清华大学有限元大作业
有限元大作业

攀枝花学院机械工程学院实验报告科目:有限元技术教师:班级:姓名:学号:摘要薄板类零件在生活中应用非常广泛,如车辆工程中的车体地板、高速车辆的顶板及墙板,发动机缸体、齿轮箱箱体,建筑结构的楼板、桥梁桥面等都属于薄板弯曲结构。
本文通过运用有限元技术,结合受力模型,对薄板零件在不同节点,不同单元的情况下进行受力变形分析,如:应力,变形,应变。
关键字:薄板有限元变形分析Sheet parts is widely applied in life, such as vehicle engineering in the bodywork floor, high speed vehicle roof and wall panels, engine cylinder block and the gearbox housing, construction of floor slab and bridge deck are bending plate structure. In this paper, by using the finite element technology, combined with the mechanical model, the sheet parts in different nodes of different unit under the situation of stress deformation analysis, such as stress, deformation and strain.Key words: sheet deformation finite element analysis图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为;试采用如下方案,对其进行有限元分析,并对结果进行比较。
(1)三节点常应变单元;(2个和200个单元)(2)(3)四节点矩形单元;(1个和50个单元)(4)(3)八节点等参单元。
有限元大作业

250250试题 5:图示为带方孔(边长为 80mm )的悬臂梁,其上受部分均布载荷(P=10KN/m )作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置(即方位)进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为 1mm ,材料为钢)。
3001KN9003001KN图6-1一、几何建模与分析由图6-1及问题描述可知,板的长宽尺寸远远大于厚度,研究结构为一很薄的等厚度薄板,满足平面应力的几何条件;作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用,满足平面应力的载荷条件。
故该问题属于平面应力问题,薄板所受的载荷为面载荷,分布情况及方向如图6-1所示,建立几何模型,进行求解。
薄板的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3。
二、有限元分析及其计算结果选取PLANE182作为分析的单元,来分析薄板的位移和应力,由于此问题是平面应力问题,并在K3选择str w/thk ,设置THK 为1。
1)方孔竖直制,划分方式采用自由方式,划分后网格的模型如图6-2所示。
计算得到的位移和应力分布如图6-3所示。
图6-2 方孔竖直的网格划分图6-3 位移及应力分布云图2)方孔正直制,划分方式采用自由方式,划分后网格的模型如图6-4所示。
计算得到的位移和应力分布如图6-5所示。
图6-4 方孔正直的网格划分图6-5 位移及应力分布云图3)圆孔按图6-1所示模型进行建模。
并用PLANE182单元进行划分网格,网格大小采用全局网格控制,划分方式采用自由方式,划分后网格的模型如图6-6所示。
计算得到的位移和应力分布如图6-7所示。
图6-4 方孔正直的网格划分图6-5 位移及应力分布云图根据以上的模型分析的位移和应力图,可以得出方孔竖直、方孔正直、圆孔的最大最小位移应力的分布如表6-1所示。
三、比较与分析1)方孔竖直与方孔正直的比较,发现方孔正直的位移变形较小,应力相差不大2)圆孔与方孔比较,发现圆孔的位移变性最小,应力也最小,故可以得出圆孔的布置结构对整体布置的效果最好。
有限元程序设计大作业

有限元程序设计大作业1.不同板宽的孔边应力集中问题姓名:胡宇学号:21201201282.摘要本文采用MATLAB和FOTRAN四节点平面单元,利用有限元数值解法对不同板宽的孔边应力集中问题进行了数值模拟研究。
对于不同的板宽,并且与解析系数(半板宽b/孔半径r),得到了不同的应力集中系数1解进行了比较,验证了有限元解的正确性,并且得出了解析解的适用范围。
3.引言通常情况下的有限元分析过程是运用可视化分析软件(如ANSYS、ABAQUS、SAP等)进行前处理和后处理,而中间的计算部分一般采用自己编制的程序来运算。
具有较强数值计算和处理能力的Fortran语言是传统有限元计算的首选语言。
随着有限元技术的逐步成熟,它被应用在越来越复杂的问题处理中。
MATLAB是由美国MATHWORKS公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
4.MATLAB部分1,计算模型本程序采用MATLAB编程,编制平面四边形四节点等参元程序,用以求解近似平面结构问题。
本程序的研究对象为中央开有小孔的长方形板,选取的材料参数为:板厚h=1、材料强度E=1.0e11 Pa、泊松比mu=0.3。
此外,为方便网格的划分和计算,本文所取板的长度与宽度相等。
其孔半径为r=1,板宽为2b待定。
由于本程序的目的在于验证有限元解的正确性和确定解析解的适用范围,因此要求网格足够细密,以满足程序的精度要求。
同时为了减小计算量,我采取网格径向长度递增的网格划分方法。
此种方法特点是,靠近小孔部分的网格细密,在远离小孔的过程中,网格逐渐变得稀疏。
有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。
一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。
(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
清华大学弹性力学有限元大作业

弹性力学有限元大作业一、模型信息:已知:材料为铝合金。
E=71GPa ,v=0.3.矩形平板的几何参数:板长为480mm ,宽为360mm ,厚度为2mm ;图形如下图;加肋平板:二、matlab 编程实现1、程序相关说明:计算使用的软件为:matlab2010a 主函数:main.m 主要计算部分子函数:Grids.m 生成网格,节点数为:+1*+1I J ()()、单元数: 2**I J AssembleK.m 将单元刚度矩阵组装成总刚度矩阵(叠加方法)GenerateB.m 生成单元格e B 矩阵 GenerateS.m 生成单元格e S 矩阵 GenerateK.m 生成单元刚度矩阵2、网格划分:利用Grid.m 子函数,取2020I J ==、,即可以得到网格如下: 节点数为:441个,单元格数:800个3、计算过程及结果 (1)、网格划分:通过Grid.m ,生成节点数为:441个、单元格数:800个的网格 (2)、生成总刚度矩阵K :通过GenerateK.m 、AssembleK.m 生成总刚度矩阵 采用常应变三角单元,e e u N a =,易得=e e B LN由平面应力问题,可以确定2101011002E D νννν⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎢⎥⎣⎦即e e S DB =单元刚度矩阵为:e eT e K AtB DB = 总刚度矩阵为:eTe e eK GK G =∑(3)、求解过程:系统平衡方程为:Ka P = 将方程进一步划分为:E EF E E E T F F EFF K K d f r d f K K +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 通过已知边界条件(位移、载荷),确定E E F d f f 、、 ,从而将K 矩阵划分为四个模块:E EF TEF F K K K K ⎡⎤⎢⎥⎣⎦1()E E E EF F E TF F F EF E r K d K d f d K f K d -=+-=-支反力:部分位移:即整体位移向量为:E F d a d ⎡⎤=⎢⎥⎣⎦整体力边界条件为:E E F f r P f +⎡⎤=⎢⎥⎣⎦(4)后处理:(应力、应变、抹平) a 、单元应力、应变:e e e ee eS a B aσε==b 、抹平得到节点应力、应变:将每个节点参与组成的单元应力、应变叠加,然后除以叠加的单元数,得到抹平后的节点应力、应变。
有限元分析-清华大学教程

8.1 进入工程分析模块8.2施加约束8.3 施加载荷8.4 静态有限元计算过程和后处理8.5动态分析的前处理和显示计算结果8.6有限元分析实例习题工程分析指的是有限元分析,包括静态分析(Static Analyses)和动态分析。
动态分析又分为限制状态固有频率分析(Frequency Analyses)和自由状态固有频率分析(Free Frequency Analyses),前者在物体上施加一定约束,后者的物体没有任何约束,即完全自由。
8.1 进入工程分析模块1. 进入工程分析模块前的准备工作(1)在三维实体建模模块建立形体的三维模型,为三维形体添加材质,见4.7。
(2)将显示模式设置为Shading(着色)和Materials(材料),这样才能看到形体的应力和变形图,详见2.11.6。
2. 进入工程分析模块选择菜单【Start】→【Analysis & Simulation】→【Generative Structural Analysis】弹出图8-1所示新的分析实例对话框。
在对话框中选择静态分析(Static Analyses)、限制状态固有频率分析(Frequency Analyses)还是自由状态固有频率分析(Free Frequency Analyses),单击OK按钮,将开始一个新的分析实例。
图8-1新的分析实例对话框3.有限元分析的过程有限元分析的一般流程为:(1)从三维实体建模模块进入有限元分析模块。
(2)在形体上施加约束。
(3)在形体上施加载荷。
(4)计算(包括网格自动划分),解方程和生成应力应变结果。
(5)分析计算结果,单元网格、应力或变形显示。
(6)对关心的区域细化网格、重新计算。
上述(1)~(3)过程是有限元分析预(前)处理,(4)是计算过程,(5)、(6)是有限元后处理。
有限元文件的类型为CATAnalysis。
8.2施加约束1. 夹紧约束该约束施加于形体表面或边界,使其上的所有节点的位置固定不变(三个平移自由度全部约束)。
有限元课程大作业

金属坯料挤压过程有限元分析一、前言:金属挤压是将放在挤压模具内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的技术。
冷挤压时由于材料是在冷态下成形,而且变形量一般都很大,挤压过程中作用在模具上的单位压力很大,此时模具有开裂破坏的可能,对压力机也构成威胁,金属坯料在通过模具过程中,坯料与模具之间产生相当大的应力,这就要求模具需要有相当大的强度、硬度、以及耐磨性,因此冷挤压时要进行挤压力的计算。
挤压力的计算是模具设计的重要依据,也是选择挤压设备的依据。
模具角度、接触表面的摩擦系数、坯料变形量都会影响应力变化,在保证加工要求的前提下,应当通过适当方式降低坯料及模具之间的应力。
通过有限元分析,得出应力分布图,分析变形区域、死区,对模具进行优化改进。
二、有限元介绍:ANSYS概述ANSYS软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛地用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS参数设计语言扩展宏命令功能。
ANSYS软件功能强大,主要特点有:实现多场及多场耦合分析;实现前后处理、求解及多场分析统一数据库的一体化;具有多物理场优化功能;强大的非线性分析功能;多种求解器分别适用于不同的问题及不同的硬件设备;支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容;强大的并行计算功能支持分布式并行及共享内存式并行;多种自动网格划分技术;良好的用户开发环境。
ANSYS不仅支持用户直接创建模型,也支持与其他CAD软件进行图形传递,其支持的图形传递有:SAT、Parasolid、STEP。
相应地,可以进行接口的常用CAD 软件有:Unigraphics、Pro/Engineer、I-Deas、Catia、CADDS、SolidEdge、SolidWorks等。