新人教版初中数学七年级下册教案 全册
2024年人教版七年级下册数学教案全册

2024年人教版七年级下册数学教案全册一、教学内容1. 第一章:数的概念与运算第一节:有理数的乘方与开方第二节:实数的概念与运算第三节:数的估算与无理数2. 第二章:代数式与方程第一节:单项式与多项式第二节:一元一次方程第三节:不等式与不等式组3. 第三章:图形的认识与图形的测量第一节:平行线与相交线第二节:三角形的概念与性质第三节:四边形的概念与性质二、教学目标1. 理解有理数乘方、开方及实数的概念,掌握实数的混合运算方法。
2. 学会解一元一次方程,掌握不等式与不等式组的解法。
3. 掌握平行线、相交线、三角形及四边形的性质,提高空间想象能力。
三、教学难点与重点1. 教学难点:实数的概念、一元一次方程的解法、不等式组的解法、图形的性质。
2. 教学重点:实数的运算、方程与不等式的解法、图形的测量。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。
2. 学具:练习本、铅笔、三角板、直尺。
五、教学过程1. 导入:通过生活实例引入数的概念,激发学生学习兴趣。
2. 新课导入:讲解教材内容,结合例题进行讲解。
3. 随堂练习:设计实践情景,让学生动手操作,巩固所学知识。
6. 课后作业:布置适量的作业,巩固所学知识。
六、板书设计1. 板书内容:章节、重要概念、公式、典型例题、解题步骤。
2. 板书要求:条理清晰、层次分明、重点突出。
七、作业设计1. 作业题目:课后习题1.1、1.2、1.3;课后习题2.1、2.2、2.3;课后习题3.1、3.2、3.3。
2. 答案:课后习题答案附后。
八、课后反思及拓展延伸2. 拓展延伸:针对学生的实际情况,设计拓展性练习,提高学生的思维能力。
重点和难点解析一、教学难点与重点1. 实数的概念与运算:实数是数学中的一个基本概念,包括有理数和无理数。
实数的运算是学生容易出错的地方,需要重点关注。
补充说明:在讲解实数的概念时,可以通过具体例子(如π、√2等)来帮助学生理解无理数的存在。
2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第1章:有理数1.1 有理数的概念与分类1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方2. 第2章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 实际问题与一元一次方程3. 第3章:几何图形3.1 线段、射线与直线3.2 角的概念与分类3.3 三角形的性质3.4 平行线的性质与判定二、教学目标1. 理解有理数的概念,掌握有理数的分类、加减乘除及乘方运算。
2. 掌握一元一次方程的解法,并能解决实际问题。
3. 掌握几何图形的基本概念与性质,培养空间想象能力。
三、教学难点与重点1. 教学难点:有理数的乘除法及乘方运算一元一次方程的解法几何图形的性质及判定2. 教学重点:有理数的运算规律方程的解法几何图形的基本性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等。
2. 学具:练习本、铅笔、直尺、圆规、量角器等。
五、教学过程1. 实践情景引入:通过生活实例引入有理数的概念与运算。
通过实际问题引入方程的概念。
通过观察身边的几何图形,引入几何图形的性质。
2. 例题讲解:讲解有理数的加减乘除、乘方运算的法则与例题。
讲解一元一次方程的解法及实际应用例题。
讲解几何图形的性质与判定方法。
3. 随堂练习:进行有理数运算的练习。
解答一元一次方程的练习题。
识别与判断几何图形的练习。
4. 课堂小结:六、板书设计1. 有理数的概念、分类及运算规律。
2. 一元一次方程的解法及实际应用。
3. 几何图形的性质与判定。
七、作业设计1. 作业题目:有理数运算练习题。
一元一次方程实际应用题。
几何图形的识别与判断题。
答案:见课后练习册。
八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生掌握程度进行查漏补缺。
2. 拓展延伸:引导学生探索有理数的更多运算性质。
介绍更高层次的方程解法,如二元一次方程组。
引导学生观察生活中的几何图形,培养空间想象能力。
2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。
二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。
2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。
三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。
难点:三角形性质的理解,三角形面积公式的推导。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。
2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。
(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。
(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。
3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。
4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。
六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。
2. 三角形的性质:内角和等于180°,两边之和大于第三边等。
3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。
4. 三角形周长和面积的计算方法。
七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。
2. 答案:见附页。
七年级数学下册教案

七年级数学下册教案人教版七年级数学下册教案15篇作为一无名无私奉献的教育工作者,通常需要准备好一份教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案要怎么写呢?下面是小编整理的人教版七年级数学下册教案,仅供参考,欢迎大家阅读。
人教版七年级数学下册教案1教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.【点拨】(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高【例1】下列所画数轴对不对?如果不对,指出错在哪里?【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.【例3】下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )A.1个B.2个C.3个D.4个【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有( )A.1998个或1999个B.1999个或20xx个C.20xx个或20xx个D.20xx个或20xx个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的'点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是( )A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是( )A.-1B.1C.-3D.3人教版七年级数学下册教案2知识与技能:1、了解一元一次不等式组的概念、2、理解一元一次不等式组的解集,能求一元一次不等式组的解集、3、会解一元一次不等式组、过程与方法:通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则、情感态度:运用数轴确定不等式组的解集是行之有效的方法、这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣、教学重点:一元一次不等式组的解法、教学难点:确定一元一次不等式组的解集、一、情境导入,初步认识问题1:现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________由①解得_____________由②解得_____________在数轴上表示就是________________容易看出:x的取值范围是____________________这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框、问题2:由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法教学说明:全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论二、思考探究,获取新知思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?归纳结论1、定义:(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组、(2)一元一次不等式组的解集:几个不等式的.解集的公共部分,叫做由它们所组成的不等式的解集、(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组、2、一元一次不等式组的解法:(1)求出每个一元一次不等式的解集、(2)求出这些解集的公共部分,便得到一元一次不等式组的解集人教版七年级数学下册教案3知识与技能:掌握本章基本概念与运算,能用本章知识解决实际问题。
2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
人教版初中数学七年级下册教案 全册

1.1.1 正数和负数〔教学目标〕1、了解负数是从实际需要中产生的; 2、能判断一个数是正数还是负数,理解数0表示的量的意义;3、会用正负数表示实际问题中具有相反意义的量.〔重点难点〕正、负数的概念,具有相反意义的量是重点;理解负数的概念和数0表示的量的意义是难点.〔教学过程〕一、导入新课我先向同学们做个自我介绍,我姓林,大家可以叫我林老师,身高1.68米,体重60.5千克,今年48岁,教龄是年龄的7/12,我将和同学们一起度过三年的初中学习生活.老师刚才的介绍中出现了一些数,它们是些什么数呢?[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的需要.在生活中,仅有整数和分数够用了吗?二、负数的引入实际上,在生产、生活、科研中,经常遇到数的表示与数的运算的问题.[投影5](1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?(3)2006年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?上面的例子中出现了数-3,3,2,-2,0,1.8%,-2.7%,这些数中,哪些数与以前学习的数不同?数-3、-2、-2.7%与以前学习的数不同.像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.三、对数“0”的重新认识大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?数0既不是正数,也不是负数,它是正数和负数的分界.我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量.如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度.因此,0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.四、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度.例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米.请大家看课本第3面的图1.1-2、1.1-3.你能解释上面图中正数和负数的含义吗?图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元.这里高于海平面4600米与低于海平面100米, 存入2300元与支出1800元是具有相反意义的量.你能再举一些具有相反意义量的实际例子吗?汽车向东行驶100千米,向西行驶60千米;水位升1.5米,水位下降0.8米;买进股票5000元,卖出股票5000元,等等.思考:从上面所举的例子中,你知道具有“相反意义的量”有什么特征吗?一是意义相反,二是有数量,而且是同类量.五、课堂练习课本第3面练习1、2、3、4.六、课堂小结1、到目前为止,我们学习的数有哪几种?2、什么是正数、负数?零仅仅表示“没有”吗?3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用.作业:课本5面第1、2、3题.1.2.1有理数〔教学目标〕1、了解集合的概念,理解有理数及有关概念;2、能将所给的有理数按要求进行分类,体验分类思想.〔重点难点〕有理数及有关概念是重点;有理数的分类是难点.〔教学过程〕一、导入新课[投影1]1、“一个数如果不是正数,那么一定是负数”这句话对不对?为什么?不对.因为零既不是正数,也不是负数.所以,一个数可能是正数,负数或零.2、引入负数后,你已经认识了哪些类型的数?试举几例.正整数,如1,2,3,…; 零,0;负整数,如-1,-2,-3,…; 正分数,如1/2,2/3,15/7,0.1,5.32,…;负分数,如-0.5,-5/2,-2/3,-1/7,-15,0.25,…. 我们学过的有限小数和无限循环小数都可化为分数. 二、有理数及分类 1、有理数的概念正整数、0、负整数统称为整数. 正分数和负分数统称为分数. 整数和分数统称为有理数. 2、有理数的分类(1)按定义有理数可以怎样分类?(2)按性质有理数可以怎样分类?⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数0负整数负有理数负分数 注意:对概念进行分类,可以明了概念之间的关系,有利于我们进一步理解概念;分类必须按同一标准进行,做到不重复不遗漏.三、例题[投影3]例 把下列各数填入表示它所在的数集的圈里. -17,22/7, -3/5,3,0.107, -63% ,0.分析:把一些具有相同特征的数合在一起组成了一个集合.所有正整数合在一起组成正整数集合,所有负整数合在一起组成负整数集合….什么是正数集合,负数集合,整数集合,分数集合?它们中分别是哪些数?答:正数集合中有22/7,3,0.107;负数集合中有-17 ,-3/5, -63%,;整数集合中有-17,3,0;分数集合中有22/7,0.107,-3/5,四、巩固练习[投影4]1、填空:(1)有理数中,是整数而不是正数的是 ;是负数而不是整数的是 .·0.2. -· 0.2 -·0.2-(2)零是还是;但不是,也不是.[投影5]2、把下列各数放在相应的集合中.10,-0.72,-2,0,-98,25,8/3,6.3%,3.14.五、课堂小结1、什么是整数、分数、有理数?2、有理数可以怎样分类?分类要注意什么问题?作业:课本14面第1题.1.2.2 数轴教学目标: 1.巩固理解有理数的概念;2.掌握数轴的意义及构成特点,明确其在实际中的应用;3.会用数轴上的点表示有理数.教学重点: 数轴的意义及作用.教学难点: 数轴上的点与有理数的直观对应关系.教学方法: 自主互助,小组交流课前预习:课本p8—10教学过程:一.新课导入(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
新人教版初中7七年级数学下册全册完整教案(最新)

新人教版七年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组5.2 平行线及其判定 8.2 消元——解二元一次方程组5.3 平行线的性质 8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系 10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图10.3 课题学习从数据谈节水12课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。
2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。
3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。
4. 理解实数的概念,掌握实数的运算方法,培养运算能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。
2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、练习本、笔。
五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。
1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。
1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。
1.3 以实际问题的形式,让学生感受不等式与实数的应用。
2. 新课导入:讲解新课内容,阐述重点与难点。
2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。
2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。
2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。
2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。
3. 随堂练习:巩固所学知识,检验学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版初中数学七年级下册教案全册5.1.1相交线一、教学目标:知识与技能:认识邻补角和对顶角;掌握对顶角相等,并会简单应用。
过程与方法:1.通过动手实践活动,探索邻补角与对顶角的位置和大小关系。
2.通过“对顶角相等”这个结论的简单推理,培养逻辑思维能力。
情感态度与价值观:通过探究活动来发现结论,经历知识的“再发现过程”,在探究活动中培养创新思维能力,体验数学学习的乐趣。
二、教学重点:邻补角、对顶角的概念,对顶角的性质与应用。
三、教学难点:理解对顶角相等的性质的探索。
四、教学过程设计:2.学生用量角器分别量一量各个角的度数,发现各类角的度数有什么关系。
3.学生根据观察和度量完成下表:两直线相交形成的角分类位置关系数量关系教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念.(1)师生共同定义邻补角、对顶角.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)识图训练:∠AOC和∠BOD有公共的顶点O,而是∠A OC的两边分别是∠BOD两边的反向延长线.学生亲自动手测量,得出相应的关系,与小组成员交流结论。
结论:有“相邻”关系的两角互补,“对顶”关系的两角相等,学生先独立完成然后师生共同纠正。
小组成员讨论并回答。
学生讨论不同的角的位置关系后,得出对顶角的定义,教师应提醒学生注意:①是两条直线相交而得;②有一个公共顶点;③没有公共边,三个条件缺一不可。
教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。
教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。
探究活动三:(1)教师让学生说一说在学习对顶角概念后,通过实际操作获得直观体验发现了什么?并说明理由.(2)教师把说理过程,规范地板书:在课本图5.1-2中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书:对顶角性质:对顶角相等.这个推理过程可以写成:∵ ∠1+∠2=180°,∠1+∠4=180°(邻补角定义)∴ ∠2= ∠4(同角的补角相等)同理可得:∠1= ∠3“对顶角相等”这句话,学生很好理解,只是不知怎么阐述理由,教师可引导学生用“同角的补角相等”得出对顶角的性质。
学生分小组讨论,阐述自己的想法。
尝试应用1.下列说法正确的是()A一个角的邻补角只有一个。
B对顶角的角平分线在一条直线上。
C互补的两个角是邻补角。
D如果∠1=30°,∠2=30°,则∠1与∠2是对顶角。
2.(1)如图,直线AB与CD 相交所成的四个角中,∠1的邻补角是。
∠2的对顶角是。
学生审题识图,分清角的关系,小组交流用什么途径去求这些未知角的度数?通过具体问题,强化学生对概念及性质的理解,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力。
尝试练习后教师板书出规范的求解过程。
(2)上图中,若∠1=40°,则∠2= ,∠3= ,∠4= 。
(3)若∠1=90°,∠2,∠3,∠4各等于多少度?补偿提高1.已知两条直线相交而成的四个角,其中的一个角为50°,则其余三个角的度数分别是。
2如图所示,直线AB,CD交与O,OE是∠BOC 的平分线,且∠BOE=50度,那么∠BOC= 度。
(A) 80 ( B) 100 ( C) 130 ( D) 1503. 如图所示,AB⊥CD于点O,直线EF过点O,若∠AOE=65°,求∠DOF的度数。
小结与小结:通过本节课的学习,你有什么收获?作业:学生组内交流,归纳,补充。
发挥学生的主体意识,培养学生的归纳能力达标测评题 一、 选择题1.下列说法正确的是( )A 、有公共顶点的两个角是对顶角B 、相等的两角是对顶角C 、有公共顶点并且相等的角是对顶角D 、两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角。
二.填空:2.如图,直线AB 与CD 相交于点O ,已知∠AOC+∠BOD=90°,则∠BOC=。
3.已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3= 。
三.解答题4如图所示,直线ABCDEF 相交于点O, (1) 写出∠AOC, ∠BOE 的邻补角。
(2) 写出∠DOA, ∠BOF 的对顶角。
(3) 如果∠AOE=30°,求∠BOF ,∠AOF 的度数。
作 业1.必做题课本第9页 习题5.1 2,7 2、选做题直线AB 、CD 、EF 相交于点O, 若∠AOC:∠AOE=2:3,∠EOD=130°,求∠BOC 的度数?学生可以根据自己的不同水平选择不同的作业,这样可为为学生提供个性化发展的空间。
教师应及时了解学生的学习效果,使学生养成独立思考,反思学习过程的习惯。
5.如果直线AB、CD相交于O点,且∠AOC=28°,作∠DOE=∠DOB,OF平分∠AOE,求∠EOF 的度数附达标测评题答案:1.D2.135°3.180°4.(1)∠AOD、∠COB;∠AOE、∠BOF(2)∠BOC、∠AOE(3)30°、150°5.62°七年级数学(下册)5.1.2垂线一、教学目标:知识与技能:1使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握过一点有且只有一条直线与已知直线垂直的结论2.会用三角板或量角器过一点画一条直线的垂线。
过程与方法:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.情感态度与价值观:通过创设情境,激发学生学习兴趣,给学生创造成功的机会,体验成功的快乐。
二、教学重点: 两条直线互相垂直的概念、性质和画法.三、教学难点:用垂直定义判断两条直线是否垂直及垂线的画法。
四、教学过程设计:问题与情境设计师生活动设计情景引入提出问题:1.如下图:(1)∠AOC的对顶角是哪个角?这两个角的关系是什么?(2)∠AOC的邻补角有几个?是哪几个角?2.当∠AOC=90°,口答∠BOD、∠AOD、∠BOC等于多少度?为什么?直线AB、CD的位置关系怎样?学生回答完后,引入课题【板书】5.2.2垂线因为对顶角、邻补角及对顶角的性质,是建立垂直概念的基础之上,所以在讲新课前要复习巩固这些内容。
教师演示:转动直线CD的同时,用量角器量直线AB、CD相交所得的角,多变换几种位置一直转到使直线CD与AB所成的角有一个角∠AOC=90°(如下图)自主探究探究活动一:.你能举出生活中常见的垂直关系的实例吗?你能试着给垂直下个定义吗?【板书】垂直定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足。
你能举出生活中常见的垂直关系的实例吗?探究活动二:垂直的记法、读法和判定归纳:①直线垂直的记法读法:直线AB、CD互相垂直,记作“AB⊥CD”或“CD⊥AB”,读作“AB垂直于CD”,如果垂足为O,记作“AB⊥CD,垂足为O”(如图).②垂直判定:∵∠AO C=90°,∴AB⊥CD(垂直的定义).∵AB⊥CD(已知),∴∠AOC=90°(垂直的定义).以上归纳实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重提醒学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?小组成员间思考、讨论、交流。
教师根据学生回答情况,适当加以引导点拨,然后板书垂直的定义。
通过举例,启发学生广泛联想,一方面让学生知道两直线垂直的概念是从实物中抽象出来的;另一方面使理论与实际相联系。
学生活动:让学生自己尝试学习,阅读课本第3页的内容,然后师生间相互交流.提醒学生注意:线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
学生活动:用∠AOD、∠BOD或∠BOC让学生重复练习正、反两步推理。
让学生自己尝试学习,可充分发学生的积极性、主动性,对垂直定义做正、反两方面的推理可加深学生对定义的理解,一方面为了渗透符号推理格式,熟悉符号的使用;另一方面可加深学生对定义的理解,定义既可以作判定用,又可以当性质用.要性。
探究活动三垂线的画法及性质问题1:(1)、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)、经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)、经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
通过画图,教师引导学生归纳结论:垂线的性质1:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
问题2:如图,连接直线l外一点P与直线l上各点O,A,B,C,……,其中(我们称PO为点P到直线l的垂线段)。
比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?垂线的性质2 连接直线外一点与直线上各点学生先独立探索再组内交流,教师巡视指导。
学生亲自动手操作,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。
提出问题:(1)“过一点”包括几种情况?(2)“有且只有”是什么意思?学生思考并回答。
有”表示存在,“只有”表示惟一。
垂线的性质1放手让学生自己动手画图,总结,培养了学生动手,动脑,发现问题和解决问题的能力,达到能力培养的目标.学生分小组测量,讨论,归纳。
抽小组代表发言。
探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。
小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深的所有线段中,垂线段最短。
问题3:什么叫点到直线的距离?思考:点A到直线DC的距离与点A到点C 的距离有什么区别?入的得到结论。
]教师总结归纳:只有线段PO最短,且当PO与l垂直时,才最短。
刚才在问题2中探究得到了只有线段PO最短,且当PO与l垂直时,才最短。
教师引导学生得出线段PO特征:P 为直线外一点,O为过P向直线l 所引的垂线的垂足,提高为:线段PO的长度就是点P到直线l的距离。