第一类曲线积分与曲面积分的计算

合集下载

线面积分

线面积分

y =0 a x
4
x = x L1 y=0
x = x L3 y = x
I =∫
a
0
+ ∫ eaad θ e dx 0
x
4
π
2. 第二类曲线积分 变力沿曲线所作的功. 变力沿曲线所作的功 设一质点受如下变力作用
恒力沿直线所作的功
F
W = F AB cosθ
B
= F ⋅ AB
F( x, y, z) = (P , Q, R)
z
n
Σ
y
第二类曲 o Γ 化 面积分 x 空间的封闭曲线弧 为空间曲面∑的边界线. Γ是 空间的封闭曲线弧, 为空间曲面∑的边界线 曲线弧
Γ

Pd x + Qd y + Rd z =
∂Q ∂P ∂R ∂Q ∂P ∂R ( − )d yd z + ( − )d z d x + ( ∂x − ∂y )d xd y ∫∫ ∂y ∂z ∂z ∂x ∑
求其质量. 求其质量
M = ∫∫ f ( x, y, z)d S
o x
y
又称为对面积的曲面积分 若 f ( x, y, z) ≡ 1 得曲面面积为 S =
∫∫ d S
Σ
第一类曲面积分计算
转化
二重积分
∫∫ g( x, y)dxdy
Dxy
1. 把空间曲面 写成方程: z = z( x, y) Σ xoy 并将Σ投影到 面上: ( x, y) ∈ Dxy
t :α → β ,
dx = x′(t )dt dy = y′(t )dt dz = z′(t )dt
=∫
+ Q[ x(t ), y(t ), z (t )]y′(t ) + R[ x(t ), y(t ), z (t )] z′(t )}d t

高等数学第10章 曲线积分与曲面积分

高等数学第10章 曲线积分与曲面积分
79
80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为

曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,具有广泛的应用领域。

本论文旨在介绍曲线积分和曲面积分的概念和计算方法,并讨论在实际应用中的一些应用情况。

曲线积分在微积分中,曲线积分用于计算沿一条曲线的函数的积分。

曲线积分有两种类型:第一类是沿曲线的弧长对函数进行积分,称为第一类曲线积分,第二类是对曲线上的函数在曲线元素上积分,称为第二类曲线积分。

第一类曲线积分第一类曲线积分表示为:$$ \\int_C f(x, y) ds $$其中,f(f,f)是曲线上的函数,ff表示沿曲线元素的弧长。

计算第一类曲线积分的方法通常包括参数化曲线和坐标变换两种。

例如,计算函数f(f,f)=f2+f2在曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 上的第一类曲线积分。

首先,通过参数化得到曲线的弧长元素:$$ ds = \\sqrt{\\left(\\frac{dx}{dt}\\right)^2 +\\left(\\frac{dy}{dt}\\right)^2} dt $$代入曲线方程得到:$$ ds = \\sqrt{\\left(-\\sin(t)\\right)^2 +\\left(\\cos(t)\\right)^2} dt = dt $$然后,将函数和弧长元素代入积分得到:$$ \\int_C f(x, y) ds = \\int_0^{2\\pi} (1) dt = 2\\pi $$第二类曲线积分第二类曲线积分表示为:$$ \\int_C \\mathbf{F} \\cdot d\\mathbf{r} $$其中,$\\mathbf{F}$ 是曲线上的向量函数,$d\\mathbf{r}$ 表示曲线元素。

计算第二类曲线积分的方法通常包括参数化曲线和曲线方程两种。

例如,计算向量函数 $\\mathbf{F}(x, y) = (x, y)$ 沿曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 的第二类曲线积分。

曲线积分与曲面积分复习

曲线积分与曲面积分复习


L
f ( x, y )ds f ( (t ), (t )) (t )2 ( t )2 dt


一定,二代,三换元,定,代,换关键在 方程。小下限,大上限.
L:
L:
步骤:
1.写出L的参数方程,确定参数的范围 2.化为定积分

L
f ( x, y )ds f ( (t ), (t )) (t )2 ( t )2 dt
应用:
例6 计算 L (3x y)dy ( x y)dx, 其中L为
( x 1) 2 ( y 4) 2 9 的负向.
例7 计算
2 2 xdy , 其中 L 为 x y 1上由点 L
A(1,0) 到点 B(0,1) 的一段弧.
例8 计算 原点的分段光滑正向闭曲线. y L
利用路径无关计算曲线积分
2 2 xy d x x dy,其中L是xoy平面内的任 例9 计算 L
意有向闭曲线. 特点:路径无关,闭曲线,积分为零.
x e 例10 计算 L cos ydx sin ydy,其中L是从点(0, 0)
到点 ( , ) 的任意有向曲线. 2 2
特点:路径无关,非闭曲线,选易积分路线.
i
n 1
L
L
对坐标的曲线积分

M i 1 M2 M 1
L
Pdx Qdy
A
o
x
对坐标的曲线积分

L
Pdx Qdy
特点(1)积分曲线是有向曲线弧. (2)被积函数的定义域是曲线弧.
P( x, y ), Q( x, y ),( x, y) L
(3)微元 dx,dy 是有向弧微分ds 在坐标轴上的投影 与一类曲线积分的 本质区别

曲线积分与曲面积分-第一类曲面积分

曲线积分与曲面积分-第一类曲面积分

D yz = {( y , z ) y ≤ R, 0 ≤ z ≤ H }.
o
x
Σ1 R y
dS dS = 2 I = ∫∫ 2 ∫∫ R2 + z 2 2 R +z Σ1 Σ
2 d S = 1 + x 2 + xz d y d z y
= 1+ ( = R
y R y
2 2 2
)2 + 0 d y d z
Σ
Σ1 Σ2
(3) 对称性:
对面积的曲面积分
∫∫ f ( x , y , z ) d S,
Σ
对称性的利用类似于三 重积分 .
如:若 f ( x , y , z ) 在 Σ 上连续, Σ 关于 yoz 面对称, 则 f ( x, y, z) = f ( x, y, z) 0, ∫∫ f ( x, y, z)d S = 2∫∫ f ( x, y, z)d S, f ( x, y, z) = f ( x, y, z) Σ
dS , 其中 ∑是介于平面 I = ∫∫ 2 2 2 x + y +z Σ
Σ = Σ1 + Σ 2
2 2
z = 0 , z = H 之间的圆柱面 x 2 + y 2 = R 2 .
解 (方法1)
Σ1 : x =
z
H
Σ2
R y ,
( y , z ) ∈ D yz
( y , z ) ∈ D yz
Σ 2 : x = R2 y 2 ,
∫∫ f ( x , y )dσ
D Ω
I是空间闭区域Ω→∫∫∫ f ( x , y , z )dv I是曲线 Γ → I是曲线 Σ →
∫ f ( x , y, z )ds

(完整版)曲线积分与曲面积分(解题方法归纳)

(完整版)曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分.(2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则1(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)L L Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则1(,)2(,)LL f y f x y ds f x y ds f y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则()()=⎰⎰LLf x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则[(,)(),()()βααβ=<⎰⎰Lf x y ds f x t y t若曲线弧:()()θαθβ=≤≤L r r (极坐标),则[(,)()cos ,()sin βαθθθθθ=⎰⎰Lf x y ds f r r若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则[(,,)(),(),()()βααβΓ=<⎰⎰f x y z ds f x t y t z t(5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则[(,,),,(,)xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则[(,,)(,),,yzD f x y z dS f x y z y z ∑=⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则[(,,),(,),zxD f x y z dS f x y x z z ∑=⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域. (8)d d +⎰LP x Q y 与路径无关d d 0⇔+=⎰cP x Q y (c 为D 内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Qy x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰L D Q P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdy dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或(cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式dydz dzdx dxdy Pdx Qdy Rdz x y z PQRΓ∑∂∂∂++=∂∂∂⎰⎰⎰其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1. 计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dyI x y x x x x 由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此220,011==++⎰⎰L L dxdyx x故 20+==++⎰Ldx dyI x y x『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用.事实上,本题还可应用格林公式计算.例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS 故 2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS b y dS c z dS n dS22222()∑∑=+++⎰⎰⎰⎰a b c x dS n dS22222222()43π∑++=+++⎰⎰a b c xy z dS R n22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些.若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰x y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰x y z dS axdS a x a dS a dS 222402248ππ∑=+==⎰⎰a dS a a a『方法技巧』 积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰x a dS例4 计算曲线积分2222-+⎰Lxy dy x ydxx y L 为圆周222(0)+=>x y a a 的逆时针方向.解法1 直接计算. 将积分曲线L 表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰Lxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d a d324332013118(sin sin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰ad a a解法2 利用格林公式2222222211()-=-=++⎰⎰⎰⎰LLDxy dy x ydxxy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故222232200112πθρρρπ-==+⎰⎰⎰a Lxy dy x ydxd d a a x y『方法技巧』 本题解法1用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰n n n n n n d n n n nn 为奇数为偶数解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰L x y dx x y dyx y,其中L 为沿cos π=y x 由点 (,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难.由于 2222,+-+==++x y x yP Q x y x y,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:cos 5:(:)44sin θππθθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得 222()()1()()2π'+--=+--+⎰⎰LL x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』 本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑1=的法向量与各坐标轴正向夹锐角的侧面.解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy面的区域{}(,)1=≤xy D x y ,故233(1∑∑∑++==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy dxdy21(1223(13(1==⎰⎰⎰⎰xyD dxdy dxdy 1401(12=⎰dx411(1)30--=⎰t t dt 『方法技巧』 由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy 1222()()()∑+∑=-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故222()()()∑-+-+-⎰⎰x y dydz y zdzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰h h h h d d h『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求.本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号.例8 计算曲线积分()()()-+-+-⎰Lz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰Ldydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量. (2) 曲线或曲面的质心(形心). (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论: (1)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体 (,,)ρ=⎰LM x y z ds曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰L L LLx x y ds y x y ds x y x y dsx y ds空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y LLI y x y ds I x x y ds空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y LLI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds曲面形物体的转动惯量:2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰z I x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度div A ∂∂∂=++∂∂∂P Q R x y z矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1. 曲线积分或曲面积分应用题的计算步骤:ij k(1)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分.例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功.(其中=r k解 积分曲线L 如图11.7所示. 场力所做的功为(,)(,)=+⎰AB W P x y dx Q x y dy 22=-⎰AB y x k dx dy r r 令22,==-y x P Q r r ,则22224()(∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y x W k dx dy k k r r 『方法技巧』 本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如AO OB ,但不可以选取此路径,因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线(12)0⎧⎪=≤≤⎨=⎪⎩y z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy2sin ∑=+⎰⎰xz dydz xdxdy1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy 122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分.。

曲线积分和曲面积分

第八章 曲线积分和曲面积分我们前面已学过定积分和重积分,当一个函数定义在空间的曲线或曲面时,则要求我们计算曲线积分或曲面积分。

由于物理背景的不同,我们还须区别曲线或曲面的方向性,因此我们要分别研究两种不同类型的积分。

§1 第一型曲线积分与曲面积分1. 第一型曲线积分我们研究如下的一个理想问题,给定空间的一条曲线物体L ,L 上每点有线密度,现在我们要求它的质量。

我们对此问题作如下限制,设L 是空间的可求长曲线,端点为A 和B ,密度函数(,,)f x y z 在L 上定义。

为了求质量,象定积分一样,我们对L 作一分割,01,,,,(,1,2,,,)n j A A A A B A j n L ===L L 在上,这样我们就将L 分成n 小段,设每段的长度为j s V 。

在每段弧长上任取一点ξηςjjj(,,),作和式,1(,)nj jj j j f s ξης=∑V以此作为L 质量的近似值。

最后我们令1max{}0j j ns λ≤≤=→V ,即可得到L 质量的精确值M ,即,01lim (,)nj j j j j M f s λξης→==∑V由此我们可得到以下定义 定义设L 是空间可求长曲线,(,,)f x y z 在L 上连续,L 的两个端点为A,B ,依次用分点01,,,n A A A A B ==L 将L 分成n 小段。

每小段弧及弧长均记为j s V ,在j s V 上任取一点(,,)j j j j P ξης=,作和式,1(,)nj jj j j f s ξης=∑V如果当1max{}0j j ns λ≤≤=→V 时,上述和式的极限存在,且不依赖于L 的分法及j P 的选取,则称这一极限值为(,,)f x y z 。

在L 上的第一型曲线积分,记作(,,)Lf x y z ds ∫。

第一型曲线积分也有类似于定积分的一些性质,如关于被积函数的线性及关于曲线的可加性,它与定积分的一个差别是第一型曲线积分与曲线的方向无关。

第一型线积分和面积分


为平面曲线,给极坐标方程 当 C 为平面曲线 给极坐标方程
ds
r = r(θ ) , α ≤ θ ≤ β
b
r
rdθ
dr
Q ds = (rdθ )2 + (dr)2 = r 2 + (r′ )2 dθ θ

C
f ( x, y)ds= ∫ f (r(θ )cosθ , r(θ )sinθ ) r 2+ rθ′ 2 dθ
两柱面的方程分别为
-. 05
0
05 .
和 y = R2 x2 . z= R x
2 2
充分利用图形的对称性, 充分利用图形的对称性 只
z = R2 x2
需对定义在
Dxy : x + y ≤ R , x ≥ 0, y ≥ 0
2 2 2
上的一片柱面 z = R2 Байду номын сангаасx2
y = R2 x2
作计算, 作计算, Q z′ = x
9
= 2∫
π /2
0
sintdt = 2
用极坐标) 解3 (用极坐标 C: r = 1, ≤ θ ≤ 用极坐标
2
π
π
2
I = ∫ y ds = ∫ sinθ ds
C
C
= 2∫
π /2
0
sinθ 12 + 02 dθ = 2
例4
x2 y2 + =1 (求柱面的侧面积 设椭圆柱面 求柱面的侧面积) 求柱面的侧面积 5 9
∫∫
σ uv
S
f ( x, y, z)dS
2 2 2
= ∫∫ f ( x(u, v), y(u, v), z(u, v)) A + B + C dudv

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)


ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]

曲线积分与曲面积分的概念与计算

曲线积分与曲面积分的概念与计算在数学中,曲线积分和曲面积分是两个重要的概念,用于描述曲线和曲面上的各种物理量的计算。

本文将详细介绍这两个概念的定义以及计算方法。

1. 曲线积分的概念与计算曲线积分用于计算曲线上的矢量场或标量场沿曲线的积分值,常用于求解沿路径的功、电磁感应等问题。

曲线积分可以分为第一类和第二类,下面将分别介绍。

1.1 第一类曲线积分第一类曲线积分可以用于计算矢量场沿曲线的积分值,其计算公式如下:∮C F·ds其中,C表示曲线,F表示矢量场,ds表示曲线C上的一小段投影长度,F·ds表示矢量场F与ds的点积。

要计算第一类曲线积分,首先需要确定曲线C的参数方程,并对其进行参数化。

然后,将参数方程代入上述公式,并对参数范围进行积分即可得到结果。

1.2 第二类曲线积分第二类曲线积分用于计算标量场沿曲线的积分值,其计算公式如下:∮C f ds其中,C表示曲线,f表示标量场,ds表示曲线C上的一小段投影长度。

要计算第二类曲线积分,同样需要确定曲线C的参数方程,并对其进行参数化。

然后,将参数方程代入上述公式,并对参数范围进行积分即可得到结果。

2. 曲面积分的概念与计算曲面积分用于计算曲面上的矢量场或标量场通过曲面的通量或质量的计算。

曲面积分同样可以分为第一类和第二类,下面将一一介绍。

2.1 第一类曲面积分第一类曲面积分用于计算矢量场通过曲面的通量,其计算公式如下:∬S F·dS其中,S表示曲面,F表示矢量场,dS表示曲面S上的一小块面积,F·dS表示矢量场F与dS的点积。

要计算第一类曲面积分,首先需要确定曲面S的参数方程,并对其进行参数化。

然后,将参数方程代入上述公式,并对参数范围进行积分即可得到结果。

2.2 第二类曲面积分第二类曲面积分用于计算标量场通过曲面的质量,其计算公式如下:∬S f dS其中,S表示曲面,f表示标量场,dS表示曲面S上的一小块面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续 一致连续任意接近两个自变量函数值任意接近
1/x,一致连续1/n不是确定的值,而某点连续是具体值,所以在某区间连续和一致连续不同
由n(具体)确定
两个任意小就看以谁先为有限值
而有界闭区域率先确定1/n中n有界,所以在有界闭区域连续则必一致连续,对于有界闭区域,一致连续受到了弱化
第一类曲线积分与曲面积分的计算
平面曲线的弧长公式s= 极坐标形式s= dɵ
空间s=
密度:f(x,y)平面曲线
f(x,y,z)空间曲线
曲面积分:S=
积分在物理上的应用
质心:对平面的静力矩等效mx是对yoz平面的静力矩
X0=Myz/m=
当密度均匀时,x0=
转动惯量:I=mr2Ix=
注意积分对变量x,y,z的轮换对称性G
飞行体受到地球引力
Gm
灵活运用积分方法
含参变量的积分
有限区间
闭区域:D={(x,y)ꞁa 上连续
一致连续 极限运算和积分运算可交换顺序
所谓一致连续,其定义为
该区间上 两个值x1,x2,当 < 时,就有 <
典型的不一致连续:1/x(1/n,1/(n+1))x2(n,n+1/n)
相关文档
最新文档