= .答案:90°三、解答题19.解下列方程组. (1)3,3814;x yx y ①②(2)3416,5633.x y x y①②答案:解:(1)3?3814xyx y ,①,②由①得x=y+3,③把③代入②,得3(y+3)-8y=14,解得y=-1,把y=-1代入③,得x=2,所以21. xy,(2)3416 5633x yx y,①,②①×3,得9x+12y=48,③②×2,得10x-12y=66,④③+④,得19x=114,解得x=6,把x=6代入①,得y=-12,所以61.2 xy,20.若(x2+nx+3)(x2-3x+m)的展开式中不含x2和x3项,求m,n的值.答案:解:原式=x4-3x3+mx2+nx3-3nx2+mnx+3x2-9x+3m=x4+(n-3)x3+(m-3n+3)x2+(mn-9)x+3m.因为展开式中不含x2和x3项,所以n-3=0,m-3n+3=0,解得m=6,n=3.21.如图,根据下列条件,可以判定哪两条直线平行?并说明判定的根据是什么?①∠2=∠B;②∠1=∠D;③∠3+∠F=180°.答案:解:由①可判定AB∥DE,同位角相等,两直线平行.②可判定AC∥DF,内错角相等,两直线平行.③可判定AC∥DF,同旁内角互补,两直线平行.22.如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数.答案:解:因为∠B=40°,∠C=60°,所以∠BAC=180°-∠B-∠C=180°-40°-60°=80°. 因为AE 平分∠BAC ,所以∠BAE=12∠BAC=12×80°=40°.因为AD ⊥BC ,所以∠BAD=90°-∠B=90°-40°=50°,所以∠DAE=∠BAD-∠BAE=50°-40°=10°. 23.已知方程组352,53x y m x ym 的解x,y 互为相反数,求m 的值.答案:解:由于方程组35253x y m x ym,的解x ,y 互为相反数,所以y=-x ,于是得到35253x x m x x m ,,整理得222x m xm ,,解得m=-1.24.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/kg ) 3 4 零售价(元/kg )47当天他卖完这些黄瓜和茄子共赚了90元,这天他批发了黄瓜和茄子分别是多少千克?答案:解:设批发了黄瓜是x kg ,茄子是y kg ,由题意得34145437490 x yx y,,解得1525. xy,答:这天他批发了黄瓜15 kg,茄子25 kg.25.如图,已知直线a∥b,且c和a,b分别交于A,B两点,点P在AB上. (1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系.(点P和点A,B不重合)答案:解:(1)∠3=∠1+∠2,理由如下:如图,过点P作d∥a,则∠4=∠1.因为a∥b,所以d∥b,所以∠5=∠2,所以∠3=∠4+∠5=∠1+∠2.(2)不发生变化.(3)当点P在线段AB的延长线上时,∠1=∠3+∠2;当点P在线段BA的延长线上时,∠2=∠3+∠1.。
青岛版七年级数学下册期中试卷

期中数学试卷一、选择题1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2B.0C.2D.36.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25°B.28°C.30°D.32°7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30°B.45°C.60°D.120°9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5B.6C.7D.810.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a二、填空题11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是克.13.若x n﹣1•x n+5=x10,则n﹣2=.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD=.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若(2x+5)(4x﹣10)=8x2+px+q,则p=,q=.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.三、解答题19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.20.解方程组(1)(2).21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?参考答案一、选择题1.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.2.【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴,解得:,故选:B.3.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选:B.4.【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.5.【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y3+ky2﹣2y2中不含y2项,∴k﹣2=0,解得:k=2.故选:C.6.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选:B.7.【解答】解:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,.故选:C.8.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.9.【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5.故选:A.10.【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选:B.二、填空题11.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.12.【解答】解:0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.13.【解答】解:由x n﹣1•x n+5=x10,得x2n+4=x10,即2n+4=10,解得n=3.n﹣2=3﹣2=,故答案为:.14.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.15.【解答】解:由m,m满足|m﹣2|+(n﹣2015)2=0,得m﹣2=0,n﹣2015=0.解得m=2,n=2015.m﹣1+n0=+1=,故答案为:.16.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.17.【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣5018.【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.故答案为:320元;180元三、解答题19.【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣5时,原式=20+1=21.20.【解答】解:(1),①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.21.【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5m=2,5n=3,∴原式=(5m)3÷(5n)2=.22.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.23.【解答】解:设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.24.【解答】解:垂直.理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.25.【解答】解:原式=6x2+4x+3kx+2k﹣6x2﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.26.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.。
山东省青岛第三十九中学2022-2023学年七年级下学期数学期中试题(含部分答案)

2022-2023学年度第二学期期中质量检测七年级数学试题(满分:120分 时间:120分钟)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共24题,第Ⅰ卷为选择题,共8小题,24.分;第Ⅱ卷为填空题、作图题、解答题,共16小题,96分.2.所有题目均在答题卡上作答,在试题上作答无效.第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.计算所得结果是( )A. B.2023C.D.2.生物具有遗传多样性,遗传信息大多储存在DNA 分子上,一个DNA 分子直径约为0.0000002cm ,这个数量用科学记数法可表示为( )A. B. C. D.3.下表是研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x (kg )12345弹簧长度y (cm )1012141618则弹簧不挂物体时的长度为( ).A.4cmB.6cmC.8cmD.10cm4.下列图形中,线段AD 的长表示点A 到直线BC 距离的是()A. B.C. D.5.如图,为估计池塘岸边A 、B 两点的距离,小林在池塘的一侧选取一点O ,测得米,米,则A 、B 间的距离不可能是()112023-⎛⎫ ⎪⎝⎭2023-12023-1202360.210cm-⨯6210cm-⨯70.210cm-⨯7210cm-⨯10OA =7OB =A.4米B.9米C.15米D.18米6.如图,点E 在.AD 延长线上,下列条件中不能判定的是()A. B.C. D.7.如图,将一块含30°的三角板叠放在直尺上。
若,则()A.45°B.50°C.60°D.70°8.如图1,正方形ABCD 的边BC 上有一定点E ,连接AE ,动点P 从正方形的顶点A 出发,沿A →D →C 以1cm/s 的速度匀速运动到终点C 图2是点P 运动时,的面积y ()随时间x (s )变化的全过程图象,则EC 的长度为()图1图2A.2cmB.2.5cmC.3cmD.3.5cm第Ⅱ卷(共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.计算;______.10.若,,则______.//BC AD 12∠=∠C CDE ∠=∠34∠=∠180C ADC ∠+∠=︒140∠=︒2∠=APE △2cm 53a a ÷=2212x y -=6x y +=x y -=11.如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则的重心是点______.12.青岛与济南两地相距350千米,若汽车以平均80千米/小时的速度从青岛开往济南,则汽车距济南的路程y (千米)与行驶的时间x (小时)之间的关系式为______.13.已知,,则的值是______.14.如图,在中,AD 是角平分线,AE 是高,若,,则______.15.如图,,BF 平分,DF 平分,,那的度数为______°16.我们知道下面的结论:若(,且),则,利用这个结论解决下列问题:设,,.现给出m ,n ,p 三者之间的三个关系式:①,②;③.其中正确的是______.(填编号)三、作图题(本题满分4分)17.已知:如图,直线AB 和点P.ABC △210a b -=5ab =224a b +ABC △50B ∠=︒70C ∠=︒DAE ∠=//AB CD ABE ∠CDE ∠35BFD ∠=︒BED ∠m n a a =0a >1a ≠m n =23m =26n =212p =2m p n +=23m n p +=-²1n mp -=求作:直线CD ,使,且CD 经过点P .四、解答题(本题共7道小题,满分68分)18.计算(本题满分20分,每小题4分)(1);(2);(3)(用乘法公式);(4);(5).19.(本小题满分6分)先化简,再求值:,其中,.20.(本小题满分6分)如图,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作交AC 于点E ,过点E 作交BC 于点F .若,求的度数.请将下面的解答过程补充完整.解:①______(②_________________)∴③______(④_________________)(⑤_________________)⑥______°21.(本小题满分6分)小明家距离学校8千米,今天早晨,小明骑车上学途中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他增加速度骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行的路程s 与他所用的时间t 之间的关系.//CD AB ()()25344a a a-⋅+-3211322ab a b ab ab ⎛⎫⎛⎫ ⎪-+⎪ ⎝⎭⎝÷⎭-99.9100.1⨯()()()423241x x x x -+-+()()22a b c a b c +--+()()()2123222x y x y x y y ⎛⎫⎡⎤---+÷⎪⎣⎦⎝⎭2x =3y =//DE BC //EF AB 40ABC ∠=︒DEF ∠//DE BCDEF ∴∠=//EF ABABC =∠DEF ABC ∴∠=∠40ABC =︒DEF ∴∠=请根据图象,解答下列问题:(1)小明行了______千米时,自行车出现故障;小明共用了______分钟到学校.(2)小明修车用了多长时间?(3)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?22.(本小题满分8分)如图,已知,.(1)请你判断DA 与CE 的位置关系,并说明理由;(2)若DA 平分,于E ,,则______°.23.(本小题满分10分)【知识回顾】我们在学习代数式求值时,遇到这样一类题:代数式的值与x 的取值无关,求a 的值.通常的解题思路是:把x 、y 看作字母,a 看作系数,合并同类项。
2022-2023学年山东省青岛重点中学七年级(下)期中数学试卷(含解析)

2022-2023学年山东省青岛重点中学七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( )A. a5+a5=a10B. (a3)3=a9C. (ab4)4=ab8D. a6÷a3=a22. 一个三角形的两边长分别为3和5,第三边长为偶数,则第三边长可能为( )A. 4或6B. 2或4C. 4D. 63. 若(x+a)(x−2)=x2+bx−2,则a+b的值为( )A. −2B. −1C. 0D. 24. 五一假期,小明去娱乐小镇游乐园游玩,坐上了他向往已久的摩天轮(如图所示).摩天轮上,小明离地面的高度ℎ(米)和他坐上摩天轮后旋转的时间t(分钟)之间的部分函数关系如图所示,则下列说法错误的是( )A. 摩天轮旋转一周需要6分钟B. 小明出发后的第3分钟和第9分钟,离地面的高度相同C. 小明离地面的最大高度为42米D. 小明出发后经过6分钟,离地面的高度为3米5.一副直角三角板按如图所示的位置摆放,点E在AB上,BC//EF,则∠1的度数是( )A. 60°B. 65°C. 70°D. 75°6. 小明有足够多的如图所示的正方形卡片A,B和长方形卡片C,如果他要拼一个长为(a+2b),宽为(a+b)的大长方形,共需要C类卡片( )A. 3张B. 4张C. 5张D. 6张7. 如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=119°,则∠EMF的度数为( )A. 57°B. 58°C. 59°D. 60°8.如图,两个正方形的泳池,面积分别是S1和S2,两个泳池的面积之和S1+S2=16,点B是线段CG上一点,设CG=6,在阴影部分铺上防滑瓷砖,则所需防滑瓷砖的面积为( )A. 5B. 4C. 8D. 10二、填空题(本大题共8小题,共24.0分)9. 一个角的余角的2倍比这个角的补角少24°,那么这个角的度数是______.10. 2021年10月16日,我国神舟13号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递.微波理论上可以在0.000003秒内接收到相距约1km的信息.将数0.000003用科学记数法表示应为______ .11. 若a5⋅(a y)4=a17,则y=______.12. 用“☆”定义一种新运算:对于任意有理数x和y,x☆y=a2x+ay+1(a为常数),如:2☆3=a2⋅2+a⋅3+1=2a2+3a+1.若1☆2=3,则3☆6的值为______.13.如图,在△ABC中,点O是∠ABC和∠ACB的平分线的交点,点E,D分别是OB,OC延长线上的点,∠CBE和∠BCD的平分线交于则∠P的度数为.(用含α的代数式表示点P,∠A=α,)14. 平面镜在光学仪器中有广泛的应用.平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图①,一束光线m射到平面镜a上,被a反射后的光线为n,则∠1=∠2.如图②,两平面镜OM,ON的夹角∠MON,若任何射到平面镜ON上的入射光线AB,经过平面镜ON,OM两次反射后,使得AB//CD,则∠MON=______°.15. 杨辉三角是中国古代数学的杰出研究成果之一.如图,在杨辉三角形中,斜线l的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,用a n表示这个数列的第n个数,则a99+a100=______ .16. A,B两地相距640km,甲、乙两辆汽车从A地出发到B地,均匀速行驶,甲出发1小时后,乙出发沿同一路线行驶,设甲、乙两车相距s(km),甲行驶的时间为t(ℎ),s与t的关系如图所示,下列说法:①甲车行驶的速度是60km/ℎ,乙车行驶的速度是80km/ℎ;②甲出发4ℎ后被乙追上;ℎ;③甲比乙晚到53ℎ,甲,乙两车相距80km;④甲车行驶8ℎ或914其中正确的是______ .三、解答题(本大题共8小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A
C D
O 5题图
1
A B
F
D C
E
2
20XX年第二学期期中学业评估
七年级数学试题
(满分120分,时间100分钟)
一、选择题:(每题3分,)
1、下列说法中正确的是()
A、有且只有一条直线与已知直线垂直.
B、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
C、互相垂直的两条线段一定相交.
D、直线L外一点A与直线L上各点连接而成的所有线段中最短的长是3厘米,则A到L的距离是3厘米。
2、下面四个图形中,∠1与∠2是对顶角的图形有()
A、1个
B、2个
C、3个
D、4个
3.判断两角相等,错误的是()
A.对顶角相等 B.两条直线被第三条直线所截,内错角相等
C.两直线平行,同位角相等
D.∵∠1=∠2,∠2=∠3,∴∠1=∠3
4.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()
A.(-3,4) B.(3,4) C.(-4,3) D.(4,3)
5、如图:已知AB∥CD,∠B=1200,∠D=1500,则∠O等于().
(A)500(B)600(C)800(D)900
6.如图,若AB∥CD,CD∥EF,那么∠BCE=()
A.∠1+∠2 B.∠2-∠1
C.180°-∠1+∠2 D.180°-∠2+∠1
7.把点A向上向上平移2个单位,再向右平移3各单位后得到点B,点B的坐标是( )
A.(-5,3)
B.(1,3)
C.(1,-3)
D.(-5,1)
8、已知一次函数y=—2x+5在直角坐标系内它的大致图象是 ( ) A . B . C . D .
9、 以方程组⎩⎨⎧=--=+3462y x y x 的解为坐标的点(x,y )在平面直角坐标系中的位置
在第几象限( )
A.一 B .二 C.三 D.四
10、在下列点中,与点A (2-,4-)的连线平行于y 轴的是 ( ) A 、(2,4-) B 、(4,)2- C 、(-2,4) D 、(-4,2)
11、甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x 千元,乙分得y 千元,由题意得( )
A 、 x y y x 3212=-=
B 、 y x y x 2332=+=
C 、 x y y x 2332=-=
D 、 y
x y x 323
2=+=
12、如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )
A 、9015x y x y +=⎧⎨=-⎩
B 、90215x y x y +=⎧⎨=-⎩
C 、90152x y x y +=⎧⎨=-⎩
D 、290215x x y =⎧⎨
=-⎩二.填空。
13、时钟的分针和时针在3时30分时,所成的角度是度 14、17、方程032233
=+--+-n m n y x
是二元一次方程,则,m =
n =
15.如图,已知函数b ax y +=和kx y =的图象交于点P ,则根据图象可得,关于y x , 的二元一次方程组⎩
⎨⎧=+=kx y b
ax y 的解是.
b ax y +=
第15题图
kx y =
16、一次函数y=-x 与y=x+4的交点为P ,他们与y 轴的交点分别为Q 、O,则△PQO 面积为
17、把一张长方形纸片ABCD 沿EF 折叠后
ED 与BC 的交点为G ,D 、C 分别在M 、N 的位
置上,若∠EFG =55°, 则∠1=_______,∠2=_______.
三、解答题(本大题共52分)
19、选择合适的方法解下列方程组。
(每题5分,共10分) (1)⎩⎨
⎧=-=+.
2343,553n m n m (2) ⎩⎨⎧-=--=+18434
25y x y x .
20、(本题7分)如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF ,∠1=40°,求∠2的度数。
21、(本题7分)如图,△ABC 中,AD ⊥BC,AE 平分∠BAC,∠B=40°,∠C=60°,求∠DAE 的度 数.
17题图)
B
A C
D
E
F
G
M
N
1
2
⎩
⎨⎧=-=3
2
y x 22、(本题8分)在平面直角坐标系中,顺次连结A(-2,1),B(-2,-1),C(2,-2),D(2,3)各点,你会得到一个什么图形?试求出该图形的面积.
23、(本题10分)某农户种植一种经济作物,总用水量y (3米)与种植时间x (天)之间的函数关系式如图所示.
(1)第20天的总用水量为多少米3? (2)当x ≥20时,求y 与x 之间的函数关系式; (3)种植时间为多少天时,总用水量达到70003米?
24、(本题10分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙
吨付运费30元计算,问货主应付运费多少元?
天)
21略解:∠BAC=80°(2分)∠BAE =40°(1分)
∠BAD=50°(1分)∠DAE=10° . (3分)
22、画图2分梯形2分面积=14 4分
23. 解:(1)第20天的总用水量为1000米3;…………………3分
(2)由待定系数法求得:当x≥20时:y=300x 5000;……4分
(3)当y=7000时,有7000=300x 5000,解得x=40.故种植时间为40天时,总用水量达到7000米3…………………………3分
24、解;设甲种货车每辆一次运x吨货物,设乙种货车每辆一次运y吨货物。
由题意得:
35655.1532=+=+y x y x (4分) 解得: 5
.24
==y x (6分)
运费:)5.2534(30⨯+⨯⨯=735元 (8分)。