2021届湖南省新高考数学模拟试卷及答案解析
湖南省湘潭市2021届新高考数学模拟试题含解析

湖南省湘潭市2021届新高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( )A .4B .6C .8D .10 【答案】C【解析】【分析】画出函数sin y x =π和12(1)y x =--的图像,sin y x =π和12(1)y x =--均关于点()1,0中心对称,计算得到答案.【详解】 2(1)sin 10x x π-+=,验证知1x =不成立,故1sin 2(1)x x π=--, 画出函数sin y x =π和12(1)y x =--的图像, 易知:sin y x =π和12(1)y x =--均关于点()1,0中心对称,图像共有8个交点, 故所有解之和等于428⨯=.故选:C .【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点()1,0中心对称是解题的关键.2.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( ) A .6- B .6 C .5 D .5-【答案】A【解析】【分析】由{}3A B ⋂=,得3B ∈,代入集合B 即可得b .【详解】{}3A B ⋂=Q ,3B ∴∈,930b ∴-+=,即:6b =-,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.3.从集合{}3,2,1,1,2,3,4---中随机选取一个数记为m ,从集合{}2,1,2,3,4--中随机选取一个数记为n ,则在方程221x y m n +=表示双曲线的条件下,方程221x y m n+=表示焦点在y 轴上的双曲线的概率为( )A .917B .817C .1735D .935【答案】A【解析】【分析】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,分别计算出(),()P A P AB ,再利用公式()(/)()P AB P B A P A =计算即可. 【详解】 设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上 的双曲线”,由题意,334217()7535P A ⨯+⨯==⨯,339()7535P AB ⨯==⨯,则所求的概率为 ()9(/)()17P AB P B A P A ==. 故选:A.【点睛】 本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.4.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32- D .2-【答案】A【解析】【分析】 画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化为直线3y x z =+,当直线3y x z =+过点A 时,此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由2100x y y -+=⎧⎨=⎩,解得(1,0)A -, 所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .1【答案】A【解析】【分析】 根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案.【详解】解:由于312ln 3y x x =+,根据导数的几何意义得:()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥,当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.6.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D【解析】【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=, 即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n m m n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.7.已知函数31,0()(),0x x f x g x x ⎧+>=⎨<⎩是奇函数,则((1))g f -的值为( )A .-10B .-9C .-7D .1【答案】B【解析】【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值.【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.8.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( )A .45B .42C .25D .36 【答案】D【解析】【分析】由等差数列的性质可知1928a a a a +=+,进而代入等差数列的前n 项和的公式即可.【详解】由题,192899()9()9(210)36222a a a a S ++⨯-+====. 故选:D【点睛】本题考查等差数列的性质,考查等差数列的前n 项和.9.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43 B .916 C .34 D .169【答案】D【解析】【分析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为r ,则r ,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D. 【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10.设椭圆E :()222210x y a b a b+=>>的右顶点为A ,右焦点为F ,B 、C 为椭圆上关于原点对称的两点,直线BF 交直线AC 于M ,且M 为AC 的中点,则椭圆E 的离心率是( )A .23B .12C .13D .14【答案】C【解析】【分析】连接OM ,OM 为ABC ∆的中位线,从而OFM AFB ∆∆:,且12OF FA =,进而12c a c =-,由此能求出椭圆的离心率.【详解】如图,连接OM ,Q 椭圆E :()222210x y a b a b +=>>的右顶点为A ,右焦点为F , B 、C 为椭圆上关于原点对称的两点,不妨设B 在第二象限,直线BF 交直线AC 于M ,且M 为AC 的中点∴OM 为ABC ∆的中位线,∴OFM AFB ∆∆:,且12OFFA =, 12c a c ∴=-, 解得椭圆E 的离心率13c e a ==. 故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.11.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( )A .0B .1C .2D .4 【答案】A【解析】【分析】根据2m =或22m +=,验证交集后求得m 的值.【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.12.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞【答案】D【解析】【分析】由(0)0f =可得1a =,所以22()log (1)(0)f x x x x =+≥+,由()f x 为定义在R 上的奇函数结合增函数+增函数=增函数,可知()y f x =在R 上单调递增,注意到(2)(2)5f f -=-=-,再利用函数单调性即可解决.【详解】因为()f x 在R 上是奇函数.所以(0)0f =,解得1a =,所以当0x ≥时,22()log (1)f x x x =++,且[0,)x ∈+∞时,()f x 单调递增,所以()y f x =在R 上单调递增,因为(2)5(2)5f f =-=-,,故有342x +>-,解得2x >-.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。
湖南省常德市2021届新高考第二次模拟数学试题含解析

湖南省常德市2021届新高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 【答案】A 【解析】 【分析】分子分母同乘1i +,即根据复数的除法法则求解即可. 【详解】 解:23(23)(1)151(1)(1)22i i i i i i i +++==-+--+, 故选:A 【点睛】本题考查复数的除法运算,属于基础题.2.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}na 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,3.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) AB.7CD【答案】B 【解析】 【分析】利用两角差的正弦公式和边角互化思想可求得tan 3B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】1sin sin cos sin 32b A a B B a B π⎛⎫=-=- ⎪⎝⎭,即1sin sin cos sin sin 2A B A B A B =-,即3sin sin cos A B A A =, sin 0A >,3sin B B ∴=,得tan 3B =,0B π<<,6B π∴=.由余弦定理得b === 由正弦定理sin sin c b C B=,因此,1sin sin 7c B C b ===. 故选:B. 【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.4.已知函数()()()1sin,13222,3100x x f x f x x π⎧-≤≤⎪=⎨⎪-<≤⎩,若函数()f x 的极大值点从小到大依次记为12,?··n a a a ,并记相应的极大值为12,,?··n b b b ,则()1niii a b =+∑的值为( )A .5022449+B .5022549+C .4922449+D .4922549+【解析】 【分析】对此分段函数的第一部分进行求导分析可知,当2x =时有极大值(2)1f =,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点n a 的通项公式2n a n =,且相应极大值12n n b -=,分组求和即得【详解】当13x ≤≤时,()cos 22x f x πππ-⎛⎫'=⎪⎝⎭, 显然当2x =时有,()0f x '=, ∴经单调性分析知2x =为()f x 的第一个极值点又∵3100x <≤时,()2(2)f x f x =- ∴4x =,6x =,8x =,…,均为其极值点 ∵函数不能在端点处取得极值 ∴2n a n =,149n ≤≤,n Z ∈ ∴对应极值12n nb -=,149n ≤≤,n Z ∈∴()4949491(298)491(12)22449212i i i a b =+⨯⨯-+=+=+-∑ 故选:C 【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题5.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( ) A .74B .94C .52D .2【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案. 【详解】如图所示,画出可行域和目标函数,根据图像知:当8,10x y ==时,810z a b =+有最大值为40,即81040z a b =+=,故4520a b +=.()()5115112541945252521002020204b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭. 当254b a a b =,即104,33a b ==时等号成立. 故选:B .【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.6.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( ) A .13 B .14 C .15 D .16【答案】A【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 7.将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象,如果()g x 在区间[]0,a 上单调递减,那么实数a 的最大值为( )A .8π B .4π C .2π D .34π【答案】B 【解析】【分析】根据条件先求出()g x 的解析式,结合三角函数的单调性进行求解即可. 【详解】将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象, 则()cos 2cos 242g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 设22x πθ=+, 则当0x a <≤时,022x a <≤,22222x a πππ<+≤+,即222a ππθ<≤+, 要使()g x 在区间[]0,a 上单调递减, 则22a ππ+≤得22a π≤,得4a π≤,即实数a 的最大值为4π, 故选:B. 【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题. 8.已知1cos ,,32πααπ⎛⎫=-∈⎪⎝⎭,则()sin πα+= ( )A .3B .3-C .3±D .13【答案】B 【解析】 【分析】利用诱导公式以及同角三角函数基本关系式化简求解即可. 【详解】1cos 3α=-,,2παπ⎛⎫∈ ⎪⎝⎭2122sin 1cos 193αα∴=-=-=()22sin sin 3παα∴+=-=-本题正确选项:B 【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.9.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤ 【答案】B 【解析】 【分析】根据计算结果,可知该循环结构循环了5次;输出S 前循环体的n 的值为12,k 的值为6,进而可得判断框内的不等式. 【详解】因为该程序图是计算11111246810++++值的一个程序框圈 所以共循环了5次所以输出S 前循环体的n 的值为12,k 的值为6, 即判断框内的不等式应为6k ≥或5k > 所以选C 【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.10.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】求得()51x ax +的二项展开式的通项为15C kkk a x+⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果. 【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立. 故选:B. 【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.11.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()UA B =( )A .{}12x x <≤ B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-【答案】B 【解析】 【分析】直接利用集合的基本运算求解即可. 【详解】解:全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,{}U |1A x x ∴=≥则(){}{}{}|1|12|12U A B x x x x x x =-=,故选:B . 【点睛】本题考查集合的基本运算,属于基础题. 12.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-32【答案】A 【解析】 【分析】利用等差数列的求和公式及等差数列的性质可以求得结果. 【详解】由1371352S a ==,74a =,得()()68822256a a +-=-=.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果. 二、填空题:本题共4小题,每小题5分,共20分。
湖南省永州市2021届新高考数学四模考试卷含解析

湖南省永州市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B I 的真子集个数为( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】求出A B I 的元素,再确定其真子集个数. 【详解】由2221y x x y ⎧=⎨+=⎩,解得x y ⎧⎪=⎪⎨⎪=⎪⎩或x y ⎧⎪=⎪⎨⎪=⎪⎩,∴A B I 中有两个元素,因此它的真子集有3个. 故选:C. 【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合,A B 都是曲线上的点集.2.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B.CD .23【答案】C 【解析】试题分析:设AC BD 、的交点为O ,连接EO ,则AEO ∠为,AE SD 所成的角或其补角;设正四棱锥的棱长为a,则1,,2AE EO a OA ===,所以222cos 2AE OA EO AEO AE OA +-∠=⋅2221)()()a a +-==,故C 为正确答案. 考点:异面直线所成的角.3.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题. 4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行; ②若一个平面经过另一个平面的垂线,则这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④【分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择. 【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④. 故选:D 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.5.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .16481【答案】C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =.本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.6.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( ) A .e B .1e 2- C .1 D .2e e - 【答案】D 【解析】 【分析】依题意,可得()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,于是可得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,继而可得()221211a e e e e ⎛⎫---=-⎪⎝⎭,解之即可. 【详解】解:()2222()a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,因为所有点(,())s f t (,)s t D ∈所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=- ⎪⎝⎭, 解得2ea e =-, 故选:D. 【点睛】本题考查利用导数研究函数的单调性,理解题意,得到221(2)(1)1a e e e e---=-是关键,考查运算能力,属于中档题.7.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D 【解析】 【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值. 【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=,即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n mm n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D. 【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.8.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u= lny ,v=(x-4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v+2,则变量y 的最大值的估计值是( ) A .e B .e 2C .ln2D .2ln2【答案】B 【解析】 【分析】将u= lny ,v=(x-4)2代入线性回归方程ˆu=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值. 【详解】解:将u= lny ,v=(x -4)2代入线性回归方程ˆu=-0.5v+2得: ()2ln 0.542y x =--+,即()20.542x y e --+=,当4x =时,()20.542x --+取到最大值2, 因为xy e =在R 上单调递增,则()20.542x y e --+=取到最大值2e .故选:B. 【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,. 9.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( )A .12-B .15-C .16-D .18-【答案】C 【解析】 【分析】根据已知条件求得等差数列{}n a 的通项公式,判断出n S 最小时n 的值,由此求得n S 的最小值. 【详解】依题意11237217a d a d +=-⎧⎨+=-⎩,解得17,2a d =-=,所以29n a n =-.由290n a n =-≤解得92n ≤,所以前n项和中,前4项的和最小,且4146281216S a d =+=-+=-. 故选:C 【点睛】本小题主要考查等差数列通项公式和前n 项和公式的基本量计算,考查等差数列前n 项和最值的求法,属于基础题.10.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )AB .23C.2D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:200023263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.11.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .6【答案】A 【解析】 【分析】根据题意可将1127kxx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3x x k ≥,令()ln xf x x=,利用导数,判断其单调性即可得到实数k 的最小值. 【详解】因为不等式有正整数解,所以0x >,于是1127k xx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3k xx≥, 1x =显然不是不等式的解,当1x >时,ln 0x >,所以ln 3ln 3k x x ≥可变形为ln 3ln 3x x k≥. 令()ln x f x x =,则()21ln xf x x-'=, ∴函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,而23e <<,所以 当*x ∈N 时,()(){}max ln 3max 2,33f f f ==,故ln 33ln 33k≥,解得9k ≥.故选:A . 【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.12.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题 二、填空题:本题共4小题,每小题5分,共20分。
湖南省永州市2021届新高考第二次模拟数学试题含解析

湖南省永州市2021届新高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1 B .2C .3D .7【答案】D 【解析】 【分析】求出3(21)x +展开项中的常数项及含x 的项,问题得解。
【详解】3(21)x +展开项中的常数项及含x 的项分别为:()()333121C x =,()1123216C x x ⨯=,所以311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为:11167x x⨯+⨯=. 故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。
2.如图,长方体1111ABCD A B C D -中,1236AB AA ==,112A P PB =u u u r u u u r,点T 在棱1AA 上,若TP ⊥平面PBC .则1TP B B ⋅=uu r uuu r( )A .1B .1-C .2D .2-【答案】D 【解析】 【分析】根据线面垂直的性质,可知TP PB ⊥;结合112A P PB =u u u r u u u r即可证明11PTA BPB ∆≅∆,进而求得1TA .由线段关系及平面向量数量积定义即可求得1TP B B ⋅uu r uuu r.【详解】长方体1111ABCD A B C D -中,1236AB AA ==, 点T 在棱1AA 上,若TP ⊥平面PBC .则TP PB ⊥,112A P PB =u u u r u u u r则11PTA BPB ∠=∠,所以11PTA BPB ∆≅∆, 则111TA PB ==,所以11cos TP B B TP B B PTA ⋅=⋅⋅∠uu r uuu r uu r uuu r22⎛⎫=⨯=- ⎝, 故选:D. 【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题. 3.若集合{}10A x x =-≤≤,01xB x x ⎧⎫=<⎨⎬-⎩⎭,则A B =U ( )A .[)1,1-B .(]1,1-C .()1,1-D .[]1,1-【答案】A 【解析】 【分析】用转化的思想求出B 中不等式的解集,再利用并集的定义求解即可. 【详解】解:由集合01x B x x ⎧⎫=<⎨⎬-⎩⎭,解得{|01}B x x =<<,则{}{}{}[)|10|01|111,1A B x x x x x x =-<<=-<=-U U 剟? 故选:A . 【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.4.已知实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34x y +的最小值为( )A .2B .3C .4D .5【答案】B 【解析】【分析】作出约束条件的可行域,在可行域内求34z x y =+的最小值即为34x y +的最小值,作34y x =-,平移直线即可求解. 【详解】作出实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩的可行域,如图(阴影部分)令34z x y =+,则344z y x =-+, 作出34y x =-,平移直线,当直线经过点()1,0A 时,截距最小, 故min 3103z =⨯+=, 即34x y +的最小值为3. 故选:B 【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题. 5.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =u u u v u u u v,则直线OA 与OB 的斜率之积为( )A .14-B .3-C .18-D .4-【答案】A 【解析】 【分析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=u u u r u u u r,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案. 【详解】解:设A (2114x x ,),B (2224x x ,),由抛物线C :x 2=1y ,得214y x =,则y′12x =. ∴112AP k x =,212PB k x =, 由0PA PB ⋅=u u u r u u u r ,可得12114x x =-,即x 1x 2=﹣1.又14OA x k =,24OB xk =,∴124116164OA OB x x k k -⋅===-. 故选:A .点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,a b ¹,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =u u u v u u u v得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些.6.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( ) A .5ln 2+ B .5ln 2- C .3ln 2+ D .3ln 2-【答案】A 【解析】 【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值. 【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以min min 42()25ln 2AB f a f ===+⎝⎭故选:A . 【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题. 7.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8 B .9C .10D .11【答案】D 【解析】 【分析】由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的x 的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件2642a a a +=,求得42a =-,从而求得1033n n a =-+,解不等式求得结果. 【详解】由题意,本题符合几何概型,区间[]3,3-长度为6,使得301xx -≥-成立的x 的范围为(]1,3,区间长度为2, 故使得301x x -≥-成立的概率为2163d ==, 又26442a a a +=-=,42a ∴=-,()11024333n na n ∴=-+-⨯=-+, 令0n a >,则有10n >,故n 的最小值为11, 故选:D. 【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目. 8.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题. 9.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】由正项等比数列满足31232a a a =+,即211132a q a a q =+,又10a ≠,即2230q q --=,运算即可得解.【详解】解:因为31232a a a =+,所以211132a q a a q =+,又10a ≠,所以2230q q --=,又0q >,解得3q =. 故选:C. 【点睛】本题考查了等比数列基本量的求法,属基础题.10.在ABC ∆中,D 为BC 中点,且12AE ED =u u u r u u u r ,若BE AB AC λμ=+u u u r u u u r u u u r,则λμ+=( )A .1B .23-C .13-D .34-【答案】B 【解析】 【分析】选取向量AB u u u r ,AC u u u r 为基底,由向量线性运算,求出BE u u u r,即可求得结果.【详解】13BE AE AB AD AB =-=-u u u r u u u r u u u r u u u r u u u r ,1()2AD AB AC =+u u u r u u u r u u u r,5166BE AB AC AB AC λμ∴=-+=+u u u r u u ur u u u r u u u r u u u r ,56λ∴=-,16μ=,23λμ∴+=-.故选:B. 【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 11.已知复数()()2019311i i z i --=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =-D .25z =【答案】D 【解析】 【分析】利用i 的周期性先将复数z 化简为42i z =-+即可得到答案. 【详解】因为2i 1=-,41i =,5i i =,所以i 的周期为4,故4504334i 24i 24i 242i i i iz ⨯++++====-+-, 故z 的虚部为2,A 错误;z 在复平面内对应的点为(4,2)-,在第二象限,B 错误;z 的共 轭复数为42z i =--,C 错误;22(4)225z =-+=,D 正确. 故选:D. 【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.12.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A.83+B.83+C.43+D.43+【答案】A 【解析】由题意得到该几何体是一个组合体,前半部分是一个高为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为2111448323V π=⨯⨯⨯⨯=+故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 二、填空题:本题共4小题,每小题5分,共20分。
2021年湖南省新高考数学模拟试卷解析版

2021年湖南省新高考数学模拟试卷解析版
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个
选项中,只有一项是符合题目要求的.
1.已知集合A={﹣1,0,1,2},B={x|x2=x},则A∩B=()A.{0}B.{1}C.{0,1}D.{0,1,2}【分析】求出集合A,B,由此能求出A∩B.
【解答】解:∵集合A={﹣1,0,1,2},
B={x|x2=x}={0,1},
∴A∩B={0,1}.
故选:C.
【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.
2.(1+i)2=()
A.2i B.﹣2i C.2D.﹣2
【分析】直接展开两数和的平方求解.
【解答】解:(1+i)2=1+2i+i2=2i.
故选:A.
【点评】本题考查复数代数形式的乘除运算,是基础题.
3.下列命题中的假命题是()
A.∃x∈R,lgx=0B.∃x∈R,tan x=1
C.∀x∈R,x2>0D.∀x∈R,3x>0
【分析】由x=1计算可判断A;由x =时,计算可判断B;由完全平方数非负可判断C;由指数函数的值域可判断D.
【解答】解:当x=1时,lgx=0,故A正确;
当x =时,tan x=1,故B正确;
∀x∈R,x2≥0,故C错误;
由指数函数的值域可得,3x>0恒成立,故D正确.
故选:C.
第1 页共24 页。
2021届湖南省湘潭市新高考数学模拟试卷及答案解析

二.填空题(共7小题,满分36分)
11.(6分)lg(3x)+lgy=lg(x+y+1),则x+y的取值范围是.
12.(6分)若x2020=a0+a1(x﹣1)+a2(x﹣1)2+…+a2020(x﹣1)2020,则 .
13.(6分)已知实数x,y满足约束条件 ,则z=x+2y的最大值为.
所以由题意可得: 3,
所以离心率e ,
故选:A.
4.“a=1”是“直线a2x﹣y+1=0与直线x+y=0互相垂直”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
【解答】解:当a=1时,直线a2x﹣y+1=0,
即为x﹣y+1=0,斜率为k1=1,
直线x+y=0,斜率为k2=﹣1,
所以“a=1”是“直线a2x﹣y+1=0与直线x+y=0互相垂直”的充分不必要条件.
故选:A.
5.某几何体的三视图如图所示,则该几何体的体积是( )
A.6B.4C.3D.2
【解答】解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体,底面为直角梯形,高为2.
17.如图,已知等腰梯形ABCD中,AB=2DC=4, ,E是DC的中点,F是线段BC上的动点,则 的最小值是
三.解答题(共5小题,满分74分)
18.(14分)如图,在四边形ABCD中,∠CAB=45°,AB=2,∠ACD=90°,BC=3.
(Ⅰ)求cos∠ACB的值;
(Ⅱ)若DC ,求对角线BD的长度.
A. B.
C. D.
8.已知函数f(x)=xsinx+ln|x|,则y=f(x)的大致图象为( )
湖南省怀化市2021届新高考数学四模考试卷含解析

湖南省怀化市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量X 的分布列是则()2E X a +=( ) A .53 B .73 C .72 D .236【答案】C【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果.【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=, 因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.2.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 【答案】A【解析】 依题意有()f x 的周期为()22ππ,3,sin 334T f x A x πωω⎛⎫====+ ⎪⎝⎭.而()πππππsin 3sin 3sin 3244124g x A x A x A x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故应左移π12.3.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C的渐近线的距离为2c ,则双曲线的渐近线方程为()A.y =B.y = C .y x =± D .2y x =±【答案】A【解析】【分析】 利用双曲线C :()222210,0x y a b a b -=>>,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=的距离为2c ,可得:=,可得2b c =,b a =C的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题. 4.已知角α的终边经过点P(00sin 47,cos 47),则sin(013α-)= A .12 B.C .12- D. 【答案】A【解析】【详解】由题意可得三角函数的定义可知:22cos 47sin cos 47sin 47cos 47α==+o o o o ,22sin 47cos sin 47sin 47cos 47α==+o o o o ,则: ()()sin 13sin cos13cos sin13cos 47cos13sin 47sin131cos 4713cos 60.2ααα-=-=-=+==o o oo o o oo o o 本题选择A 选项.5.一个陶瓷圆盘的半径为10cm ,中间有一个边长为4cm 的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率π的值为(精确到0.001)( )A .3.132B .3.137C .3.142D .3.147【答案】B【解析】【分析】结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:22451 3.137101000S S ππ=≈⇒≈⋅正圆. 故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题6.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A .48B .72C .90D .96 【答案】D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有13C •34A =72种选择方案;②当甲学生不参加任何比赛时,共有44A =24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.7.已知α满足1sin 3α=,则cos cos 44ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭( ) A .718 B .79 C .718- D .79- 【答案】A【解析】利用两角和与差的余弦公式展开计算可得结果.【详解】1sin 3α=Q ,cos cos cos cos sin sin cos cos sin sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫∴+-=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22211cos sin 12sin 22ααααααα⎫==-=-⎪⎪⎝⎭⎝⎭2117122318⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.8.设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++= 【答案】A【解析】【分析】计算AB 的中点坐标为()3,0,圆半径为r =.【详解】AB 的中点坐标为:()3,0,圆半径为22AB r ===, 圆方程为22(3)2x y -+=.故选:A .【点睛】 本题考查了圆的标准方程,意在考查学生的计算能力.9.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( )A .35B .36C .45D .54【答案】C【解析】由等差数列{}n a 通项公式得2375150a a a +-+=,求出5a ,再利用等差数列前n 项和公式能求出9S .【详解】Q 正项等差数列{}n a 的前n 项和n S ,2375150a a a +-+=,2552150a a ∴--=,解得55a =或53a =-(舍),()91959995452S a a a ∴=+==⨯=,故选C. 【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.10.已知函数()f x 的定义域为[]0,2,则函数()()2g x f x = )A .[]0,1B .[]0,2 C .[]1,2D .[]1,3 【答案】A【解析】 试题分析:由题意,得022{820x x ≤≤-≥,解得01x ≤≤,故选A . 考点:函数的定义域.11.若()()()32z i a i a R =-+∈为纯虚数,则z =( )A .163iB .6iC .203iD .20【答案】C【解析】【分析】根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】()()()32326z i a i a a i =-+=++-∵()()()32z i a i a R =-+∈为纯虚数,∴320a +=且60a -≠得23a =-,此时203z i = 故选:C.【点睛】本题考查复数的概念与运算,属基础题.12.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( )A .25B .32C .35D .40【答案】C【解析】【分析】设出等差数列{}n a 的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得10a .【详解】设等差数列{}n a 的首项为1a ,公差为d ,则 313127339a a d S a d =+=⎧⎨=+=⎩,解得11,4a d =-=,∴45n a n =-,即有10410535a =⨯-=. 故选:C .【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前n 项和公式的应用,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。
湖南省岳阳市2021届新高考数学模拟试题(3)含解析

湖南省岳阳市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为数单位,z 为z 的共轭复数,若13z i =+,则z z ⋅=( ) A .110 B .110i C .1100 D .1100i 【答案】A【解析】【分析】由复数的除法求出z ,然后计算z z ⋅.【详解】13313(3)(3)1010i z i i i i -===-++-, ∴223131311()()()()10101010101010z z i i ⋅=-+=+=. 故选:A.【点睛】 本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.2.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.3.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=u u u v u u u v ,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( )AB C .2 D 【答案】C【解析】【分析】 由0FA FB +=u u u r u u u r 得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可 【详解】因为0FA FB +=u u u r u u u r ,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==. 故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.4.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .2【答案】A【解析】【分析】利用等差的求和公式和等差数列的性质即可求得.【详解】 ()1252512511152550442a a S a a a a +==⇒+=⇒+=. 故选:A .【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.5.设i 是虚数单位,若复数103m i ++(m R ∈)是纯虚数,则m 的值为( ) A .3-B .1-C .1D .3【答案】A【解析】【分析】根据复数除法运算化简,结合纯虚数定义即可求得m 的值.【详解】由复数的除法运算化简可得1033m m i i+=+-+, 因为是纯虚数,所以30m +=,∴3m =-,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.6.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .6【答案】A【解析】【分析】根据双曲线的标准方程求出右顶点A 、右焦点F 的坐标,再求出过点F 与C 的一条渐近线的平行的直线方程,通过解方程组求出点B 的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:3,45a b c ==∴=,因此右顶点A 的坐标为(3,0),右焦点F 的坐标为(5,0),双曲线的渐近线方程为:43y x =±,根据双曲线和渐近线的对称性不妨设点F 作平行C 的一条渐近线43y x =的直线与C 交于点B ,所以直线FB 的斜率为43,因此直线FB 方程为:4(5)3y x =-,因此点B 的坐标是方程组:224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩的解,解得方程组的解为:1753215x y ⎧=⎪⎪⎨⎪=-⎪⎩,即1732(,)515B -,所以AFB △的面积为:13232(53)21515⨯-⨯-=. 故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.7.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( )A .2019πB .22019πC .42019πD .4038π【答案】B【解析】【分析】根据三角函数的两角和差公式得到()f x =2sin(2019)4x π+,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数()sin 2019cos 201944f x x x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭)sin 2019cos 2019cos 2019sin 20192x x x x +++ )sin 2019cos 20192sin(2019)4x x x π=+=+则函数的最大值为2,2M m n m n ⋅-=-存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则区间(m,n)长度要大于等于半个周期,即min 2220192019m n m n ππ-≥∴-= 故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.8.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<【答案】A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现,1,1m m m -+三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是2,1,,1,2m m m m m --++五种情况,所以分析可以求得1212,()()p p E E ξξ><,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.9.已知复数z 在复平面内对应的点的坐标为(1,2)-,则下列结论正确的是( )A .2z i i ⋅=-B .复数z 的共轭复数是12i -C .||5z =D .13122z i i =++ 【答案】D 【解析】【分析】 首先求得12z i =-+,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数12z i =-+,则(12)2z i i i i ⋅=-+⋅=--,所以A 选项不正确;复数z 的共轭复数是12i --,所以B 选项不正确;22||(1)25z =-+=,所以C 选项不正确;12(12)(1)1311222z i i i i i i -+-+⋅-===+++,所以D 选项正确. 故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.10.函数()2xx e f x x=的图像大致为( ) A . B .C .D .【答案】A【解析】【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可.【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x ==,当0x →,()0f x →,排除B , 故选:A .【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.11.函数52sin ()([,0)(0,])33x xx x f x x -+=∈-ππ-U 的大致图象为 A . B .C .D .【答案】A【解析】【分析】【详解】因为5()2sin()52sin ()()3333x x x x x x x x f x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D , 又5()033f π-πππ=>-,排除C ,故选A . 12.已知复数z 满足32i z i ⋅=+(i 是虚数单位),则z =( )A .23i +B .23i -C . 23i -+D . 23i --【答案】A【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由32i z i ⋅=+,得()()2323223i i i z i i i +-+===--, ∴23z i =+.故选A .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
22.(15分)已知函数f(x)=x2﹣x+aln(x+1),其中a∈R.
(1)求函数f(x)的单调区间.
(2)若函数f(x)有两个极值点x1、x2,且x1<x2,证明: .
2021届湖南省新高考数学模拟试卷
①对于任意x,y∈S,若x≠y,都有xy∈T;
②对于任意x,y∈T,若x<y,则 ∈S;下列命题正确的是( )
A.若S有4个元素,则S∪T有7个元素
B.若S有4个元素,则S∪T有6个元素
C.若S有3个元素,则S∪T有5个元素
D.若S有3个元素,则S∪T有4个元素
二.填空题(共7小题,满分36分)
11.我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{ }就是二阶等差数列,数列{ },(n∈N*)的前3项和.
A. B.
C. D.
【解答】解:f(x) ,则f(﹣x) f(x),
则函数f(x)为奇函数,故A,C错误,
当x>1时,f(xபைடு நூலகம்>0,故排除B,
A.3B.5C.3或5D.2或3
3.若不等式组 所表示的平面区域的面积为2,则 的取值范围是( )
A. B.
C. D.
4.函数f(x) 的图象大致为( )
A. B.
C. D.
5.某几何体的三视图如图所示,则该几何体的体积是( )
A.20B.24C.60D.80
6.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的( )
(1)若{bn}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{an}的通项公式;
(2)若{bn}为等差数列,公差d>0,证明:c1+c2+c3+…+cn<1 ,n∈N*.
21.(15分)如图,已知椭圆C1: y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点.过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
7.数列{an}满足an﹣an+1=kan•an+1(k为实数,n∈N*),数列{bn}满足bn ,且b1+b2+…+b9=90,则b4•b6的最大值是( )
A.10B.100C.200D.400
8.椭圆 )的右焦点与抛物线E:y2=4x的焦点F重合,点P是椭圆C与抛物线E的一个公共点,点Q(0,1)满足QF⊥QP,则椭圆C的离心率为( )
12.(6分)设a dx,则二项式(x2 )6的展开式中常数项的值为.
13.(6分)已知3cos2α=4sin( α),α∈( ,π),则sin2α=
14.已知正四棱柱ABCD﹣A1B1C1D1中AB=2,AA1=3,O为上底面中心.设正四棱柱ABCD﹣A1B1C1D1与正四棱锥O﹣A1B1C1D1的侧面积分别为S1,S2,则 .
A. 1B. C. D. 1
9.已知函数f(x)=log2(x2+2)+klog2( x),若对任意t∈(﹣1,3),任意x∈R,不等式f(x)+f(﹣x)≥kt+1恒成立,则k的取值范围为( )
A.( ,1)B.[ ,1]C.(﹣1, )D.[﹣1, ]
10.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:
2021届湖南省新高考数学模拟试卷
一.选择题(共10小题,满分40分,每小题4分)
1.已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=( )
A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}
2.设复数z=(m2﹣8m+15)+(m2﹣5m+6)i,(m∈R),则当z表示实数时,m的值为( )
19.(15分)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,D、E、F、G分别为AA1,AC、A1C1、BB1,的中点,且 , , .
(1)证明:AF∥平面BEC1;
(2)证明:AC⊥FG;
(3)求直线BD与平面BEC1所成角的正弦值.
20.(15分)已知数列{an},{bn},{cn}满足a1=b1=c1=1,cn+1=an+1﹣an,cn+1 •cn(n∈N*).
15.(6分)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k=,b=.
16.(6分)已知一个袋子中装有1个黑球、2个白球、3个红球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,则摸出白球比黑球多一个的概率为,记摸到的白球的个数为X,则随机变量X的数学期望是.
3.若不等式组 所表示的平面区域的面积为2,则 的取值范围是( )
A. B.
C. D.
【解答】解:图中点A(2,0), ,C(0,2),故阴影部分的面积为 ,解之得 , ,设点P(x,y), ,则m的几何意义是点P与点D(1,﹣2)连线的斜率,由图可知,m≤﹣4或 ,故取值范围是 .
故选:C.
4.函数f(x) 的图象大致为( )
故选:B.
2.设复数z=(m2﹣8m+15)+(m2﹣5m+6)i,(m∈R),则当z表示实数时,m的值为( )
A.3B.5C.3或5D.2或3
【解答】解:∵复数z=(m2﹣8m+15)+(m2﹣5m+6)i(m∈R)是实数,
∴m2﹣5m+6=0,即(m﹣3)(m﹣2)=0,解得m=3或2.
故选:D.
参考答案与试题解析
一.选择题(共10小题,满分40分,每小题4分)
1.已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=( )
A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}
【解答】解:集合P={x|1<x<4},Q={x|2<x<3},
则P∩Q={x|2<x<3}.
17.已知平面向量 , 满足|2 | ,设 , 3 ,向量 , 的夹角为θ,则cos2θ的最小值为.
三.解答题(共5小题,满分74分)
18.(14分)已知△ABC中,三内角A,B,C的对边分别为a,b,c,且满足(sinB+sinC)2=sin2A+sinBsinC.
(1)求A;
(2)若b+c=6,△ABC的面积为 ,求a.