光纤微地震检波器技术讲义
中科院半导体所科技成果——光纤地震检波器

中科院半导体所科技成果——光纤地震检波器
项目成熟阶段生长期
项目来源基金、863
成果简介光纤地震检波器采用光纤激光传感技术,具有精度高、系统自噪声低、可单根光纤串联多支传感器复用、无电磁干扰、体积细小的优点。
可广泛应用于井下石油物探、压裂监测、地震监测等领域。
由于光纤地震检波器采用全光纤传感和传输,耐高温、不怕水、井下无任何电子器件,特别适合井下的地震波监测。
技术特点体积小、重量轻、无电磁干扰、传输距离长(可达数千米)、系统自噪声低(ng量级)
专利情况中国科学院半导体研究所具有光纤地震检波器的授权发明专利3项,完全自主知识产权。
市场分析油气勘探领域、地震监测领域需求强烈,年市场容量在数十亿人民币以上。
半导体所的光纤地震检波器已经成功用于辽河油田的井下地震勘探、云南省普洱地区的地震监测。
其中,在2011年12月的试验中成功监测到云南南部的1.2级地震。
合作方式技术转让、技术服务、技术入股
产业化所需条件企业提供厂房、基础建设、900万启动资金和设备资金,8人左右的技术团队和20人左右的生产团队。
微震检测技术

微震检测技术⼀、引⾔微震检测技术是⼀种新型的⽆损检测技术,其应⽤范围⼴泛,涉及到⽯油、化⼯、电⼒、交通等多个领域。
微震检测技术通过对微震信号的采集和分析,实现对设备或结构的⽆损检测和评估,具有⾮破坏性、⾼精度、⾼灵敏度等优点。
本⽂将对微震检测技术的原理、应⽤和发展趋势进⾏详细介绍。
⼆、微震检测技术的原理微震检测技术的基本原理是利⽤微震信号的传播特性,对设备和结构进⾏⽆损检测。
微震信号是由物体内部或表⾯产⽣的微⼩振动,这些振动信号包含了⼤量的信息,如物体的结构、材料性质、应⼒分布等。
通过采集和分析这些微震信号,可以实现对设备和结构的⽆损检测和评估。
具体⽽⾔,微震检测技术包括以下⼏个步骤:1.信号采集:使⽤⾼灵敏度的传感器,对微震信号进⾏采集。
传感器应具有良好的动态范围和频率响应,以捕捉到尽可能多的有⽤信息。
2.信号处理:采集到的微震信号通常包含噪声和其他⼲扰,需要进⾏滤波、放⼤、去噪等处理,以提取出有⽤的信息。
3.信号分析:对处理后的信号进⾏频谱分析、时频分析等,以获取设备的状态信息,如裂纹、腐蚀、疲劳等。
4.诊断和评估:根据分析结果,对设备和结构的状态进⾏诊断和评估,预测其寿命和安全性。
三、微震检测技术的应⽤微震检测技术作为⼀种新型的⽆损检测技术,具有⼴泛的应⽤前景。
以下是⼀些典型的应⽤领域:1.⽯油⼯业:在⽯油⼯业中,微震检测技术被⼴泛应⽤于油井、油⽓管道等设备的⽆损检测。
通过对微震信号的分析,可以发现设备内部的裂纹、腐蚀等缺陷,避免事故的发⽣。
2.电⼒⼯业:在电⼒⼯业中,微震检测技术被应⽤于变压器、发电机等设备的状态监测和故障诊断。
通过对变压器内部的微震信号进⾏分析,可以判断其内部的绕组状态和是否存在局部放电等故障。
3.交通运输:在交通运输领域,微震检测技术被应⽤于桥梁、隧道、⾼速公路等基础设施的检测和评估。
通过对这些设施的微震信号进⾏分析,可以发现其内部的损伤和缺陷,及时进⾏维修和加固。
4.机械制造:在机械制造领域,微震检测技术被应⽤于各种机械设备和结构的⽆损检测。
地震勘探-检波器工作原理

地震勘探检波器的工作原理地震检波器的理论基础地震检波器是将地表振动变为电信号的一种传感器,或者说地震检波器是把机械振动转化为电信号的机电装置,以最大的逼真度产生地面运动垂直分量的电模拟。
每一个现代地震检波器都是有机械部分和其相连的具有电负载的机电转换器所组成,地震检波器的电学部分和机械部分组成一个整体。
要求它的振幅——频率响应在有意义的频率内是线性的,相位的响应也是线性的。
根据机电转换原理,可把常用的检测器分为三类:即变磁通式(或动圈式)、变磁阻式、压电式。
由于动圈式检波器的输出电压与线圈相对磁铁的运动速度成正比,这种检波器也叫速度检波器。
我国路上地震勘探工作大部分使用变磁通式的检波器。
根据用途不同,也可把地震检波器分为地面检波器、沼泽检波器和井中检波器等。
一个振动系统,它是由一个质量M ,一个弹簧和一个阻尼器Z 组成,地震检波器的装置如图1-1所示,地震检波器的外壳安置在地面上(或沉没于井中),于是,假设外壳的运动精确地重复着地面运动,外壳上具有伸长系数K 的弹簧悬挂着称为惯性质量的重荷M ,为了使用权惯性质量的振动平静下来,惯性质量中被放在胶质液体中,当外壳和惯性质量M 产生相对位移时,在其电极上造成某个电动热E 。
在地震勘探检波器中,主要应用各种感应转换器,在感应转换器中,根据电磁感应,将机械振动变成电震荡,感应机电转换器可以作为与质量M 紧密相连的线圈和与外壳相连的永久磁铁之和(或者反过来),线圈在磁铁的磁场中移动时,在线圈内就发生电动势,转换器线圈内阻在内的某个电阻Z 与转换器两极相连。
可以把地震检波器作为机电系统来研究,这里,某个激发函数()t ζ——例如外壳(地面)对固定读书系统的位移速度,作用于这个系统的输入端,在地震检波器的输出端发生从其电学部分中的负载电阻取得的某个变化的电压()t U ,地震检波器数学模型应该确定这些值之间的关系。
地震检波器的数学模型 为了建立地震检波器的运动数学模型,先讨论其中的作用力。
地震检波器惯性体质量讲稿

进行测试。测试计算出的各项数据与技术指标菜
单的标准值及允差进行比较以判断检波器合格与 否。对于检波器因外并电阻、惯性体质量等引起 的标准值偏移计算,依据下列阻尼系数(4) 、灵 敏度(5)等公式计算。
2016/9/20 7
4、阻尼系数计算公式(4)
G0 Bt B0 4Fn m( Rc RB )
ห้องสมุดไป่ตู้
˵ ² ¤Ê äÈ èµ Ä¸ ßÐ ÔÌ åÖ ÊÁ ¿ (g)
表1 将其各参数指标作为标准值,测试其开路和并1400Ω电阻的各参数值。
GPT-1» ë ² ¨Æ ÷² â Ê Ô Ò Ç ² â Ê Ô ¼ á ¸ û Î Ä » þ ² â Ê Ô Ê ±» ä :12/08/02 12:19:28 » ë ² ¨Æ ÷Ð Í ¹ Å £ ¹ 903/4A-10Hz ² â Ê Ô Î Â ¶ È £ ¹ 13.0 ² ¢ Á ª µ ç × è £ ¹ à º Ó Ð ´ ® ² ¢ ¸ × Ï µ £ ¹ µ ¤ Ö º Î Â ¶ È ² ¸ ³ ¤ £ ¹ ² ¸ ³ ¤ ± ê × » ´ Ó 13.0µ ¼ 13.0 Ô è Ò ô µ ç × è × Ô È º Æ µ Â Ê × è Ä á Á é à ô ¶ È Ê §Õ æ è ¿ × ¸ mv ohm Hz v/m/s % ohm ±× · ¢ ê × ± » Ö µ 383 9.89 0.264 29.1 0 11.3 g Ê µ ² â Ö µ 0.4 382.9 9.89 0.264 29.1 0.038 2175 » ë ² ¨Æ ÷Ð Í ¹ Å £ ¹ 903/4A-10Hz ² â Ê Ô Î Â ¶ È £ ¹ 13.0 ² ¢ Á ª µ ç × è £ ¹ 1395.0 ´ ® ² ¢ ¸ × Ï µ £ ¹ µ ¤ Ö º ê × ± » Ö µ 300.5 9.89 0.603 22.8 0 11.3 g Ê µ ² â Ö µ 0.2 300.4 9.9 0.603 22.7 0.025 878
第二章 地震检波器

第二章地震检波器地震检波器是把传输到地面或水中的地震波转换成电信号的机电转换装置,它是野外地震数据采集的关键部件。
第一节电动式地震检波器工作原理:当地震波到达地面引起机械振动时,线圈对磁铁作相对运动而切割磁力线,根据电磁感应原理,线圈中产生感生电动势,且感生电动势的大小与线圈和磁铁的相对运动速度成正比。
图2-1(a)电动式检波器基本结构图2-1(b)电动式检波器外形图2-2 检波器内各部分的运动关系图2-2 检波器内各部分的运动关系12一、运动方程的建立运动方程反应的是检波器线圈运动与地面运动的关系。
规定:z ——地面产生的向上位移y ——线圈框架(惯性体)的向上位移x ——线圈相对磁铁的向下位移(x <0),并且:y z x =+1.弹簧克服惯性体重力后的拉力K FK F kx =- (2-1)2. 线圈受到的电磁阻尼力根据法拉第电磁感应定律,线圈两端输出的电动势为dtdxs dt dx dx d n dt d ne ⋅=⋅==φφ dxd ns φ=称为机电转换系数,也叫空载灵敏度。
线圈中的感应电流为:c o e ei R R R==+式中c R 是线圈内阻,o R 是线圈负载电阻。
感应电流受到的电磁力L F :dtdx R s R e s i dx d n F L ⋅-=⋅-=⋅-=2φ (2-2) 3. 铝制线圈框架受到的电磁阻尼力当圆筒形铝制线圈框架在磁场中运动时,线圈框架内将产生涡电流。
涡电流产生涡旋磁场,此涡旋磁场与永久磁场相互作用的结果也是阻止线圈框架的运3动,这种电磁阻尼力与线圈框架相对磁铁的运动速度成正比:dtdxF T μ-= (2-3) 根据牛顿第二定律,将式(2-1)、(2-2)和(2-3)相加:2222222()k L T s dxF F F k x R dtd yd z d x M M dt dtdt μ++=-⋅-+⋅⎛⎫=⋅=⋅+ ⎪⎝⎭ 即 222221dtzd x M k dt dx R s M dt x d -=+⋅⎪⎪⎭⎫ ⎝⎛+⋅+μ (2-4) 一般式 2220222dtz d x dt dx h dt x d -=++ω (2-5)MRs h 2/2+=μ——衰减系数,M K /0=ω——自然频率 。
地震勘探仪器讲解

目前地震仪器一览
目前以24位ADC仪器作为绝对主体。 特点:稳定和可靠性高;系统软/硬件功能强、指标高、
指标差距不大,各有特色。 有线传输式的网络仪器: SERCEL 408UL ;428UL ;
IMAGE; I/O-SYSTEM IV; ARAM-ARIES;SI-2000 无线数据传输仪器:BOX;Vibtech-it 数据存储式独立型地震仪器:I/O-RSR、SYSTEM-IV(VR);
• 毕竟,地震数据采集系统与地震勘探方 法的发展的需求还是距离很大,地球物 理学家也一直抱怨仪器动态范围不够。 在高分辨率勘探地质任务面前更是越来
越显示出了它的不足。
数字化的核心部件 – 模数转换器
• 于是仪器研制人员又被迫回到数字化 的核心部件 – 模数转换器来考虑问题。 当时适合地震信号数字化成的传统模 数转换通常采用逐次比较设计方案, 连续变化的模拟信号按采样频率离散 为一系列保持平定的子样,对这些子 样用类似天平称重的方法,通过加减 一系列标准的电压码来测量子样。当 比较码值的总和电压与子样电压相等 时便实现了量化。
JGI-MS-2000;BGP-3S-1 全数字式:I/O-SYSTEM IV;Sercel-408DSU
硅微机械加速度计
• 经过 15 年研制开发而生产的数字加速度计包含 两个主要部件:硅微机械加速度计和专用混合集 成电路ASIC 。硅微机械加速度计由用弹簧悬挂的 在环绕支架上的运动惯性体组成。为此应用四片 6 英吋双面抛光单晶硅片制造,中间两层构成惯 性体、支架和中心电极;上下两层则构成外层电 极并用金属热压与支架形成一体。惯性体表面外 延层光刻制成硅弹簧,在惯性体和顶底盖表面制 成金属电极与连线,从而在惯性体表面与顶底盖 之间形成了电容器。整个芯体案大约 6.5MM × 5.5MM × 2MM,真空陶瓷封装。
地震检波器

涡流式
涡流式地震检波器是美国OYO公司1984年研制成的一种检波器。它是利用惯性部件和固定在机壳里的永久磁 场的相对运动产生涡流,涡流又使固定在机壳里的线圈感应出电压和电流的原理而制成的。一个固定的圆柱形磁 铁沿中央轴安装在机壳内,线圈固定地绕在永久磁铁的外面,非磁性可运动的铜环由弹簧悬挂在磁铁和线圈之间 构成惯性部件。当机壳被地面振动驱动时,固定在机壳内的永久磁铁和铜环之间的相对运动在铜环中形成涡流, 涡流的变化引起次生的变化磁场,变化的磁场在固定的线圈中产生电动势。铜环内涡流的大小与检波器外壳的运 动有关,它本质上是一种对外壳位移加速的传感器。它的结构特点是活动的惯性体,与输出端没有电连接,这就 大大提高了检波器的可靠性,并且其感应电动势随频率的增加按6dB/oct斜率上升(dB为分贝,oct为倍频程),这 种特性可以部分补偿地震信号因大地吸收衰减而造成的高频损失。因此,用这种检波器可以提高地震勘探检波器(MEMS)是微机电机械传感器(Micro—Machined Electro Mechanical Sen—sor)的简称。 它是一种微米级的类似于集成电路的装置和工具,现已应用于工业、汽车、国防、生命科学和日常生活。MEMS技 术是从早期的汽车轮胎压力传感器到为开发气囊而进行的汽车撞毁试验以及航空电子等大冲击量检测设备而逐渐 发展而来的。
地震检波器
水中的地震波转换成电信号的机电转换装置
01 电动式
03 涡流式
目录
02 压电式 04 数字MEMS
地震检波器是把传输到地面或水中的地震波转换成电信号的机电转换装置,它是地震仪野外数据采集的关键 部件。陆上地震勘探普遍使用电动式检波器,海上地震勘探普遍采用压电式检波器。涡流检波器是20世纪80年代 发展起来的一种新型检波器,(2016年)受到与重视的是基于微机电机械传感技术(MEMS技术)的数字地震检波 器。
地震仪器基础检波器ppt课件

– 常规反射地震勘探中接收的地震有效波的频率 范围一般在 0~300Hz 之间 ,并要求传感器在 此频率范围内对振动的响应 包括相位和振幅响 应 是线性、稳定的。
– 对地震波而言,大地是一个非线性系统 ,一般是 频率越高地震波的能量就衰减越快 ,这就使到 达检波器的高频振动信号要比低频振动信号小 得多 ,要采用更多的叠加次数才能有效突出高 频弱小反射信号。为此就产生了一种幅度频率 特性与大地相反的检波器,以便补偿大地对高频 弱小信号衰减的能量 ,这就要加速度检波器。
的有效动态范围已达到120dB以上(理论值140dB),想在仪器本身提高勘探质 量难度已很大,而与之配套的地震检波器其动态范围。
• 检波器动态范围一览表
动态范围(dB) 53.97 60 66.02 73.98 80 失真度(%) 0.2 0.1 0.05 0.02 0.01 目前,国内检波器的失真指标要求在0.2%以下,其动态范围小于60dB,不及 仪器动态范围的一半。 可见,如何提高检波器自身的动态范围,已成为提高地震勘探质量的瓶颈, 虽然对提高检波器的动态范围到底对地震勘探质量的能提高多少,目前没有 量的概念,但是,检波器的动态范围越大,其地震数据就越能真实的反应地 质概貌,这是物探专家们的共识。所以说,低失真的检波器是勘探业内一直 追求的检波器。这是本系列检波器要解决的目标之一。
导体热敏电阻又可分为正电阻温度系数(PTC),负电阻系数(NTC),临界 电阻温度系数(CTR)等几种。
• PTC热敏电阻一般用BaTiO3(钛酸钡)系列材料制成。当温度超过某一定值
时,其电阻值快速增长。主要用于各种电器设备的过热保护,发热源的定温 控制(如电热蚊香的发热元件)和用作限流元件。还可用于彩电消磁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、光纤微地震检波器技术
US Seismic Systems, Inc. (USSI,美国) 前 身 : Litton’s (now NG) Fiber Optic
Strategic Business,光纤声呐阵(LWWAA system)
二、光纤微地震检波器技术
抗电磁干扰与信号串扰能力强
全光光纤检波器从检波器探头到信号传输均以光纤为载体,无电 磁干扰影响,各通道信号串扰小,尤其在野外石油勘探作业中优 势明显
前端没有电子设备,防水,耐腐蚀,耐高温高压
井下无电子设备,信号传输全部在光纤中进行 探头也由光纤制作而成,前端不需要供电,可在恶劣环境中应用
一、非常规油气及开发现状
水力压裂技术是目前世界上非常规油气田开发和老油田增产所应用最为广泛 且最为有效的技术措施。-----通过对产油井注水,使得地层涨裂,产生连 通裂缝,改善储层,释放天然气和石油。
一、非常规油气及开发现状-
微地震监测技术
微地震监测,利用水力压裂作业时引起的地下岩层裂缝或错断所产生的地震 波(微地震),进行水力压裂裂缝属性监测的方法。
光纤微地震检波器技术
20一、非常规油气及开发现状
什么是非常规油气? 在油气藏特征与成藏机理方面有别于常规油气藏、采用传统开采技术通常不 能获得经济产量的油气藏。非常规油气包括致密油气、页岩油气、煤层气、 天然气水合物、水溶气、重油(超重油)、天然沥青(油砂)、油页岩等。
压裂产生地震信号微弱,对接收地震信号的检波器提出较高要求,通常需要 高灵敏度的检波器,并布放在井下,对微地震信号进行采集。
二、光纤微地震检波器技术
为什么采用光纤技术?
光纤检波器具有更高的灵敏度 光纤检波器具有更好的高频响应特性 可实现多通道、大数据量、高速传输 前端没有电子元件,更高的可靠性 耐高温高压 无需供电,防水耐腐蚀,可长期布放 抗电磁干扰,通道串扰小
商用的光纤微地震检波器系统
二、光纤微地震检波器技术
美国威德福公司, 完成了大量工程示范,逐渐商用化
二、光纤微地震检波器技术-技术优势
低噪声探测特性
采用光纤干涉技术,灵敏度高 可检测最小信号比传统压电检波器要低1个数量级(200 ng以下),使
探测更弱地震波信号成为可能
频带宽
带宽宽,可以响应甚低频到1 kHz
大动态范围、大数据量、高速传输
传统压电检波器的系统动态范围一般在60 dB~80 dB 光纤检波器采用数字信号处理,系统动态范围可以到120 dB~140 dB 光纤兼具传感和信号传输功能,可大数据量高速传输