汽车设计悬架设计

合集下载

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析汽车底盘悬架结构设计是汽车工程中的重要环节,直接关系到车辆的操控性、行驶平稳性、安全性等方面。

下面将从几个重要的要点进行分析。

1. 悬架结构的选择:根据车辆的用途和性能要求,可以选择不同的悬架结构,如独立悬架、非独立悬架、多连杆悬架等。

独立悬架可以提高车辆的操控性和行驶平稳性,但成本较高;非独立悬架则适用于对成本要求较低的车型。

2. 悬架弹簧的选择:弹簧是车辆悬架中的重要组成部分,决定了车辆的避震效果和舒适性。

常见的弹簧有螺旋弹簧、气囊弹簧、扭杆弹簧等。

螺旋弹簧广泛应用于各类车辆,气囊弹簧适用于重型商用车,扭杆弹簧适用于高性能车型。

3. 悬架减振器的选择:减振器可以有效地减少车辆在行驶中受到的冲击力和震动,提高行驶的平顺性和稳定性。

常见的减振器有液压减振器、气压减振器、电磁减振器等。

液压减振器被广泛应用于大多数车辆,气压减振器适用于某些高端车款,电磁减振器则适用于部分豪华车型。

4. 悬架材料的选择:悬架结构中的材料选择对于提高车辆的强度、刚度和减轻车身重量等方面非常重要。

常见的材料有钢材、铝合金、碳纤维等。

钢材具有较高的强度和刚度,但相对较重;铝合金具有较低的密度和优良的刚度,但强度相对较低;碳纤维具有很高的强度和刚度,并且重量轻,但成本较高。

5. 悬架调校的要点:悬架结构的设计不仅要考虑到理论计算,还需要进行实际的调校工作。

通过对悬架系统的调校,可以使车辆在行驶过程中更好地适应不同的路况和驾驶风格,提高车辆的操控性和舒适性。

在悬架调校中,关键要点包括减振器的调校、弹簧的选型和预紧力的调整等。

汽车底盘悬架结构设计要点包括悬架结构的选择、弹簧和减振器的选择、材料的选择以及悬架调校等。

在设计过程中,需要兼顾车辆性能、成本和工艺等因素,以达到良好的操控性、行驶平稳性和安全性。

微型汽车后钢板弹簧悬架设计

微型汽车后钢板弹簧悬架设计

微型汽车后钢板弹簧悬架设计引言:随着城市化进程的不断加剧,城市交通拥堵问题越来越严重。

因此,市场对于小型和经济型微型汽车的需求也越来越大。

在微型汽车的设计中,悬架系统是一个非常重要的组成部分,它直接影响到汽车的行驶稳定性、舒适性和操控性。

本文将对微型汽车的后钢板弹簧悬架进行设计和优化。

1.简介后钢板弹簧悬架是一种常见的汽车悬架系统,它由钢板弹簧、减震器和连接件组成。

该悬架系统具有结构简单、制造成本低、可靠性高等优点,因此在微型汽车中广泛应用。

2.悬架系统设计参数在设计后钢板弹簧悬架系统时,需要考虑以下几个主要参数:a.轴距:轴距是指前后轮轴中心之间的距离。

较大的轴距可以提高汽车的稳定性,但同时会增加车身长度,影响车辆的机动性。

b.弹簧刚度:弹簧刚度是指弹簧对重力或外力施加的力与弹簧位移之间的关系。

合适的弹簧刚度可以保证汽车在行驶过程中的平稳性和舒适性。

c.减震器:减震器的作用是减少车辆行驶过程中的颠簸和震动,提高悬架系统的舒适性。

在选择减震器时,需要考虑减震器的压缩和回弹力、摩擦阻尼等因素。

d.响应频率:响应频率是指悬架系统在受到外力激励时产生的周期性振动的频率。

合适的响应频率可以提高悬架系统对不同路面的适应性,减少车辆在行驶过程中的颠簸和震动。

3.悬架系统优化为了优化后钢板弹簧悬架系统的设计,可以采取以下几个策略:a.优化弹簧刚度:通过调整弹簧的材料和参数,可以实现弹簧刚度的优化。

优化后的弹簧可以提供更好的悬架支撑能力和稳定性。

b.配置合适的减震器:根据车辆的重量和行驶需求,选择合适的减震器。

减震器的性能直接影响到悬架系统的舒适性和稳定性。

c.调整悬架系统的参数:通过调整悬架系统的参数,如轴距、悬架点位置等,可以实现悬架系统的优化。

优化后的悬架系统可以提高车辆的操控性和稳定性。

4.结论后钢板弹簧悬架是微型汽车中常用的悬架系统之一,它具有结构简单、制造成本低等优点。

在设计后钢板弹簧悬架系统时,需要考虑轴距、弹簧刚度、减震器等参数,并进行优化,以提高汽车的行驶稳定性、舒适性和操控性。

汽车悬架系统优化设计及性能分析

汽车悬架系统优化设计及性能分析

汽车悬架系统优化设计及性能分析一、介绍汽车悬架系统是车辆不可或缺的部分。

它主要负责车辆的支撑和减震工作,为行驶过程提供了舒适性和稳定性。

因此,汽车制造商在设计汽车悬架系统时非常重视性能和稳定性,尤其是在高速行驶和曲线驾驶方面。

在本文中,将探讨汽车悬架系统的优化设计和性能分析。

首先,我们将了解悬架系统的基本概念和组成部分。

接着,将讨论悬架系统的优化设计和性能分析方法,其中会包括液压悬挂系统和空气悬挂系统。

最后,我们将介绍一些常见的汽车悬架问题,并给出解决方案。

二、汽车悬架系统的基本概念和组成部分汽车悬架系统是由许多组成部分组成的。

基本上,悬架系统包括垂直弹簧、水平限制器、减震器、保持器和底盘等部件。

这些部分的设计和性能影响着车辆的轻重平衡、转向能力、制动力等。

垂直弹簧是悬架系统中最基本的部分之一。

其主要作用是支持车载负载和路面扭曲。

在一般情况下,垂直弹簧采用钢制线圈弹簧或橡胶制减震器。

水平限制器是悬挂系统中的一种保护设备。

其主要作用是控制车辆在水平和纵向方向上的运动。

减震器是悬架系统的关键部分。

它负责控制车辆在行驶过程中发生的震动。

减震器的作用是将垂直弹簧支持的能量转换成热能。

保持器主要是为了使车辆在转向时保持稳定。

在悬架系统中,保持器往往被视为弹簧与减震器之间的连接。

底盘是整个悬挂系统的核心部分。

它由上下两个零件组成。

下部通常由车身连接杆和悬架机构组成,而上部是用于固定悬架和与车体连接的结构。

底盘的作用是支撑整车负荷和稳定性。

三、悬架系统的优化设计和性能分析方法悬架系统的优化设计和性能分析一直是汽车工业中的重要问题。

优化设计方法的主要目标是减少悬架系统重量和体积,并增加车辆的稳定性和操纵性。

在性能分析方面,主要是采用试验、仿真和计算三种方法,以获得更准确的结果。

试验是最常用的分析方法之一。

它包括车辆实际测试、路试和底盘试验。

这种方法可以测量和分析悬架系统的各种性能参数,例如侧倾角、轮胎接地面、悬架行程、制动力等。

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析随着汽车工业的不断发展,汽车底盘悬架结构设计已成为汽车工程领域中的重要一环。

底盘悬架是汽车的重要组成部分,它直接影响着汽车的操控性、舒适性和安全性。

底盘悬架结构设计的质量和性能对汽车整体品质起着至关重要的作用。

本文将从悬架结构设计的要点入手,分析汽车底盘悬架结构设计的关键因素,为汽车工程师和爱车用户提供一些有益的参考。

一、悬架类型选择在汽车底盘悬架结构设计中,最基本的要点之一就是选择合适的悬架类型。

目前,常见的悬架类型包括独立悬挂、麦花臣悬挂、扭力梁悬挂和梯形双叉臂悬挂等。

在选择悬架类型时,需要考虑到汽车的使用环境、操控性能、舒适性和成本等多个方面因素。

独立悬挂具有悬挂系统独立、行驶稳定性好的优点,但造价相对较高;麦花臣悬挂适合用于负荷较大的商用汽车,扭力梁悬挂则适合于经济型车型,梯形双叉臂悬挂则能提供较好的悬挂几何特性。

在底盘悬架结构设计时,需要根据具体车型与使用环境,选择合适的悬架类型。

二、悬挂系统刚度设计悬挂系统刚度设计是底盘悬架结构设计中极为重要的一个要点。

悬挂系统的刚度将影响着汽车的操控性和舒适性。

在悬架系统设计中,需要合理设计悬挂弹簧和减震器的刚度,以及悬挂件的刚度匹配。

通常情况下,过硬的悬挂系统会使汽车在颠簸路面上操控性能更好,但舒适性较差;而过软的悬挂系统则会带来舒适性的提高,但操控性能可能会受损。

悬挂系统刚度的设计需要寻求一个平衡点,以兼顾操控性和舒适性。

三、悬架几何特性设计悬架几何特性设计包括悬挂系统的几何布置、悬架几何参数的选择和悬挂几何特性的优化等方面。

悬架系统的几何特性将对汽车的悬挂性能、操控性能和舒适性产生重要影响。

在底盘悬架结构设计中,需要特别注意悬挂几何特性的调整和优化。

合理选择悬挂几何参数,调整悬挂系统的上下位点高度,控制悬挂系统的摆动角和外倾角等,以提高汽车的转向操控性和行驶稳定性。

还需要注意悬架几何特性的变化对车辆悬挂性能和操控性能造成的影响。

第六章_悬架设计

第六章_悬架设计
第六章 悬架设计
第一节 概述
功用 1. 传递作用在车轮和车架(或车身)之间的一切力和力矩,并且缓和路面传给车架(或车身)的冲击载荷, 衰减由此引起的承载系统的振动,保证汽车的行驶平顺性; 2. 保证车轮在路面不平和载荷变化时有理想的运动特性;
三、双横臂式独立悬架导向机构设计
1.纵向平面内上、下横臂的布置方案 第1、2、6方案的主销后倾角变化规律是比较好的
2.横向平面内上、下横臂的布置方案
三、双横臂式独立悬架导向机构设计
3.水平面内上、下横臂动轴线的布置方案
三、双横臂式独立悬架导向机构设计
水平面内上、下横臂动轴线的布置方案
一、概述
功用 3. 保证汽车的操纵稳定性,使汽车获得高速行驶能力。 组成 由弹性元件、导向装置、减振器、缓冲块和横向稳定器等组成。
一、概述
二 各组成元件功用
弹性元件: 缓和路面传给车架(或车身)的冲击载荷。 导向装置:导向装置由导向杆系组成,用来决定车轮相对于车架(或车身)的运动特性并传递除弹性元件传递的垂直力以外的各种力和力矩。当用纵置钢板弹簧作弹性元件时,它兼起导向装置作用。
为了使轮胎在遇到凸起路障时能够使轮胎一面上跳,一面向后退让,以减少传到车身上的冲击力,还为了便于布置发动机,大多数前置发动机汽车的悬架下横臂轴M—M的斜置角α1为正,而上横臂轴N—N的斜置角α2则有正值、零值和负值三种布置方案,如车轮上跳、下横臂斜置角αl为正、上横臂斜置角α2为负值或零值时,主销后倾角随车轮的上跳而增大。如组合方案为上、下横臂斜置角α1、α2都为正值,如图6—33a所示,则主销后倾角随车轮的上跳较少增加甚至减少(当α1<α2时)。
它对簧上质量的侧倾角有影响: 此外,还要求汽车转弯行驶时,在0.4g的侧向加速度作用下,前、后轮侧偏角之差δ1-δ2应当在1°~3°范围内。 而前、后悬架侧倾角刚度的分配会影响前、后轮的侧偏角大小,从而影响转向特性,所以设计时还应考虑悬架侧倾角刚度在前、后轴上的分配。

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析【摘要】汽车底盘悬架结构设计是车辆工程中非常重要的一个方面。

本文首先介绍了悬架结构的作用,包括提供悬挂和减震功能,保障车辆稳定性和舒适性。

然后对悬架结构进行了分类,包括独立悬挂和非独立悬挂等。

接着讨论了悬架结构设计的优化方案,指出通过减轻重量和提高刚度可以改善悬架性能。

材料选择也是关键的一环,合适的材料可以提高悬架的强度和耐久性。

最后分析了影响悬架结构的因素,包括行驶路况、车辆载重等。

综合以上内容,总结了汽车底盘悬架结构设计的要点,强调了设计的重要性和必要性。

通过合理的设计和优化,可以提升车辆性能和驾驶体验。

【关键词】汽车底盘,悬架结构,设计要点,分析,作用,分类,优化方案,材料选择,影响因素,总结1. 引言1.1 汽车底盘悬架结构设计要点分析汽车底盘悬架结构设计是汽车制造过程中非常重要的一环,它直接影响着汽车的操控性、舒适性和安全性。

设计良好的悬架结构可以有效减少车身的颠簸以及提升车辆的稳定性,让驾驶者在驾驶过程中更加舒适和安全。

悬架结构的作用是支撑汽车的车身,同时将车轮连接到车身上,使得车轮可以相对独立地运动。

根据不同的需求和使用环境,悬架结构可以分为独立悬架、半独立悬架和非独立悬架等多种分类。

不同类型的悬架结构在不同的路况和驾驶条件下会有不同的表现,因此在设计过程中需要根据实际情况选择合适的悬架结构。

优化悬架结构设计方案包括减轻悬架重量、提高刚度和强度、降低噪音和震动等方面。

选择合适的材料也是悬架结构设计的重要一环,常用的材料有钢铝合金、碳纤维等,不同的材料具有不同的优缺点,需要根据具体情况进行选择。

悬架结构的影响因素包括车辆的使用环境、车辆的负荷、悬架结构的几何形状等。

设计人员需要综合考虑这些因素,才能设计出性能更优秀的悬架结构。

在对汽车底盘悬架结构设计要点进行分析后,我们可以得出结论,对于汽车底盘悬架结构的设计要点有着重要的影响。

设计人员需要综合考虑悬架结构的功能、分类、优化方案、材料选择以及影响因素,才能设计出性能更卓越的底盘悬架结构。

悬架设计

悬架设计

B:前悬架用宽的弹簧片,会影响转向轮的最大转角。
C:片宽选取过窄,又得增加片数,从而增加片间的摩
擦和弹簧的总厚
大家好
next 50
汽车设计
大家好
back
51
汽车设计2).钢板弹簧片厚h的选择(影响)
➢增加片厚h,可以减少片数n
➢钢板弹簧各片厚度可能有相同和不同两种情况,
希望尽可能采用前者
选 择
➢但因为主片工作条件恶劣,为了加强主片及卷 耳,也常将主片加厚,其余各片厚度稍薄。此时,
汽车设计
1.满载弧高fa
➢满载弧高fa是指钢板弹簧装到车轴(桥)上, 汽车满载时钢板弹簧主片上表面与两端(不包 括卷耳半径)连线间的最大高度差
➢fa用来保证汽车具有给定的高度
➢当fa=0时,钢板弹簧在对称位置上工作 ,为 了在车架高度已限定时能得到足够的支挠度值, 常fa=10~20mm。
大家好
45
40 40
汽车设计
Fk Fc F0
ca/cm 1
大家好
41
汽车设计
四、悬架侧倾角刚度及其在前、后轴的分配
1.侧倾角刚度
侧向惯性力为0.4G时:
乘用车侧倾角:2.5-4.0度
货车侧倾角:6-7度
2.前、后轴侧倾角刚度的匹配
乘用车:前、后悬架侧倾角刚度比值:
1.4~2.6
大家好
42
汽车设计
第四节 弹性元件的计算
➢各片的承受的弯矩正比于其惯性矩
➢同时该截面上各片的弯矩和等于外力 所引起的弯矩
n
c6aE/
ak31(Yk
Yk1)
k1
k
ak1(l1lk1)
Yk 1/ Ji i1

悬架系统设计计算报告

悬架系统设计计算报告

悬架系统设计计算报告一、引言悬架系统作为汽车底盘的重要组成部分,对车辆的行驶稳定性、乘坐舒适性和操控性能等方面有着重要影响。

因此,在汽车设计和制造过程中,悬架系统的设计十分关键。

本报告将介绍悬架系统设计过程中的计算方法和依据,并对其进行详细说明。

二、悬架系统设计计算方法1.载荷计算:首先需要计算车辆在不同行驶条件下的载荷。

通过分析车辆的使用环境和客户需求,确定悬架系统的额定载荷。

然后,根据车辆自重、乘员重量、行李重量、荷载等因素,计算出车辆的总载荷。

2.载荷分配计算:在计算悬架系统的载荷分配时,需要考虑车辆的静态和动态载荷。

静载荷主要指车辆停靠时的重力,而动载荷主要指车辆行驶过程中因加速度、制动力和路面不平均性等引起的载荷。

通过对车辆不同部位的载荷进行测量和分析,确定每个车轮的载荷。

3.悬架系统刚度计算:悬架系统的刚度对车辆的操控性和乘坐舒适性有着直接影响。

悬架系统的刚度可以分为纵向刚度、横向刚度和垂向刚度等。

在设计悬架系统的过程中,需要根据车辆的使用环境和性能需求,计算悬架系统的刚度。

4.悬架系统减振器计算:悬架系统的减振器的设计和选型是悬架系统设计的重要环节。

减振器可以减少车辆在行驶过程中的震动,提高乘坐舒适性和行驶稳定性。

根据悬架系统的刚度和载荷等因素,计算减振器的选择和设计参数。

5.悬架系统运动学计算:悬架系统的运动学计算是为了确定悬架系统在不同行驶状态下的主要参数,以便进行悬架系统的设计和调整。

通过对车辆的几何尺寸、运动学参数和悬架结构的分析和计算,确定悬架系统的工作范围和参数。

三、计算依据在悬架系统设计计算中,需要依据以下相关标准和原则进行设计:2.汽车悬架系统设计手册:根据汽车制造商提供的相关手册和技术资料,对悬架系统设计进行指导和计算。

3.数学和工程力学原理:在悬架系统设计计算过程中,需要运用数学和工程力学的相关原理和方法,如力学平衡、弹性力学、振动理论等,进行悬架系统的计算。

4.仿真和试验数据:通过对悬架系统的仿真分析和试验测试,获取悬架系统的相关参数和性能数据,为悬架系统的设计计算提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT学习交流
19
➢对前轴,这种偏转使汽车不足转向趋势增加 ➢对后桥,则增加了汽车过多转向趋势
四、辅助元件
1.横向稳定器
轿车将后悬架纵置钢板弹簧的前部吊 耳位置布置得比后边吊耳低,于是悬 架的瞬时运动中心位置降低,与悬架 连接的车桥位置处的运动轨迹b所示, 即处于外侧悬架与车桥连接处的运动 轨迹是oa段,结果后桥轴线的偏离不 再使汽车具有过多转向的趋势。
5)悬架占用的空间尺寸
占用横向尺寸大的悬架影响发动机的布置和从车上拆装发动 机的困难程度;
占用高度空间小的悬架,则允许行李箱宽敞,而且底部平整, 布置油箱容易。
PPT学习交流
16
悬架
双横臂式
单横臂式 单纵臂式 单斜臂式 麦弗逊式 扭转梁随动臂式
侧倾中心高 比较低
比较高
比较低
居单横臂和 单纵臂之间
车轮定位 参数的变化
PPT学习交流
件质量要小的同时,还要保证有足够的强度和寿命。
PPT学习交流
4
§6-2 悬架结构形式分析
一、非独立悬架和独立悬架
非独立悬架
悬架 独立悬架两类
左、右车轮用一根整体轴连接,再经过 悬架与车架(或车身)连接
左、右车轮通过各自的悬架与车架(或 车身)连接
PPT学习交流
5
非独立悬架
独立悬架
PPT学习交流
6
悬架设计
第六章 悬架设计
§6-1 概 述 §6-2 悬架结构形式分析 §6-3 悬架主要参数的确定 §6-4 弹性元件的计算 §6-5 主动与半主动悬架系统
PPT学习交流
2
§6-1 概 述
一 主要作用
➢ 传递车轮和车架(或车身)之间的一切力和力矩; ➢ 缓和、抑制路面对车身的冲动特
PPT学习交流
17
三、前、后悬架方案的选择
采用的方案
➢前轮和后轮均采用非独立悬架; ➢前轮采用独立悬架,后轮采用非独立悬架; ➢前轮与后轮均采用独立悬架。
PPT学习交流
18
1 前轮和后轮均采用非独立悬架
前、后悬架均采用纵置钢板弹 簧非独立悬架的汽车转向行驶 时,内侧悬架处于减载而外侧 悬架处于加载状态,于是内侧 悬架受拉抻,外侧悬架受压缩, 结果与悬架固定连接的车轴 (桥)的轴线相对汽车纵向中 心线偏转一角度α。如图a
2)车轮定位参数的变化
若主销后倾角变化大,容易使转向轮产生摆振;若车轮外倾 角变化大,会影响汽车直线行驶稳定性,同时也会影响轮距的 变化和轮胎的磨损速度。
PPT学习交流
15
3)悬架侧倾角刚度
车厢侧倾角与侧倾力矩和悬架总的侧倾角刚度大小有关,并影响 汽车的操纵稳定性和平顺性。
4)横向刚度
悬架的横向刚度影响操纵稳定性。若用于转向轴上的悬架横向刚 度小,则容易造成转向轮发生摆振现象。
车轮外倾角 与主销内倾 角均有变化
车轮外倾角 与主销内倾 角变化大
主销后倾角 变化大
轮距
变化小,轮 变化大,轮
胎磨损速度 胎磨损速度


不变
有变化 变化不大
悬架侧倾角 刚度
较小,需用 横向稳定器
较大,可不 装横向稳定 器
较小,需用 横向稳定器
居单横臂式 和单纵臂式 之间
比较高
比较低
变化小
左、右轮同时跳 动时不变
PPT学习交流
10
二、独立悬架结构形式分析
分类
➢双横臂式 ➢单横臂式、 ➢双纵臂式 ➢单纵臂式 ➢单斜臂式 ➢麦弗逊式和扭转梁随动臂式
PPT学习交流
11
PPT学习交流
12
PPT学习交流
13
PPT学习交流
14
1 评价指标:
1)侧倾中心高度
侧倾中心位置高,它到车身质心的距离缩短,可使侧倾力臂 及侧倾力矩小些,车身的侧倾角也会减小。但侧倾中心过高, 会使车身倾斜时轮距变化大,加速轮胎的磨损。
PPT学习交流
21
§6-3 悬架主要参数的确定
一、前后悬架的静挠度、动挠度的选择
1、概念
1)静挠度
2)动挠度
汽车满载静止时悬架上的载荷Fw与此时 悬架刚度c之比,即fc=Fw/c。
指从满载静平衡位置开始悬架压缩到结 构允许的最大变形(通常指缓冲块压缩 到其自由高度的1/2或2/3)时,车轮 中心相对车回(或车身)的垂直位移
通过减小悬架垂直刚度,能降低车身振动固有频
率n nc/m s/2 ,达到改善汽车平顺性的目的。
PPT学习交流
20
2.缓冲块
橡胶制造,通过硫化将橡胶 与钢板连接为一体,再经焊 在钢板上的螺钉将缓冲块固 定到车架(车身)或其它部 位上,起到限制悬架最大行 程的作用
多孔聚氨指制成 ,它兼有辅助弹性元件的作 用。这种材料起泡时就形成了致密的耐磨外层, 它保护内部的发泡部分不受损伤。由于在该材 料中有封闭的气泡,在载荷作用下弹性元件被 压缩,但其外廓尺寸增加却不大,这点与橡胶 不同。有些汽车的缓冲块装在减振器上。
性。保证汽车的操纵稳定性。
PPT学习交流
3
二 对悬架提出的设计要求
1)保证汽车有良好的行驶平顺性。 2)具有合适的衰减振动能力。 3)保证汽车具有良好的操纵稳定性。 4)汽车制动或加速时要保证车身稳定,减少车身纵倾;转弯
时车身侧倾角要合适。 5)有良好的隔声能力。 6)结构紧凑、占用空间尺寸要小。 7)可靠地传递车身与车轮之间的各种力和力矩,在满足零部
PPT学习交流
7
PPT学习交流
8
1 非独立悬架
纵置钢板弹簧为弹性元件兼作导向装置
优点
➢结构简单 ➢制造容易 ➢维修方便 ➢工作可靠
缺点
➢汽车平顺性较差 ➢高速行驶时操稳性差 ➢轿车不利于发动机、行李舱的布置
应用 :货车、大客车的前、后悬架以及某些轿车的后悬架
PPT学习交流
9
2 独立悬架
➢簧下质量小;
变化很小
不变
较大,可不装横向稳定器
横向刚度
横向刚度大
横向刚度小 横向刚度较小
横向刚度大
占用空间尺寸 占用较多 占用较少 几乎不占用高度空间
占用的空间小
其它
结构复杂 结构简单、成 前悬架用 本低,前悬架 得较多 上用得少
结构简单、成本低
结构简单、 结构简单,用于 紧凑,轿车 发动机前置前轮 上用得较多 驱动轿车后悬架
➢悬架占用的空间小;
优点
➢可以用刚度小的弹簧,改善了汽车行驶平顺性; ➢由于有可能降低发动机的位置高度,使整车的质心高度下
降,又改善了汽车的行驶稳定性;
➢左、右车轮各自独立运动互不影响,可减少车身的倾斜和
振动,同时在起伏的路面上能获得良好的地面附着能力。
缺点
➢结构复杂 ➢成本较高 ➢维修困难
应用 :轿车和部分轻型货车、客车及越野车
相关文档
最新文档